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Abstract

Noninvasive neuroimaging has revolutionized the study of the organization of the human brain and 

how its structure and function are altered in psychiatric disorders. A critical explanatory gap lies in 

our mechanistic understanding of how systems-level neuroimaging biomarkers emerge from 

underlying synaptic-level perturbations associated with a disease state. We describe an emerging 

computational psychiatry approach leveraging biophysically based computational models of large-

scale brain dynamics and their potential integration with clinical and pharmacological 

neuroimaging. In particular, we focus on neural circuit models, which describe how patterns of 

functional connectivity observed in resting-state functional magnetic resonance imaging emerge 

from neural dynamics shaped by inter-areal interactions through underlying structural connectivity 

defining long-range projections. We highlight the importance of local circuit physiological 

dynamics, in combination with structural connectivity, in shaping the emergent functional 

connectivity. Furthermore, heterogeneity of local circuit properties across brain areas, which 

impacts large-scale dynamics, may be critical for modeling whole-brain phenomena and 

alterations in psychiatric disorders and pharmacological manipulation. Finally, we discuss 

important directions for future model development and biophysical extensions, which will expand 

their utility to link clinical neuroimaging to neurobiological mechanisms.
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A central research challenge in clinical neuroscience is to develop a mechanistic 

understanding of how molecular and synaptic-level disturbances in the human brain 

propagate across levels to analysis to impact systems-level neural activity, and ultimately 

cognitive computations, in neuropsychiatric disorders. At the level of microcircuitry, the 

field is generating hypotheses related to cell types and synaptic processes, such as disrupted 

balance between synaptic excitation and inhibition. For instance, histological studies have 

revealed alterations in synaptic densities in schizophrenia (1,2). At the molecular level, 

transcriptome mapping has characterized alterations in cortical expression levels of genes 

regulating synaptic and neuronal processes across multiple disorders (3-6), implicating 
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microcircuit dysfunction in psychiatric neuropathologies. However, it is unclear how such 

deficits impact distributed computations in large-scale brain networks, which subserve 

cognitive functions.

At a vastly different level of analysis, clinical neuroscience has leveraged noninvasive 

neuroimaging techniques to discover disorder-related biomarkers in the large-scale 

organization of anatomical structure and functional dynamics in the human brain. Altered 

evoked and intrinsic neural activity across distributed brain systems can be observed from 

modalities including functional magnetic resonance imaging (fMRI), 

electroencephalography (EEG), and magnetoencephalography (MEG). Resting-state fMRI 

has emerged as a powerful tool for characterizing the intrinsic functional organization of 

brain network dynamics in terms of functional connectivity (FC), the statistical covariation 

of neural activity (7-10), with widespread application to psychiatric disorders (11).

One promising effort to bridge this gap is the multidisciplinary field of computational 

psychiatry, which uses theoretical neuroscience models to study how disruptions at lower 

levels propagate upward to produce dysfunction at higher levels of behavior and function. 

Computational psychiatry encompasses a wide range of modeling approaches, from 

biophysical simulation of microcircuit dynamics, to connectionist modeling of distributed 

neural computation, to normative models of learning and decision making. In turn, these 

distinct levels of computational modeling connect to different types of neural and behavioral 

measurements. A number of recent articles and books have surveyed the progress and 

challenges in the emerging field of computational psychiatry (12-18).

Among computational psychiatry approaches, biophysically based modeling of neural 

circuit dynamics is well suited to link synaptic-level disruptions to emergent brain 

dysfunction (12,15,19-21). Circuit models can simulate neural population activity and 

computations, incorporating key properties of neurons and synaptic connectivity (22). 

Simulated activity patterns can then be related to empirical measures of neural activity, or in 

some cases even behavior. Perturbation of specific synaptic parameters can simulate 

hypothesized disease mechanisms and pharmacological manipulations, generating 

predictions for their impacts on neural activity and behavior (23-25). Such model results can 

then be related to experimental findings from clinical populations, pharmacological 

challenge, or animal models of disease states. Through mechanistically linking molecular, 

cellular, circuit, and ultimately behavioral levels of analysis, biophysically based modeling 

has the potential to inform rational design of pharmacological therapies.

