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OBJECTIVES This paper reports the development, validation, and public availability of a new neural network-based

system which attempts to identify the manufacturer and even the model group of a pacemaker or defibrillator from a

chest radiograph.

BACKGROUND Medical staff often need to determine the model of a pacemaker or defibrillator (cardiac rhythm

device) quickly and accurately. Current approaches involve comparing a device’s radiographic appearance with a manual

flow chart.

METHODS In this study, radiographic images of 1,676 devices, comprising 45 models from 5 manufacturers were

extracted. A convolutional neural network was developed to classify the images, using a training set of 1,451 images. The

testing set contained an additional 225 images consisting of 5 examples of each model. The network’s ability to identify

the manufacturer of a device was compared with that of cardiologists, using a published flowchart.

RESULTS The neural network was 99.6% (95% confidence interval [CI]: 97.5% to 100.0%) accurate in identifying the

manufacturer of a device from a radiograph and 96.4% (95% CI: 93.1% to 98.5%) accurate in identifying the model

group. Among 5 cardiologists who used the flowchart, median identification of manufacturer accuracy was 72.0% (range

62.2% to 88.9%), and model group identification was not possible. The network’s ability to identify the manufacturer of

the devices was significantly superior to that of all the cardiologists (p < 0.0001 compared with the median human

identification; p < 0.0001 compared with the best human identification).

CONCLUSIONS A neural network can accurately identify the manufacturer and even model group of a cardiac rhythm

device from a radiograph and exceeds human performance. This system may speed up the diagnosis and treatment

of patients with cardiac rhythm devices, and it is publicly accessible online. (J Am Coll Cardiol EP 2019;5:576–86)

© 2019 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
M ore than 1 million people worldwide un-
dergo implantation of a cardiac rhythm
device every year (1), which includes

pacemakers, defibrillators, and loop recorders. This
number continues to grow (2) as indications increase
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AB BR E V I A T I O N S

AND ACRONYM S

AP = anterior-posterior

ICD = implantable

cardioverter- defibrillator

PA = posterior-anterior
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the corresponding communication equipment to the
bedside.

Unless they have access to the records of the
implanting hospital or the patient can tell them, staff
must use a process of trial and error to identify the
manufacturer, which causes uncertainty and leads to
delays which can be medically harmful.
SEE PAGE 587
Experts can sometimes distinguish among devices
from a chest radiograph, and algorithms are available
to assist with this. However, expertise or confidence in
using the algorithm are not widespread, and even with
the best available algorithm, identification is not per-
fect. Indeed, up to 80% of physicians report having
“frequently” had difficulties identifying devices (3).

The most recent algorithm for visual discrimina-
tion among devices shown on a chest radiograph is 8
FIGURE 1 Study Design Flowchart

The study was designed in 3 phases consisting of data collection, devel

Development of the neural network was divided into 2 stages. Stage 1 inv

the “final” model, which is then assessed using the unseen “test set”, a
years of age (3) and therefore does not
include current devices. Even at that time,
the study authors reported only 90% accu-
racy in identifying the manufacturer.

The present study reports the develop-
ment, validation, and public availability of a
new neural network-based system which at-

tempts to identify the manufacturer and even the
model group of a device by using a chest radiograph.

METHODS

DATA EXTRACTION. In this study, a dataset was
constructed of radiographic images of devices
implanted in adults at Imperial College Healthcare
NHS Trust between February 1998 and May 2018.
Training a neural network requires an adequate
number of examples of each class to be identified;
opment of the neural network, and assessment of the network.

olved selecting the optimal network design. Stage 2 involved training

llowing a comparison with humans.



TABLE 1 Distribution of Classes Across the Entire Dataset

Manufacturer Nominal Model n Model Group n

Pacemaker (n ¼ 1,213)

