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Abstract

Background: Correcting a heterogeneous dataset that presents artefacts from several confounders is often an
essential bioinformatics task. Attempting to remove these batch effects will result in some biologically meaningful
signals being lost. Thus, a central challenge is assessing if the removal of unwanted technical variation harms the
biological signal that is of interest to the researcher.

Results: We describe a novel framework, B-CeF, to evaluate the effectiveness of batch correction methods and their
tendency toward over or under correction. The approach is based on comparing co-expression of adjusted gene-gene
pairs to a-priori knowledge of highly confident gene-gene associations based on thousands of unrelated experiments
derived from an external reference. Our framework includes three steps: (1) data adjustment with the desired methods
(2) calculating gene-gene co-expression measurements for adjusted datasets (3) evaluating the performance of the co-
expression measurements against a gold standard. Using the framework, we evaluated five batch correction methods
applied to RNA-seq data of six representative tissue datasets derived from the GTEx project.

Conclusions: Our framework enables the evaluation of batch correction methods to better preserve the original
biological signal. We show that using a multiple linear regression model to correct for known confounders
outperforms factor analysis-based methods that estimate hidden confounders. The code is publicly available
as an R package.
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Background
Although ultrahigh-throughput sequencing technologies
for gene expression profiling that measure the expres-
sion levels of thousands of genes in a single experiment
present a promising technique to discover novel bio-
medical phenomena, they may suffer from artifacts that
can delay the discovery. The adjustment of heteroge-
neous gene expression data that present noise generated
by a single or multiple confounding factors needs to be
taken into account. Attempting to remove batch effects
may result in over fitting, which results in the loss of
some of the biologically meaningful components of the
measurement (i.e., signal). Thus, evaluating the results of

the adjustment methods is as pivotal as the batch effect
removal process itself [1]. The lack of such evaluation
tools may even result in an elevated distortion of the
data following adjustment, introducing serious errors in
the results of any downstream analysis performed. For
example, a loss of an expected biological signal of
healthy and diseases colorectal/breast cancer patients
was detected following batch correction with PCA
(principle component analysis) based method [2] and
the work in [3] evaluated the extent to which various
batch correction algorithms remove true biological het-
erogeneity using replicate samples. A pivotal challenge
thus arises of how to determine whether an adjustment
assists or damages the biological (i.e., non-technical)
signal in the data.
Batch correction approaches can be roughly divided

into three categories: (1) those aimed at removing
known covariates, e.g., ComBat [4], which applies an
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empirical Bayes approach, (2) those aimed at removing
unknown covariates, e.g., inferring hidden covariates
using principal components [5] or factor analysis [6],
and (3) those aimed at removing both known and un-
known covariates. Several powerful approaches aimed at
correcting hidden batch effects prior to differential ex-
pression analysis were suggested [7–11]. The Surrogate
Variable Analysis (SVA) method [8] and its SVAseq [9]
extension for RNA-seq data, used SVD (singular value
decomposition) to define hidden confounders on the sig-
nal removed residual matrix. The method uses permuta-
tion tests to choose the significant singular vectors, finds
a subset of genes that account for them and finally cre-
ates a surrogate vector for each gene subset. Focusing
on detecting biological heterogeneity, the pSVA
approach [3] reverses the common application of SVA
to estimate biological heterogeneity as those features
measured from genes not associated with an a-priori
known technical covariates in the model matrix. The
SVAPLSseq [10] method estimates hidden confounders
using partial least square regression model of the ori-
ginal expression matrix on the primary signal removed
expression matrix or using a set of control features. The
RUV-2 method [11] suggested adjusting for batch effects
using the variation between conditions of a-priori nega-
tive control genes known not to be altered and related
to the biological factor of interest (i.e., not differentially
expressed). Using factor analysis, the negative control
genes were incorporated into a linear regression model
to adjust for unwanted variation in a dataset resulting
from batch effects. These methods are dedicated to a
downstream differential expression analysis that takes
into account the differential biological variation between
the contrasted groups supervising their computation.
This makes it less than intuitive to be utilized for the
unsupervised batch correction computation required for
a downstream co-expression analysis.
Recently, several combined methods were developed