We provide a targeted review of progress in biophysically based circuit modeling of large-

scale neural dynamics in the human brain and application of these whole-brain neural circuit 

models to understanding findings in clinical neuroimaging. Dynamical modeling has been 

applied to a variety of neuroimaging phenomena, including in psychiatric disorders; a more 

general overview of this field can be found in several recent review articles (14,26,27). In 

particular, a number of studies have used brain network models to study how the FC of 

neural activity across brain areas emerges from the interplay between their anatomical 

structural connectivity and intrinsic dynamics (27-33).
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We focus here on whole-brain dynamical models that attempt to bridge from the level of 

synapses and neurons to that of spatiotemporal dynamics in distributed brain systems. These 

models can incorporate key features of neuronal and synaptic processes and integrate data 

from multimodal human neuroimaging (32). They can therefore study how synaptic-level 

physiological perturbations impact large-scale organization of functional dynamics. For 

computational psychiatry applications, we focus on studies relating these models to 

schizophrenia (34-37). Schizophrenia is a disorder thought to involve large-scale 

dysconnectivity (38,39) as well as alterations in local cortical excitation-inhibition (E-I) 

physiology (40-43) and therefore poses important research questions that are amenable to 

this level of computational modeling.

We also highlight opportunities in computational psychiatry that will require further 

development of this class of models. In particular, we emphasize the importance of regional 

heterogeneity of neural microcircuitry, including across cortical areas (33), which can be 

informed by empirical measurements such as large-scale transcriptome mapping (44-46). 

Increasing neurobiological detail in the model’s microcircuitry is important to address 

synaptic-level hypotheses related to psychiatric disorders, yet this also poses critical 

challenges for how such model features can be adequately constrained and tested with 

neuroimaging data. Pharmacological neuroimaging may provide an important test bed for 

future model development and validation (47-50). Whole-brain circuit modeling can thereby 

provide a translational bridge to advance clinical neuroscience.

COMPUTATIONAL MODELS OF LARGE-SCALE RESTING-STATE 

DYNAMICS AT THE WHOLE-BRAIN LEVEL

Computational neuroscience has focused primarily on modeling phenomena at levels from 

neurons to small microcircuits, rather than large-scale neural systems (22). Dynamical 

modeling of brain networks has a rich history integrating developments from fields including 

neurophysiology, statistical physics, and nonlinear dynamics. In particular, the field has been 

strongly influenced by analysis of synchronization of coupled oscillators (51-54). [For a 

useful overview, see (27).]

Computational modeling of large-scale brain dynamics has been limited by experimental 

techniques to characterize neural structure and function at the whole-brain level. Progress in 

resting-state fMRI has played an important role in development of a class of neural circuit 

models that explicitly relate to resting-state FC. Whole-brain models — which typically do 

not actually model the entire brain, but, for instance, a cortical hemisphere—operate at the 

level of large-scale neural systems and address questions such as how distributed structural 

connectivity shapes FC through dynamical interactions of neuronal populations across brain 

regions (26,27,55).

Whole-brain models of resting-state dynamics typically represent a brain as a network of 

interconnected discrete nodes (Figure 1A), with each node simulating a region, e.g., 

parcellated cortical area. The model architecture requires two key elements: 1) a structural 

connectivity matrix defining coupling between areas, which can be derived from empirical 

data, typically diffusion MRI, and 2) equations governing neural dynamics of each local 
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node, which can be constrained by known neurophysiology (55). The net input to each node 

can contain contributions from local recurrent connections, long-range connections from 

other nodes, and fluctuating background input (31,32,56). As nodes respond to inputs, their 

activity fluctuates in time. Owing to long-range coupling, fluctuations are correlated across 

nodes, generating spatiotemporal patterns that can be characterized via measures such as FC. 