Biotronik Actros 20 Actros/Philos 40

Philos 20

Cyclos 27 Cyclos 27

Evia 28 Evia 28

Boston Scientific Altrua 20 Altrua/Insignia 40

Insignia 20

Contak Renewal TR2 40 Contak Renewal TR2 40

Contak TR 10 Contak TR/Discovery/Meridian/
Pulsar Max

40

Discovery 10

Meridian 10

Pulsar Max 10

Ingenio 40 Ingenio 40

Proponent 40 Proponent 40

Visionist 40 Visionist 40

Medtronic Adapta 10 Adapta/Kappa/Sensia/Versa 40

Kappa 10

Sensia 10

Versa 10

Advisa 40 Advisa 40

AT500 38 AT500 38

Azure 40 Azure 40

C20 20 C20/T20 40

T20 20

C60 40 C60 40

Enrhythm 40 Enrhythm 40

Insync III 40 Insync III 40

Sigma 40 Sigma 40

Syncra 40 Syncra 40

Vita II 29 Vita II 29

Sorin Elect 40 Elect 40

Elect XS Plus 30 Elect XS Plus 30

MiniSwing 28 MiniSwing 28

Neway 37 Neway 37

Reply 40 Reply 40

Rhapsody 20 Rhapsody/Symphony 40

Symphony 20

Thesis 36 Thesis 36

St. Jude Accent 40 Accent 40

Allure Quadra 40 Allure Quadra 40

Identity 40 Identity 40

Victory 40 Victory 40

Zephyr 40 Zephyr 40

Continued on the next page
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therefore, only device models were included for
which there were at least 25 chest radiographic im-
ages available. Both portable and departmental
anterior-posterior/posterior-anterior (AP/PA) chest
radiographs were included. Lateral chest radiographs
were not included. In the absence of any data out-
lining the prevalence of different devices across the
world, a dataset was generated in which all types of
device were represented in equal proportions. Images
were extracted from consecutive patients to a
maximum of 40 images per model to minimize class
imbalance (4). From each radiographic image, a
square region of interest slightly larger than the de-
vice was extracted. This region maximized the signal-
to-noise ratio for the network and guaranteed ano-
nymization. These cropped images were then resized
to 224 � 224 pixels and normalized to yield pixel
values between 0 and 1. It was noted during extrac-
tion that, in several cases, when a manufacturer
introduced a new model, there was no detectible
change on the radiograph. This may represent purely
a change in software or an indistinguishable re-
placements of parts; therefore, models with identical
appearance were placed in “model groups.”

The first step was to randomly allocate 5 images
from each of the 45 classes to be kept aside as the final
“test set.” This would not be shown to the network at
any stage in its training and would only be used once
when reporting its final accuracy.

The remaining “training set” was used to train the
network at 2 different stages. The first stage was to
decide which underlying network to use (including
structural features such as the number and size of
layers) and details of how the training process would
run (including the avidity with which synapses are
adjusted, termed the “learning rate”). All tested
neural networks were convolutional neural networks
which contain neurons that learn to recognize specific
features within their own “visual fields.” These net-
works are organized in a hierarchical structure akin to
the human optic cortex and excel at solving image
classification problems (5–9). The second stage was
the detailed process of adjusting the weights (akin to
the synapses in a biological neural network) so
that the job of classifying pacemakers could be per-
formed. Both stages used the training set but in
different ways.

For the first stage (“network design”) (Figure 1),
each candidate neural network design was assessed
by its ability to learn from 75% of the training set and
correctly make predictions for the remaining 25% of
the training set. This was done 4 times, so that all of
the training set could participate in turn in both roles.
This process is termed “4-fold cross-validation” (un-
related to the final testing which is performed using a
completely separate test set).

The second stage (“final model training”) begins
with the neural network design chosen by the first
stage. This starts with a fresh neural network with no
prior exposure to device images. The network is then
trained from the entire training set, resulting in the
final trained network.

Finally, this final network is exposed for the first
time to the “test set,” which has been kept separate



TABLE 1 Continued

Manufacturer Nominal Model n Model Group n

ICD (n ¼ 415)

Boston Scientific Autogen 10 Autogen/Cognis/
Energen/Teligen

40

Cognis 10

Energen 10

Teligen 10

Contak Renewal 4 40 Contak Renewal 4 40

Emblem 40 Emblem 40

Ventak Prizm 33 Ventak Prizm 40

Vitality 40 Vitality 40

Medtronic Claria 13 Claria/Evera/Viva 40

Evera 13

Viva 14

Concerto 8 Concerto/Consulta/Maximo/
Protecta/Secura

40

Consulta 8

Maximo 8

Protecta 8

Secura 8

Maximo 30 Maximo 30

Sorin Ovatio 25 Ovatio 25

St. Jude Ellipse 40 Ellipse 40

Quadra Assura 40 Quadra Assura 40

Loop recorders (n ¼ 58) 58

Medtronic Reveal 26 Reveal 26

Reveal Linq 32 Reveal Linq 32

Distribution of classes across the entire dataset is divided into device type, manufacturer, and model. Visually
identical model names (middle column) are merged into “model groups” (right column). ICD ¼ implantable
cardioverter-defibrillator.
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throughout. It is assessed for its ability to correctly
classify manufacturer and model group.