to account for data overcorrection. They were mostly
based on assessing data variation or reducing it using
factor or principle component analysis combined with
prior knowledge (e.g., known batches). For example, the
Harman method [12] refined principal component
analyses using known batch effects to adjust for data
variation related to known batches. They generated
principal components on per-batch-summation of the
original data. A p-value for the significance of the
batch-related first principal component variation is then
used for the data adjustment. The HCP (Hidden
Covariates with Prior) method [13] also refined principal
components-based analyses using known batches. To
asses their method, they evaluated the accuracy of the
constructed co-expression network (gene-gene pairs
from the batch-corrected expression datasets) to predict

functional networks based on gene ontology (GO)
categories. Inferred hidden confounder factors, PEER
factors [6], were used to adjust for batch effects for the
GTEx human tissues-dataset [14–16]. With the aim of
generating co-expression networks, [14] followed the
methodology suggested in [13] to preserve the desired
biological signal and used GO categories to quantify the
reasonable numbers of principal components to be
adjusted in each tissue with respect to the optimal GO
enrichment. The work at [17] used a-priori knowledge
on the true noise to evaluate adjustment methods. They
used control data of technical replicates (comparing
their correlation before and after batch adjustments) and
principal component analysis on simulated data.
Here we present B-CeF (Batch Correction Evaluation

Framework), a novel framework for assessment of batch
correction approaches on actual data considering the
genuine biological signal left. Focusing on the desired
downstream co-expression analysis following the batch
correction, we suggest computing a metric that com-
pares the biological signal left in the adjusted datasets,
represented by gene-gene co-expression, to an a-priori
external knowledgebase, a gold standard, of a genuine
biological signal. The gold standard, derived from the
GIANT database [18], is represented by a set of actual
high confident gene-gene associations based on
co-expression and protein-interaction networks derived
from thousands of experiments. We use the B-CeF
methodology to evaluate five batch correction method-
ologies applied to six representative tissues from the
GTEx dataset [15, 16].

Results
The B-CeF assessment framework uses a-priori gene-gene
true and false associations to evaluate the effectiveness of
batch correction methods to preserve meaningful bio-
logical signals (see Fig. 1 for schematic overview). A true
gene-gene association is defined as two genes that are
verified to be co-associated across multiple biological con-
ditions (i.e., based on co-expression and biological interac-
tions, see Methods), and false association is defined as two
genes that are thought to not be associated. An adjust-
ment method is considered as being effective if the num-
ber of true positive or true negative pairs in the adjusted
dataset increases with respect to raw unadjusted data.
Specifically, the steps of our methodology include: (1)
construct the a-priori gold standard of high probability
true and false gene-gene pairs (co-associations); (2)
construct for the adjusted dataset a corresponding set of
gene-gene pairs and their correlation coefficients and
p-values estimation, and finally (3) evaluate the perform-
ance of each adjustment method using these p-values as
scores against the gold standard pairs for generating ROC
curves and AUC (see Methods). We demonstrate the
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B-CeF methodology by contrasting five batch correction
methods and raw data.
GTEx was shown (see Fig. 2, [16]) to be a highly

heterogeneous dataset affected by several batch effects,
e.g., ischemic time, experimental batch and death type.
Figure 2 shows a plot of the first and second principle

component values for the Adipose Subcutaneous data-
set, colored by discretized ischemic time. Ischemic time
is the time in minutes that elapsed between death time
and samples extraction. It can be seen that ischemic
time affects the variability of the gene expression values
of the samples. Figure 3 exemplifies the co-expression of
three true co-expressed gene-gene pairs derived from
the insulin-signaling pathway, INSR with IRS2, TIMP1
and PTPN11. The corresponding confidence values (the

probability for the association) derived from the GIANT
project [18] for these true associations are IRS2-INSR
confidence = 0.50, INSR-TIMP1 confidence = 0.69,
INSR-PTPN11 confidence = 0.69.
The biological roles of these genes are as follows. INSR