The resultant FC pattern is thereby shaped not only by underlying structural connectivity but 

also by dynamical properties of local nodes.

Neural activity in each node can generate simulated blood oxygen level–dependent signals 

via hemodynamic models, such as the Balloon-Windkessel model (57), enabling more direct 

comparison with fMRI measures (58). Empirical neuroimaging data (e.g., fMRI resting-state 

FC matrices, MEG spectral power maps) can be used to quantitatively fit model parameters 

to optimize the similarity between simulated and empirical FC patterns (31-33).

Structural connectivity describes long-range inter-areal connections through which nodes 

interact. In nonhuman primates, these projections can be quantified and compiled through 

invasive tract-tracing methods (59,60). Such measurements have been used in models of 

monkey cortex (28,30,61). In models of human cortex, for which tract tracing is unavailable, 

diffusion MRI can be used to derive a structural connectivity matrix through diffusion 

tractography (31-35,56,62,63). In models, elements of the structural connectivity matrix set 

the strength of coupling between nodes. A fundamental limitation of diffusion MRI is that it 

can yield only symmetric structural connectivity estimates. Loss of directionality in long-

range connectivity can impact network properties (64). One approach to mitigate this 

limitation is to estimate directional effective connectivity for a model by its fit to empirical 

data (65,66).

A second key element needed to link structural connectivity to FC is the choice for the 

model generating the local dynamics of the nodes, which differs substantially across 

computational studies (27,55,67). Owing to the spatiotemporal resolution of neuroimaging, 

these models typically eschew computationally intensive simulation of spiking neurons in 

favor of simulating each area with a small number of dynamical variables, which may 

describe the effective activity levels in neural populations. Models of local cortical nodes 

differ in their level of detail and correspondence of their parameters to neurophysiology. 

Most node models exhibit intrinsic dynamical regimes described either as an oscillator or as 

a point attractor state, and fluctuating background input can perturb the state of the node 

around these trajectories.

Several early seminal studies of whole-brain models simulated each area as a reduced 

excitable neural system whose dynamical regime intrinsically generates coherent 

oscillations, instantiated via a conductance-based neuronal model (28,68), a FitzHugh-

Nagumo neuronal model (29), or a Wilson-Cowan excitatory-inhibitory model (30). Intrinsic 

oscillations can also be directly imposed as in the Kuramoto phase-oscillator model (36,69), 

in which each node is represented by a single dynamical variable, the phase of the oscillator. 

The Kuramoto model can be considered an abstraction or reduction of an oscillatory neural 

system, and its nodal simplicity facilitates tractable analyses of synchronization phenomena 

in networks (70). An important question is the degree to which oscillators describe 
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spontaneous dynamics of local microcircuits in awake cortex (71). Recent review articles 

provide a more comprehensive survey of various local node models (27,55,72).

For computational psychiatry applications, models should be able to instantiate perturbations 

to parameters that correspond to hypothesized neurobiological alterations in disease-related 

states (12,15,73). For these purposes, it is advantageous for the local node model to have 

greater biophysical fidelity, neurophysiologically interpretable parameters, and dynamical 

regimes in correspondence with in vivo neural activity. Simulation of each node as a large 

population of spiking neurons is computationally expensive, limiting its applicability 

(27,56,74). A substantial advance has been development of whole-brain models whose local 

nodes follow biophysically based mean-field dynamics derived from recurrent networks of 

excitatory and inhibitory neurons in a cortical microcircuit (31,32). The mean-field 

equations track aggregate levels of synaptic activity and firing rate in populations of 

asynchronously spiking neurons, such as excitatory pyramidal neurons of inhibitory 

interneurons in the local circuit (75). Stochastic background input to the mean-field 

population induces fluctuations in the dynamical variables describing activity in the 

population. This aggregate description is computationally tractable and well matched to the 

coarse spatiotemporal resolution of neuroimaging modalities (27,55).