Regulatory approval for the study was granted by
the Health Research Authority (Integrated Research
Application System identifier 249461).

CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE

AND TRAINING. Five different convolutional neural
network architectures were assessed (DenseNet,
Inception V3, VGGNet, ResNet and Xception), all of
which have at some stage in recent years been the
world leading design for the ImageNet dataset chal-
lenge (5–9). All networks were initialized using
weights derived from training on ImageNet before the
whole model was retrained. Regularization and
dropout were implemented for each network ac-
cording to their original publications.

For each network, output layer was set to have 45
densely connected neurons (1 for each device model
group). Loss was calculated over batches of 16 images
by using the categorical cross-entropy loss function,
and weights were updated using the ADADELTA
optimizer (10). Loss is a technical marker used to
assess the network’s performance and make im-
provements. Loss is more sensitive than simply the
misclassification rate (the inverse of accuracy),
because to achieve full marks (zero loss), the network
has, for each pacemaker image, to be 100% confident
in the correct prediction and have 0% suspicion for all
44 other model groups. Training of the neural
network is an automatic process of adjusting the
synapse weights to minimize this loss. Training
continued until validation loss plateaued (15 epochs).
Training was augmented with random rotation, width
and height shifting, vertical and horizontal flipping,
and shearing and zooming. Programming was per-
formed using the Python programming language with
the Tensorflow (11) and Keras (12) machine learning
frameworks. Training was performed on 2 GeForce
GTX 1080 Ti graphical processing units (nVIDIA,
Santa Clara, California).

VISUALIZATION OF LEARNING. Examples of each
model group were processed to provide saliency maps
(13) where the pixels with the highest gradient
with regard to the correct class (i.e., the pixels
contributing most to the decision of the network)
were highlighted. This was performed using Keras-vis
software (14).

HUMAN EXPERT PERFORMANCE USING MANUAL

ALGORITHM. The test sets of 225 images was sup-
plied to 5 independent cardiologists (2 of whom
were electrophysiologists) along with the full
manuscript of the Cardiac Rhythm Device Identifi-
cation Algorithm Using X-rays (CaRDIA-X) algorithm,
the most recent algorithm for classifying cardiac
devices from chest radiographs (3). The algorithm
only aims to distinguish among manufacturers
rather than to identify the particular model group.
With each image, graders were informed as to
whether the device was a pacemaker, a defibrillator,
or a loop recorder. Graders were asked to classify
each device as Biotronik (Lake Oswego, Oregon),
Boston Scientific (including Guidant and Cameron
Health, Marlborough, Massachusetts), Medtronic
(including Vitatron, Fridley, Minnesota), Sorin
(including Liva Nova, Arvada, Colorado) or St. Jude
Medical (Little Canada, Minnesota).

STATISTICAL ANALYSIS. The prespecified primary
endpoint was a superiority test result for manufac-
turer accuracy between the artificial network and
human expert graders, using the CaRDIA-X manual
algorithm. Results were assessed using McNemar’s
test with a p value of 0.05 as the threshold for sta-
tistical significance, with an exact test used for con-
tingency Tables including any counts below
25. Because each human grader is an individual,



TABLE 2

Architec
(Ref.

DenseNet

Inception

Resnet (7)

VVGNet 16

Xception (

Results of s
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the primary endpoint was calculated with
reference to the human grader with the median
accuracy.

Accuracy was defined as the number of correctly
classified images in the test set divided by the total
number of images in the test set. Confidence intervals
(CIs) for accuracy were calculated using the “exact”
binomial method. For manufacturer accuracy where
class sizes were inherently unequal, the F1 score was
also calculated, defined as double the harmonic
average of the precision and recall, bounded between
0 and 1.