[19] is a receptor tyrosine kinase, which activates the
insulin-signaling pathway when bound to insulin or
other ligands. INSR stimulation leads to the phosphoryl-
ation of several intracellular substrates, including insulin
receptor substrates (such as IRS2). The IRS2 gene en-
codes the insulin receptor substrate 2, which is a cyto-
plasmic signaling molecule that mediates between
diverse receptor tyrosine kinases (e.g., INSR) and down-
stream effectors. Each of these phosphorylated insulin
receptor substrates serve as docking proteins for other

Fig. 1 Schematic view of the framework

Fig. 2 Variability related to ischemic time in the GTEx Adipose Subcutaneous dataset. Samples are shown in the PC space of the first two
principal components. It can be seen that ischemic time affects the variability of the samples
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signaling proteins, including the SHP2 (PTPN11) mol-
ecule [19]. The TIMP1 (TIMP Metallopeptidase Inhibi-
tor 1) gene participates in the inhibition of the insulin
signaling mechanism and its product levels were shown
to increase as a result of hyperinsulinemia [20].
Figure 3 presents the co-expressions plots, correlation

coefficients and p-values after adjustment with LR and
PCA (see Methods). The PCA correction (principal
component based correction) eliminates the expected
biological signal between these biologically-related genes

when compared to the LR correction (linear regression
based correction of known confounders). The figure
demonstrates that the correlation coefficients of INSR
with the described three genes are significantly reduced
following the PCA-based adjustment compared to the
LR-based adjustment. For example, Fig. 3c, d show that
the LR adjustment results in a significant correlation
coefficient (r = 0.534, p-value < 0.001) for the pair = (INSR,
PTPN11) as opposed to the PCA-based adjustment (r~ = 0,
p-value > 0.1).

Fig. 3 Examples of Spearman correlation coefficients of three true gene-gene associations. These are calculated following LR-based adjustment
(using the linear regression model for known confounders) and principal components-based adjustment of the GTEx Adipose Subcutaneous
dataset. The example genes are derived from the insulin signaling mechanism. a, b Example of co-expression plot of LR and PCA-based
adjustment for INSR-IRS2 association. c, d Example of co-expression plot of LR and PCA-based adjustment for INSR-PTPN11 association.
e, f Example of co-expression plot of LR and PCA-based adjustment for INSR-TIMP1 association. The y-axis presents the INSR (insulin receptor)
expression for each sample (depicted by circles) and the x-axis the expression values of the relevant gene. Spearman correlation coefficients and
p-values are presented at the top of each plot. It can be seen that removing most of the variability using principal components-based adjustment
(PCA) can result in eliminating a desired biological signal, e.g., PTPN11 has a significant correlation coefficient to INSR (r = 0.534, p-value < 0.001)
following the LR adjustment and non-significant (r = ~ 0, p-value = 0.405) following the PCA adjustment
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In the first step of our methodology we generated a
high confidence gold standard of gene-gene
co-associations for representing an actual biological
signal. We then derived the strongest/weakest true and
false gene-gene pairs (see Methods). In addition, we
adjusted six tissue-specific datasets with five batch
correction methods each. In the second step of the
methodology we generated the co-expression networks,
i.e., a gene-gene co-expression score based on correl-
ation coefficients p-values (see Methods), per each ad-
justed dataset and tissue. Figure 4 shows the density
plots of correlation coefficient values of the a-priori true
and false gene-gene pairs following adjustments with five
methods for the Adipose Subcutaneous GTEx dataset. A
tendency toward zero mean of correlation coefficients in
both true and false gene-gene pairs can be seen for data
adjusted with hidden confounders that removes most of
the data variability, such as using PEER or principle
components (PCA). The methods that consider known
confounders better preserve the expected correlations
for true gene-gene signals. The same trend is exemplified
for other tissues (see Additional file 1: Figure S5).
Figure 5 exemplifies the third step of our framework

that includes the performance evaluation of five adjust-
ment methods and raw data demonstrated for six
tissues. Figure 5 a, b demonstrates the performance
evaluation plot and AUC values after adjusting the