Mean-field models make simplifying assumptions about circuit activity to reduce the 

dimensionality and complexity of the system. [For reviews of mean-field and neural field 

models and applications to neuroimaging, see (27,72).] For instance, typically mean-field 

models assume asynchronous spiking across the neuronal population, and they therefore 

cannot model neuronal circuit mechanisms that rely on precise spike timing. Further 

simplifying assumptions allow greater reduction of the system’s dynamics, which may be 

favorable to match the coarseness of corresponding experimental measures. Of note, these 

reductions also pose challenges for parameter identifiability, as many biophysical parameters 

jointly shape the simplified dynamical properties.

Dynamical mean-field models have been applied to study how the physiological state of 

cortical circuits shapes FC (31,32). In these models, FC emerges from local asynchronous 

spontaneous fluctuations of areas that are driven by stochastic background input and coupled 

through structural connectivity. Computational tractability of mean-field models enables 

efficient analysis of how network dynamics are shaped by synaptic parameters. Deco et al. 
(31,32). fitted the long-range coupling strength parameter to maximize the similarity 

between simulated and empirical FC (Figure 1A). They found that the best fit occurred when 

the network’s dynamical regime exhibits stable attractor dynamics in its baseline state but is 

near a bifurcation point where baseline activity destabilizes. Slightly below this point, the 

system exhibits modes of correlated fluctuations that are strong and broadly distributed 

across nodes, as observed in resting-state neuroimaging.

APPLICATIONS OF WHOLE-BRAIN CIRCUIT MODELS TO SCHIZOPHRENIA

In recent years, biophysically based models of resting-state dynamics have been applied to 

study circuit mechanisms underlying neuroimaging biomarkers. Here we focus on 

applications to schizophrenia, a neurodevelopmental disorder that is thought to involve 
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large-scale dysconnectivity (38,39) and disruptions in the synaptic E-I balance of local 

cortical microcircuits (40-43,76). This provides an important test bed in which whole-brain 

modeling can simulate how synaptic-level perturbations shape large-scale dysconnectivity 

(73). As shown by whole-brain models described above, FC is shaped both by anatomical 

structural connectivity and by the dynamics of local circuit activity. Therefore, FC 

alterations in a psychiatric disorder could be driven jointly by differences in long-range 

anatomical projections or in local circuit physiology. Biophysically based whole-brain 

modeling is well suited to examine the respective contributions of these mechanisms.

Schizophrenia is associated with alterations in structural connectivity, as measured by 

diffusion-weighted imaging of white matter (77-79). To examine how this impacts functional 

dysconnectivity in schizophrenia, Cabral et al. (37) analyzed a whole-brain model, based on 

asynchronous attractor dynamics, using structural connectivity matrices from patients with 

schizophrenia and matched control subjects (Figure 1B). They calculated graph-theoretic 

measures of the model-simulated FC and compared them with values from resting-state 

fMRI in patients and control subjects (80). Interestingly, the empirically measured structural 

connectivity alterations did not produce the functional dysconnectivity observed in patients. 

In contrast, the graph-theoretic features of functional dysconnectivity in schizophrenia could 

be captured by changing the global parameter scaling to all long-range connections, which 

can be interpreted as a synaptic strength (37). This study highlights that FC is shaped by 

more than structural connectivity and that synaptic disruptions may play a profound role in 

disease-related dysconnectivity.

As noted, a leading hypothesis for cortical dysfunction in schizophrenia is disruption in the 

synaptic E-I balance. In a series of studies, Yang et al. (34,35) applied whole-brain models to 

study the large-scale impact of alterations in the E-I ratio in cortical circuits, relating these 

effects to resting-state fMRI biomarkers in schizophrenia. Increasing the effective strength 

of connectivity at either the local or the long-range level, resulting in an elevated E-I ratio, 

can capture the elevated local and global neural variability observed in schizophrenia 

(34,81,82). Interestingly, the empirical functional dysconnectivity was preferential in 

association cortical networks compared with sensory networks. This raises the question of 

how a global E-I perturbation can give rise to preferential deficits in association networks. 