The accuracy of the network was assessed across
several subgroups (departmental vs. portable radio-
graphs, pacemakers vs. implantable cardioverter-
defibrillator [ICDs], and across the different device
manufacturers) by using the Fisher’s exact test.
Welch’s unequal variances t-test was used to assess
for differences in image quality (sharpness) between
departmental and portable radiographs by calculating
the variance of Laplacian for each image (15). Statis-
tical analysis was performed using R software (R
Foundation, Vienna, Austria) (16).
RESULTS

DATASET. The full dataset consisted of 1,676 images
of unique devices from 1,575 unique patients (some
patients had more than 1 device during the study
period). Although there were 66 different nominal
device models, several of them were visually indis-
tinguishable from each other, perhaps representing
purely software changes between models. There were
45 different model groups with unique radiographic
appearances (Table 1). A total of 278 radiographs
(16.6%) were from portable radiography machines;
the remaining 1,398 devices (83.4%) were depart-
mental AP or PA radiographs. Online Appendix 1
shows each model group and the nominally
different models with identical appearances that
comprised that model group.
Distribution of Classes Across the Entire Dataset

ture
#)

Trainable Parameters
(millions)

Loss
(Lower Is Better)

% of Accuracy
(Higher Is Better)

121 (9) 7.0 0.36 90.8

V3 (6) 21.9 1.06 79.5

23.6 3.24 44.9

(5) 14.7 4.33 4.4

8) 20.9 0.34 91.1

tage 1, in which the 5 architectures are compared, having been trained on only three-
e training data at a time. Performance of 5 network designs. Loss is a special index of
hich gives penalties for confident wrong predictions more than unconfident ones.
The test set consisted of 5 examples of each of the 45
final model groups to make a total of 225 examples.
Thirty-eight radiographs (16.9%) were portable
radiographs. The remaining 1,451 cases were assigned to
the training set. The study flow chart is shown in Figure 1.

STAGE 1: COMPARATIVE PERFORMANCE OF THE

DIFFERENT NEURAL NETWORK ARCHITECTURES. For all
network designs, after 15 epochs of training in stage 1,
the network had reached a plateau of performance,
manifesting as a plateau after the initial decline in the
validation loss. Table 2 shows the level of this plateau
in the validation loss and corresponding validation
accuracy for each of the 5 network architectures
assessed. Each number displayed is the averaged
value over the 4 splits of the training set. The accuracy
varied from 4.4% for VGGNet to 91.1% for Xception.

Based on these results, the conclusion of stage 1
was to select the Xception architecture for stage 2
and to prespecify that the number of epochs of
training would be 15. Stage 2, therefore, began with
a fresh neural network of the Xception architecture
and performed 15 epochs of training using the full
training set of 1,451 images.

Finally, the “test set” of data which had been set
aside until now was tested, once, using the final
neural network produced by stage 2.

STAGE 2: FINAL NEURAL NETWORK PERFORMANCE

ON THE UNSEEN “TEST SET.” The accuracy of the
final neural network for identifying the manufacturer
of a device was 99.6% (95% CI: 97.5% to 100.0%), cor-
responding to an F1 score of 0.996. The performance is
shown as a confusion matrix in the Central Illustration
(right panel). The only image wrongly classified was
that of a Medtronic Adapta device which was mistaken
for a Sorin Reply device (Online Appendix 2 page 4).

Inevitably, performance for identifying the model
group (rather than only the manufacturer) was
lower. Accuracy was 96.4% (95% CI: 93.1% to
98.5%), and the F1 score was 0.964. Figure 2 shows
the confusion matrix. The 8 images for which the
neural network suggested an incorrect model group
are all shown in Online Appendix 2, in each case
along with the top 3 predictions for the model
group. Notably, in 7 of 8 of these, the correct model
group was 1 of the top 3 predictions. Therefore,
what is commonly described as the “top 3” accu-
racy was 99.6% (95% CI: 97.5% to 100.0%) for
model group.