“Adipose subcutaneous” and “Skin - Not Sun Exposed
(Suprapubic)” tissue datasets with five batch correction
methods and the raw unadjusted data. See Additional
file 1: Figure S6 for performance evaluation plots of
Whole-blood, Thyroid, Muscle Skeletal and Nerve Tibial
tissue datasets. Figure 5c summarizes the AUC results of
these six adjusted datasets for six different tissues. As
expected, the more delicate “PCA_opt” adjustment (see
Methods), which includes optimal principal components
to be used as suggested by the method in [14], outper-
forms the “PCA_all” adjustment in most exemplified
tissues. It can be seen that using the linear regression
model and ComBat, which adjust for known con-
founders, outperform other methods, the PCA-based
and factor analysis-based using PEER hidden covariates.

Discussion
We present B-CeF, a new methodology for estimating
the effectiveness and quality of gene expression data
adjustment methods to preserve the genuine biological
signal in actual data. The novelty of our approach is in
using an a-priori high confident gene-gene
co-association score based on real observations to
evaluate adjustment methods. The a-priori knowledge of
gene-gene associations is derived from the GIANT
project [18] and calculated using thousands of gene
expression and protein interaction experiments. As

Fig. 4 Density plots of Spearman’s correlation coefficients (rs) of gene-gene pairs following adjustment with five methods. (a) Density plot for rs
of false gene-gene pairs. (b) Density plot for rs of true gene-gene pairs. We used 1796 true and 1179 false edges following adjustment with five
methods and raw data for the GTEx Adipose Subcutaneous dataset. Data adjustment with hidden confounders, i.e., PEER and PCA-based
covariates (colored in green and blue respectively) demonstrates a tendency toward zero mean of the correlation coefficients in the false and in
the true gene-gene pairs
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opposed to other approaches [13, 14] that assumed the
existence of a co-expression network between the genes
within a GO (Gene Ontology) category, our approach
uses actual networks observed experimentally to be
co-expressed and co-associated based on thousands of
experiments. We complement the methodology with an
R software package that can be easily downloaded and
executed.
Choosing the adjustment approach for a highly hetero-

geneous dataset, such as GTEx, may be counterintuitive.
Commonly, hidden confounders were inferred and used
(e.g., [14] for co-expression analysis, [16] for eQTL
analysis) to adjust the GTEx dataset, in order to cope
with data heterogeneity. We show here, using our new
framework, that linear regression-based methods and
ComBat [4], adjusting for known confounders, outper-
form the methods adjusting for hidden confounders that
remove some of the desired biological signal along with
removing the data variability. Supporting our results,
Mostafavi et al. [13] used GO (Gene Ontology) categor-
ies to show that unguided removal of top principal

components significantly reduces the accuracy of
co-expression networks compared to the raw RPKM
data. Following this trend, the work in [14] optimized
the number of principal components used (utilizing GO
categories) to adjust the GTEx data for generating
co-expression networks.
An important aspect of the approach is to correctly

select the a-priori knowledge that is used. Choosing
gene-gene co-association scores especially suited to the
study at hand may improve the effectiveness of the
approach. In our exemplified GTEx datasets, most of the
gene expression profiles belong to healthy yet
post-mortem donors, while the GIANT co-association
scores are based on various types of phenotypes, e.g.,
diseased and healthy individuals. A future enhancement
may be to generate dedicated gold standards, e.g.,
tissue-specific post-mortem healthy individuals that
match the exact data set at hand. To overcome this
limitation, we limited our analysis to the most confident
gene-gene associations from GIANT [18] (we used the
weakest and strongest edges derived from the