One possibility is that local circuit properties differ between association and sensory cortex, 

which contributes to a preferential vulnerability to E-I imbalance in association cortex. 

Instantiating this hypothesis in the model, Yang et al. (35) found that endowing association 

nodes with strong recurrent connectivity resulted in preferential dysconnectivity under 

elevated E-I ratio perturbations, in line with observations in schizophrenia. These studies 

highlight the importance of local synaptic properties on large-scale FC and suggest that 

heterogeneity of local properties across cortical areas may shape the whole-brain 

organization of dysconnectivity in psychiatric disorders.

A future challenge and opportunity for computational psychiatry concerns how to link 

anatomical or physiological biomarkers to the level of cognitive functions and behavior at 

which symptoms are manifested and disorders are diagnosed. For instance, schizophrenia is 

not defined as a disorder of resting-state FC, but is defined by characteristic symptoms 

including delusions and disorganized thinking, which may arise from aberrant inference 
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computations (83-85). Behavioral modeling has proposed circuit mechanisms by which false 

inferences in schizophrenia could arise from imbalanced excitatory-inhibitory interactions in 

hierarchical processing (86,87). Further research is needed to make connections between 

circuit-level models and psychological-level models, which may in turn help to link 

psychiatric biomarkers to symptoms.

IMPORTANCE OF CORTICAL HETEROGENEITY

Most biophysically based circuit models of human resting-state FC have treated all of the 

cortex as homogeneous, simulating all cortical areas as nodes with identical local circuit 

properties. Yet cortical microcircuitry varies across cortex in large-scale gradients (88-90); 

indeed, early areal parcellations were based on regional variation in cytoarchitecture and 

myeloarchitecture (91). Clinical neuroimaging effects show regional specificity (e.g., 

differential alterations in association vs. sensory cortical networks) (35,92-94). Therefore, an 

important direction for translational research in whole-brain modeling will be to incorporate 

heterogeneity of local circuit properties across cortical areas in principled ways. Such 

progress will enable greater applicability of these models to pressing challenges in clinical 

neuroscience. Below we describe examples of recent studies characterizing and modeling 

cortical heterogeneity.

An influential principle for the large-scale organization of cortex is sensory-to-association 

hierarchy. In nonhuman primates, anatomical hierarchy is defined by laminar patterns of 

long-range projections among areas (95,96), and this neural axis captures functionally 

defined processing hierarchies (95,97-100). To study hierarchical specialization of 

microcircuitry across human cortex, Burt et al. (46) analyzed transcriptional, anatomical, 

and neuroimaging data from humans and monkeys. They found that the structural MRI-

derived T1-weighted (T1w)/T2-weighted (T2w) map (91,101) provides a noninvasive proxy 

of anatomical hierarchy in primate cortex. By correlating the human T1w/T2w map to 

spatial profiles of gene expression from the Allen Human Brain Atlas (44,45), they found 

strong hierarchical gradients in expression of genes related to synaptic physiology, cell 

types, and cytoarchitecture. Remarkably, there is close topographic alignment between the 

T1w/T2w map and the dominant spatial pattern of gene expression variation across human 

cortex (Figure 2A, B).

How can whole-brain models incorporate heterogeneity of local circuit properties in a 

principled way that is constrained by empirical data? To address this, Demirtaş et al. (33) 

developed a large-scale cortical circuit model incorporating hierarchical heterogeneity of 

local microcircuit properties. Model parameters were quantitatively fitted to multimodal 

human neuroimaging data, using approximate Bayesian computation and population Monte 

