Skip to main content
. 2019 May 27;10:24. doi: 10.1186/s13229-019-0275-3

Table 3.

Parameters of the dual Gauss, Gauss-Weibull, and Weibull-Gauss distribution models for the overall sample

Parameter Result* Mean* Bootstrap: 95% confidence interval
Lower bound Upper bound

Model 4: Gauss + Gauss** (N = 4717)

-Log-likelihood = 17,272.30

 Mean (μ1) 16.14 16.12 15.18 17.07
 Std. dev. (σ1) 6.06 6.06 5.57 6.60
 Weight (w) 0.74 0.74 0.65 0.81
 Threshold (θ) 27.30 27.30 24.40 30.35
 Mean (μ2) 34.19 34.17 30.87 37.20
 Std. dev. (σ2) 7.50 7.48 6.11 8.74

Model 5: Gauss + Weibull (N = 4717)

-Log-likelihood = 17,261.31

 Scale (μ) 16.24 16.18 15.10 16.91
 Shape (σ) 6.15 6.13 5.56 6.57
 Weight (w) 0.26 0.27 0.20 0.37
 Threshold (θ) 27.70 27.56 24.10 30.05
 Scale (η) 38.08 37.93 34.48 40.15
 Shape (β) 5.18 5.19 3.88 6.41

Model 6: Weibull + Gauss

-Log-likelihood = 17,229.37

 Scale (η) 20.92 20.88 20.05 21.57
 Shape (β) 2.85 2.86 2.74 3.00
 Weight (w) 0.85 0.85 0.80 0.88
 Threshold (θ) 32.70 32.60 30.00 34.70
 Mean (μ) 38.83 38.73 36.58 40.27
 Std. dev. (σ) 5.25 5.28 4.44 6.32

*The result column shows the parameter values from the sample with the highest likelihood in the original data. The mean column shows the average parameter value from the 1000 resamples

**μ1 and σ1, and μ2 and σ2 correspond to the parameters of Guass1 and Gauss2 distributions depicted in Fig. 3b