Fig. 5 Performance evaluation of five adjustment methods and the raw data applied to six representative tissues. ROC curves and their corresponding
AUC values are presented. ROC curves [30] are graphical representations of both specificity and sensitivity that take into account both the gene-gene
co-expression of the adjusted dataset against the gold standard, a-priori knowledge of true and false gene-gene associations derived from the GIANT
project [18]. (a) Performance evaluation for the Adipose Subcutaneous tissue dataset. Performance was evaluated using 2975 gold standard edges
(1796 and 1179 true and false edges respectively) for this tissue. (b) Performance evaluation for the Skin - Not Sun Exposed (Suprapubic) dataset.
Performance was evaluated using 2986 gold standard edges (1820 true and 1166 false edges). (c) Plot summarizing the AUC values for six tissue
datasets (x-axis) and five adjustment methods and raw data (see Methods section). It can be seen that LR (linear regression-based adjustment for
known confounders) and ComBat [4] outperforms the other adjustment methods

Somekh et al. BMC Bioinformatics          (2019) 20:268 Page 6 of 10



tissue-naïve network, trained on all tissue types and con-
ditions). These true and false gene-gene associations are
verified to be co-associated across multiple biological
conditions, which presents a strong basis for our frame-
work. We note that the low confidence interactions
(false gene-gene associations) may still have evidence in
some specific tissue or condition, which may affect the
performance scores and our results.
Nevertheless, publically available databases of highly

confident co-expression networks based on thousands of
experiments is in a grow. For example, the tissue-naïve
and tissue-specific networks of the GIANT project [18],
Gene Network [21] and the species-specific GeneFriends
[22] currently include co-expression maps for human
and mouse. These high confident network databases can
serve as a basis for generating co-expression networks
gold standards to be used by our framework.
The simplicity of B-CeF makes it flexible and an excel-

lent tool for additional purposes. For example, it suits
any gene expression experimental platform and can be
used to infer the optimal number of principal compo-
nents for adjusting the data with minimal effect on the
expected biological signal.

Conclusions
We show that using inferred hidden confounders that
remove data variability overcorrects the data and results
in a loss of essential biological signals. Our developed
framework provides for evaluating the efficiency of batch
correction methods in preserving original biological sig-
nals and can be used with any type of gene expression
profile generated for any experimental platform.

Methods
A-priori co-expression network
The GIANT project [18] generated genome-wide
functional interaction networks for 144 human tissues
and cell types developed using a data-driven Bayesian
methodology that integrates thousands of experiments
(> 14,000 distinct publications) to yield a confidence
score for each gene-gene interaction. The experiments
were derived from GEO (Gene Expression Omnibus
[23]) human datasets and biological interaction data-
bases such as BioGRID [24]. We downloaded the
tissue-naïve network gold standard (“all_tissue” full net-
work from http://giant.princeton.edu/download/), which
trained a classifier based on genome-wide functional in-
teractions. The confidence score of a gene-gene associ-
ation represents the probability for two genes to be
associated over the multiple tissues/cell-types included
in the project. We derived the first 100,000 gene-gene
associations and their confidence scores from this net-
work. We then extracted the highest/lowest confidence
gene-gene pairs to represent true/false pairs. We define

true edges as those having confidence > 0.5 and were
assigned with the value 1, and false edges with confi-
dence < 0.025 and were assigned with the value 0. We
calibrated the confidence cutoffs (confidence scores are
in the [0,1] interval) to balance between the number of
the true and false associations. The calibration included
initiating the low cutoff for a confidence of a false
gene-gene association to 0.01 and the high cutoff for the
confidence of a true gene-gene association to 0.7, and
then increasing/decreasing the confidence cutoffs by
0.005/0.05 respectively until the number of true and
false associations were approximately balanced. The final
set of true and false associations includes 3490 associa-
tions (1935 true associations and 1555 false associations)
used as the gold standard for the performance calcula-
tions. The number of actual gold standard associations
used per tissue was slightly lower since we removed as-
sociations between tissue-specific low expressed genes.
Finally, we used the following number of edges: (1)
Adipose Subcutaneous - 1796 true and 1179 false edges,
(2) Skin - Not Sun Exposed (Suprapubic) - 1796 true
and 1179 false edges, (3) Muscle – Skeletal - 1736 true
and 1062 false edges, (4) Nerve - Tibial - 1789 true and
1120 false edges, (5) Thyroid - 1809 true and 1176 false
edges and (6) Whole Blood - 1770 true and 1063 false
edges.