Carlo sampling to estimate posterior distributions for parameter estimates. To instantiate a 

hierarchical gradient, areal variation in local recurrent strengths was parametrized according 

to a predefined heterogeneity map, derived from the T1w/T2w map topography, which 

thereby constrains the topography of local circuit specialization without the need to fit 

separate parameters for each node in the network.
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Compared with a model with homogeneous microcircuit properties (32), the T1w/T2w–

derived heterogeneity map substantially improves the fit to empirical resting-state FC 

patterns, capturing important sensory-association differences (33). In this model comparison, 

the heterogeneous model may have an improved fit simply as a result of its extra degrees of 

freedom, raising the question of whether the T1w/T2w–derived hierarchical heterogeneity 

map provides a preferential axis of cortical specialization compared with other possible 

heterogeneity maps. The authors found that the T1w/T2w–derived map indeed yielded 

substantially improved fits compared with randomized surrogate heterogeneity maps. These 

findings identify the T1w/T2w map as a preferential axis for heterogeneity shaping FC 

(102,103). More broadly, this study provides a useful path forward in hypothesis-driven 

whole-brain modeling by using the topography of a heterogeneity map to parametrize local 

circuit properties across brain areas. For instance, to simulate a pharmacological 

perturbation, a whole-brain model can explicitly simulate the regional expression pattern of 

the drug target by using the corresponding gene expression map.

The studies described above provide convergent evidence that hierarchical gradients of 

microcircuit properties shape large-scale specialization of cortical function (90). One circuit 

mechanism for temporal processing hierarchies (97-99) is regional gradients in local 

synaptic properties (61,104), consistent with microanatomical measurements of dendritic 

spines on pyramidal neurons (46,61,105,106). Interestingly, the hierarchical organization of 

the structural connectome can give rise to temporal hierarchies even in networks with 

homogeneous node properties (107). Future analyses are needed to understand the how 

interplay between gradients in local properties and network organization of structural 

connectomes shapes large-scale brain dynamics (61).

Pharmacological neuroimaging may provide a unique test bed for development and 

validation of whole-brain models with regional heterogeneity in properties such as receptor 

densities. One can test for correspondence between neuroimaging effects of a drug and the 

regional topography of its receptor expression. Preller et al. (47) characterized regional 

topography of acute lysergic acid diethylamide (LSD) effects on fMRI resting-state FC. LSD 

robustly induced hyperconnectivity predominately in sensory areas, especially the occipital 

visual cortex, and hypoconnectivity in higher-order association areas (Figure 2E). These 

neural effects as well as psychedelic effects of LSD were absent after pretreatment with a 

selective antagonist of the 5-hydroxytryptamine 2A receptor. The expression map for the 

gene 5HT2A, which codes for the 5-hydroxytryptamine 2A receptor, exhibits a strong 

positive correlation with the change in mean FC (change in global brain connectivity), 

exceeding the correlation for other candidate LSD-associated receptor genes (47) (Figure 

2E, F). Biophysically based whole-brain models can directly integrate gene expression maps 

to simulate the neuroimaging effects of pharmacology (33). A growing literature links 

transcriptomic specialization across cortex with the organization of structural connectivity 

and FC (45,46,108-111). Integration of transcriptomics with connectomics in whole-brain 

models can potentially open new opportunities to explore the circuit bases of large-scale 

structure-function relationships.
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FUTURE DIRECTIONS

Future model development is needed to address critical questions in clinical neuroscience. 

As described above, the local nodes of current whole-brain models are highly simplified in 

their description compared with the neurobiological complexity involved in the cellular and 

synaptic mechanisms hypothesized to underlie disorder-related states (27,72). Current mean-

field models can incorporate key neurobiological details, such as biophysically constrained 

dynamics and recurrent connection strengths between excitatory pyramidal neurons and 

inhibitory interneurons (32). This level of resolution is sufficient for simulating the effects of 

relatively coarse perturbations, such as overall E-I imbalance or reductions in net synaptic 

strength (34-37,81). However, many hypothesized disruptions in psychiatric disorders 

involve more fine-grained aspects of neural microcircuits, such as distinct inhibitory 

interneuron cell types or specific cortical layers.

With more complex models, a key computational challenge will be how to map between 

model parameters and simulated neural features. The effects of multiple synaptic-level 

perturbations may converge on a common effective circuit disruption, such as E-I imbalance. 

Effective degeneracies may arise if different circuit alterations similarly impact the 

mesoscopic aggregate measures of neural activity, as are measured with current 

neuroimaging modalities. Therefore, the level of the modeling should be matched to the 

spatiotemporal resolution of the experimental data to which it will be related. Constraining 

complex neural models may be facilitated through integration of multimodal functional 

modalities, such as combining the spatial resolution of fMRI with the temporal resolution of 

EEG.

Model extensions to include additional fine-grained elements can be informed by basic 

neurobiology and will need to relate model predictions to the limited spatial and temporal 

resolution of different human neuroimaging modalities. For instance, inhibitory interneuron 

classes in cortex differentially contribute to different oscillatory modes of circuit dynamics; 

disorder-related perturbations to each interneuron class should therefore make dissociable 

predictions for oscillations in cortical electrophysiology (112,113). These dynamics are too 

fast to resolve with blood oxygen level–dependent imaging but are amenable to methods 

such as EEG and MEG (114-116). EEG spectral features have motivated neural models such 

as the influential Jansen-Rit model (117) and developments incorporating further 

neurobiological detail (118,119).

Cortical layers differ in their oscillatory dynamics, which in turn shapes the frequency 

channels used in feedforward and feedback projections across the cortical hierarchy 

(100,120), as observed in human MEG (121). These spectral properties of hierarchical 

interactions were recently simulated in a laminar circuit model of monkey cortex (122), and 

future modeling can extend such phenomena to human neuroimaging findings. 

Experimentally constrained extensions of local cortical circuit models, embedded in large-

scale network simulations, will expand the range of computational psychiatry questions 

these models can address.
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Another promising direction for model extension is to incorporate subcortical substructures, 

such as thalamus. Dynamical neural models of a thalamocortical loop can capture key 

aspects of the resting-state dynamics, such as the temporal statistics of the alpha rhythm in 

occipital cortex from EEG (123,124). An open question is how thalamus shapes the spatial 

patterns of resting-state FC in cortex. Distinct thalamic nuclei interact with different regions 

of cortex in a bidirectional manner. Future large-scale modeling can be extended to include 

nodes for thalamic nuclei, with distinct projection patterns with cortex for different nuclei. 

These models should simulate thalamic nodes differently than cortical nodes in their local 

dynamics and parametrization, as the thalamus differs in its local synaptic connectivity and 

neuronal properties (125). The thalamus is a prominent site of dysconnectivity in 

schizophrenia, with preferential alterations in mediodorsal thalamus, which is interconnected 

with prefrontal cortex (126-133). Circuit modeling is well suited to study how disruptions of 

subcortical structures affect functional dynamics at the whole-brain level through large-scale 

recurrent cortical-subcortical interactions.

There is an acute need for computational psychiatry approaches to parse the individual 

variation across patients within a diagnostic category. Most prior biophysically based whole-

brain models applied to psychiatric disorders have been fitted at the group level (34-37). 

Recent studies have found that fitting dynamical neural models to fMRI data at the 

individual level can yield personalized parameter estimates that correlate with clinically 

relevant behavioral measures (134,135). Individual-level fitting of biophysically based 

models has the potential to guide hypotheses of variation in neurophysiological state and 

characterize dimensional variation or clustering within a diagnostic category (136).

In summary, biophysically based whole-brain models of human resting-state dynamics are 

well positioned to impact the nascent field of computational psychiatry. This emerging 

modeling framework has the potential to integrate multimodal clinical neuroimaging 

findings and link them with translational knowledge of neurophysiology and hypothesized 

synaptic-level alterations in psychiatric disorders.
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Figure 1. 
Computational circuit models of resting-state dynamics in the human brain and their 

application to study of functional dysconnectivity in schizophrenia. (A) Modeling 

framework. The neurodynamical model simulates dynamical activity of interconnected 

microcircuits, each representing a parcellated brain area. Structural connectivity, defining the 

strengths of long-range connections between local areas, is derived from diffusion magnetic 

resonance imaging tractography. The simulated blood oxygen level–dependent (BOLD) 

signal yields a model functional connectivity pattern, which can be compared with empirical 

functional connectivity patterns. The biophysical parameters of the model (e.g., local or 

long-range synaptic strengths) can then be fitted to optimize this correspondence. (B) 
Application of the model to study structural and functional dysconnectivity in schizophrenia. 