GTEx data set
We applied our approach to six representative tissue ex-
pression profiles derived from the Genotype Tissue Ex-
pression Project (GTEx) [15, 16]. GTEx is a large-scale
heterogeneous human tissues dataset of RNA-seq data,
e.g., it contains 298 adipose subcutaneous samples and
196 skin (not sun exposed from the suprapubic) samples.
We downloaded the gene expression tissue-specific
datasets [25] (version V6) from the GTEx portal. The
downloaded data included pre-processed RPKM values,
along with a phenotype matrix and per-tissue PEER in-
ferred covariates files (e.g., Adipose_Subcutaneous_Ana-
lysis.v6p.covariates.txt file). The pre-process of these
datasets included [16] (1) filtering for average gene ex-
pression > 0.1 RPKM and RIN (RNA Integrity Number)
values greater than 6, (2) quantile normalization within
each tissue and (3) mapping each gene set of expression
values to a standard normal distribution. The per-tissue
15 PEER factors were generated [16] using the top
10,000 expressed genes per tissue and normalized with
the same procedure as described for the expression
matrices.

Data correction
We evaluated five methods that correct for known and
hidden confounders.
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The following correction methods were tested

1. LR (Linear Regression): the multiple linear
regression model was used to fit for gender
(GENDER), ischemic time (SMTSISCH
representing the interval in minutes between time
of donor death and sample collection), age (AGE),
experimental batch (SMGEBTCH) and death type
(DTHHRDY) for the gene expression data. We
derived the relevant phenotype vectors from the
downloaded phenotype table.

2. PEER: We used 15 inferred PEER factors
(see GTEx dataset description above) and gender
to adjust for the data. PEER factors are hidden
covariates inferred using a factor analysis-based
approach [6].

3. PCA: the principal components that accounted
for most of the variability in the data set (9, 10,
10, 9, 10, 10 first principal components for
adipose subcutaneous, skin, nerve, muscle whole
blood and thyroid respectively, see Additional
file 1: Figure S1) and gender were used to
adjust the data.

4. PCA_opt: same as PCA but adjusted for optimal
number of principle components as reported by
[14] (5, 5, 4, 4, 7 principal components for adipose
subcutaneous, skin, nerve, muscle and whole blood
respectively).

5. ComBat: We executed ComBat [4] using the ‘sva’ R
package [7] to adjust for death type, experimental
batch, ischemic time, age and gender. Due to the
discrete nature of ComBat, the continuous
ischemic time values were discretized into five
bins, labels 1 to 5, by partitioning them into 300
min intervals. Age includes the 20–80 year range
and is partitioned into 10 year intervals
(embedded in the GTEx dataset). We removed
genes with zero variance per each batch group
and type. We removed batches with one sample
within a batch. Since ComBat [4] is not designed
to correct for multiple batch effects
simultaneously, we adjusted each batch
iteratively, accounting for the yet unadjusted
batches in each iteration.

We tested a sixth method that uses singular value
decomposition and a permutation test for choosing the
number of singular vectors to be included in the
adjustment. It showed similar trend as the PCA-based
adjustment (see Additional file 1: Figure S7 in the
supplemental file for results and method explanation).
For batch correction methods 1–4 above (i.e., except

for ComBat, which generates the adjusted dataset), we
used the multiple linear regression model to extract the

gene expression residual of gene i in sample j computed
as follows:

Residual ji ¼ Exp j
i−

XN

n¼1

Coef i;n Confounder
j
n

Expi
j is the expression level of gene i in sample j,

Confoundern
j is the n-th confounder (can represent a

principal component, PEER factor or known covariates)
in sample j, N is the number of confounders considered,
Coefi,n is the regression coefficient of gene i on con-
founder n. The residuals from the regression calculation
were treated as the expression level of each gene. We
used the R ‘stats’ package to generate the computations.