The graph-theoretic small-world index is calculated on the simulated functional connectivity, 

using distinct structural connectivity matrices for control subjects and patients with 

schizophrenia, as a function of the global coupling strength, and compared with empirically 

measured values (dotted lines). (C) Expansion of the model to incorporate hierarchical 

heterogeneity of local circuit properties, specifically stronger recurrent excitation (W) in 

association with cortical networks compared with sensory cortical networks. Elevated 

excitation-inhibition ratio increases preferential dysconnectivity in association networks in 

the model. The difference between association and sensory measures (A – S) of within-
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network connectivity (covariance) is plotted. (D) Empirical measures of within-network 

connectivity in schizophrenia reveal preferential increase in connectivity in association 

networks. DTI, diffusion tensor imaging; E-E, excitatory-to-excitatory; E-I, excitatory-to-

inhibitory; HCS, healthy control subjects; n.s., not significant; SCZ, schizophrenia 

(patients). [(A) Modified with permission from Deco et al. (31); (B) modified with 

permission from Cabral et al. (37); (C) and (D) modified with permission from Yang et al. 
(35).]
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Figure 2. 
Heterogeneity of local circuit properties across human cortex shapes large-scale functional 

dynamics: insights from transcriptional mapping, computational modeling, and 

pharmacological neuroimaging. (A) (Top) Structural magnetic resonance imaging–derived 

T1-weighted (T1w)/T2-weighted (T2w) map over human cortex. The T1w/T2w map 

exhibits a hierarchical topography, with high values in primary sensorimotor areas and low 

values in higher-order association areas. (Bottom) The first principal component (PC1) of 

transcriptional expression levels across human cortex for brain-specific genes. PC1 is the 

spatial map that captures the maximal gene expression variance across cortical areas. (B) 
PC1 captures a dominant proportion of gene expression variance (left), and the T1w/T2w 

map is highly correlated with PC1 (right). (C) Computational modeling of hierarchical 

heterogeneity in the large-scale model. In contrast to a homogeneous model with uniform 

values for local circuit parameters across areas (top), in the heterogeneous model, values for 

local circuit parameters (e.g., recurrent excitatory strength) are scaled according to a 

heterogeneity map. The heterogeneity map shown is based on the T1w/T2w map to capture 

specialization along a sensory-association axis related to cortical hierarchy. (D) Hierarchical 
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heterogeneity of local circuit parameters improves the fit to empirical functional 

connectivity, compared with the homogeneous model or the structural connectivity (SC) 

(left). The heterogeneous model improves the fit through a gradient of increasing recurrent 

excitatory strengths along cortical hierarchy (right). (E) (Top) Change in global brain 

connectivity (GBC) (i.e., mean functional connectivity) on resting-state functional magnetic 

resonance imaging induced by administration of lysergic acid diethylamide (LSD). (Bottom) 

Transcriptional expression levels for the gene HTR2A, which codes for the serotonergic 5-

hydroxytryptamine 2A receptor. These maps are correlated (rp = .50), with both exhibiting 

high values in occipital visual cortex. (F) Distribution across genes of the correlation 

between the transcriptional expression map and the LSD ΔGBC map. Among putative LSD-

related receptor genes, HTR2A exhibits the highest similarity with the LSD ΔGBC map and 

is in the top 5% of all genes. E-E, excitatory-to-excitatory; E-I, excitatory-to-inhibitory; 

mRNA, messenger RNA. [(A) and (B) modified with permission from Burt et al. (46); (C) 
and (D) modified with permission from Demirtaş et al. (33); (E) and (F) modified with 

permission from Preller et al. (47).]
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