Gene-gene association measure
We measured gene-gene pair co-associations using the
Spearman correlation coefficient or Spearman’s rho [26].
Spearman correlation is a nonparametric rank-based
correlation calculation method that provides a robust
measure of a nonlinear monotonic relationship between
two continuous or discrete ordinal variables not enfor-
cing a bivariate normal distribution on the variables.
The method uses linear relations between the ranks of
the values of the two variables and is generally more ro-
bust to outliers. Spearman correlation uses the same for-
mula as the Pearson correlation [26] except that the
values of the variables are replaced with their ranks. In
case of tied (equal) values, they are assigned a rank that
is the average of their positions in the ascending order
of the values. Mathematically, for a sample size n, the
raw values xi, yi are converted to their corresponding
ranks xi

rank, yi
rank and the Spearman correlation coeffi-

cient rs is computed as follows:

rs ¼
cov xranki ; yranki

� �

σxranki
σyranki

covðxranki ; yranki Þ is the covariance of the rank variables
and σxranki

; σyranki
are the standard deviations of the rank

variables xi
rank, yi

rank respectively. If all n ranks are dis-
tinct integers (i.e., not tied), the Spearman correlation
coefficient can be computed using the formula:

rs ¼ 1−
6
Pn

i¼1 d2
i

� �

n n2−1ð Þ
Where n is the number of observations and di =

xi
rank- yi

rank is the delta between the two ranks of
each observation. rs is a measure between − 1 and 1
(representing perfect negative/positive correlation
respectively). The Spearman’s rho calculation is
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specifically appropriate for identifying gene expres-
sion values that are co-elevated and co-decreased in
a monotonic manner, and in a comparative study it
was found to perform better for constructing a gene
co-expression network [27]. We computed the
p-values of the correlation using the student’s t
distribution approximation [28], where t has a stu-
dent t-distribution with n-2 degrees of freedom. We
used the cor.test R function from the stats package
for the calculations.

Effectiveness evaluation of adjustment methods
For each gold standard true and false gene-gene pair, we
generated the corresponding Spearman correlation coef-
ficients and p-values for the “raw” unadjusted dataset
and the five adjusted datasets (the raw dataset adjusted
with five methods). We excluded pairs where at least
one of the genes was absent from the tissue-specific
GTEx datasets (e.g., filtered since low expression). We
scored each pair using the following metric: –log10(ad-
justed p-values(rs(g1, g2)), where g1 and g2 represent the
expression of each two genes consisted in a gene-gene
pair derived from the gold standard and rs their
Spearman correlation coefficient estimate. The p-values
were adjusted for multiple comparisons using BH
(Benjamini-Hochberg correction) [29].
We chose ROC curves [30] and AUC measures [31] to

assess the performance in our framework. The receiver
operator characteristic (ROC) curve [30] is a commonly
used standard measure to evaluate classification per-
formance. ROC curves [30] evaluate the performance of
each method by plotting the true positive rate (i.e., sensi-
tivity) against the false positive rate (i.e., 1-specificity) at
various threshold settings. The actual test statistic is the
area under the curve (AUC), and the dataset with the
optimal combination of sensitivity and specificity will
have the largest area of AUC [31]. There are other mea-
sures of classification accuracy, e.g., Brier score [32] or
precision-recall curves [33]. Precision-Recall (PR) curves
may give a more informative picture of an algorithm’s
performance when dealing with highly skewed datasets
[33]. Hanczar et al. [34] compared performance mea-
surements on simulations at various sample sizes up to
1000 observations and detected AUC inaccuracies in im-
balanced samples and smaller samples. Taking these into
account, AUC measurement is optimal for large-scale
sample size and balanced sample distribution. We bal-
anced our class distribution (the true and false edges)
and our sample size to includes > 3000 samples, which
makes ROC curves analysis highly suitable for assessing
the effectiveness of each adjustment method in our
framework.
We generated ROC-AUC for GTEx RPKM raw data

and the five adjustments. The method that performs

better (higher AUC) than others is suggested to be more
effective. The evaluation of overall performance was exe-
cuted using the R ‘pROC’ package.

Additional file

Additional file 1: Analysis of explained variability and performance
evaluation of adjustment methods in several tissues. (DOCX 1334 kb)
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