The model group accuracy for portable radio-
graphs was 89.5% (95% CI: 75.2% to 97.1%) versus
97.9% (95% CI: 94.6% to 99.4%) for departmental
radiographs (p ¼ 0.029 for differences between
the 2 groups). This accuracy corresponded with

https://doi.org/10.1016/j.jacep.2019.02.003
https://doi.org/10.1016/j.jacep.2019.02.003
https://doi.org/10.1016/j.jacep.2019.02.003
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(Left) Bar plot shows comparative accuracy for identifying the manufacturer of devices across the 5 human reporters and the neural network. The p values are for

superiority of the neural network above the median and best human graders. (Right) Confusion matrix shows the accuracy of the network in predicting the correct

manufacturer of devices. BIO ¼ Biotronik; BOS ¼ Boston Scientific; MDT ¼ Medtronic; SOR ¼ Sorin; STJ ¼ St. Jude.
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departmental X-ray images being significantly
sharper (as judged by the variance of Laplacian)
compared to portable X-rays (p < 0.0001 for dif-
ference between the two groups). The single
manufacturer classification error was of a depart-
mental radiograph, however. Model group accuracy
for pacemakers was 95.0% (95% CI: 90.4% to 97.8%)
versus 96.4% (95% CI: 87.5% to 99.6%) for ICDs
(p ¼ 1.00 for difference between the 2 groups).
Model group accuracy did not vary significantly
among different manufacturers (p ¼ 0.954).

COMPARISON WITH PERFORMANCE OF HUMAN

EXPERTS USING CaRDIA-X ALGORITHM. Five human
cardiologists applied the published CaRDIA-X algo-
rithm to classify the 225 test set images among the 5
manufacturers. Their accuracy ranged from 62.3% to
88.9%. The median accuracy was 72.0%. The 2
humans who performed the best were the 2 electro-
physiologists. The median human performance was
that of the best-performing nonelectrophysiologist
cardiologist.

The neural network was significantly more
accurate than both the median (odds ratio [OR]: 63.0;
95% CI: 10.9 to 2,527.4; p < 0.0001) and the
best-performing human grader (OR: 25.0; 95% CI: 4.1
to 1,026.4; p < 0.0001) as shown in the Central
Illustration (left panel).

VISUALIZING LEARNING WITH SALIENCY MAPPING. In
an additional exploratory analysis, saliency maps
were produced for each image in the test set, indi-
cating the features of each image which were most
characteristic of the pacemaker they depicted. These
are akin to the pathognomonic signs of a disease in
clinical medicine.

To demonstrate the utility of saliency mapping,
Figure 3 shows 4 images comprising 2 different
model groups. Figure 3A shows a Medtronic Advisa
pacemaker. Readers are invited to identify which
other panel (Figure 3B, 3C, or 3D) is also an Advisa
and to ask how they would teach others to differ-
entiate between the 2 model groups on a radiograph.
Once they have done this, readers are invited to
examine Figure 4. This shows that the saliency maps
for the AT500 device show intense activity around a
circled circuit board component which is unique to
that device. Hopefully readers agree that, on revis-
iting Figure 3 with this knowledge, 2 model groups
are easily differentiated. Examples of saliency maps



FIGURE 2 Confusion Matrix For Model Group Identification

Confusion matrix shows the accuracy of the network in predicting the correct model of devices. Class names ending in ellipses (“.”) refer to

those including more than 1 device type with identical appearance. BIO ¼ Biotronik; BOS ¼ Boston Scientific; MDT ¼ Medtronic; SOR ¼ Sorin;

STJ ¼ St. Jude.
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for each of the 45 classes are shown in Online
Appendix 3.

DISCUSSION

This is the first study to use artificial intelligence to
identify cardiac rhythm devices from radiographs.
This convolutional neural network delivers perfor-
mance that is at least as good as that of cardiologists
using the best available flow chart algorithm. For
images which it has never seen, the network iden-
tifies the manufacturer of the device with an accuracy
of 99.6%, with corresponding cardiologist accuracies
ranging from 62.3% to 88.9%. The network can also
identify the specific model group with an accuracy of
96.4%.
Just like the flow chart algorithm, whose use it can
replace, the neural network has been made publicly
and freely available for use.

IMMEDIATE CLINICAL APPLICATIONS. A tool that is
faster and at least as reliable as a cardiologist
following a flow chart could be useful in several
clinical situations. Physicians and physiologists could
use it to make a quick assessment of the nature of a
cardiac device from a simple chest radiograph. Pace-
maker programmers are portable but bulky, and only
the manufacturer, the specific programmer, would be
able to communicate with the patient’s device.
Knowing which programmer to bring saves valuable
clinical time. Not only may this facilitate rapid
interrogation of a device in an emergency, but also
the provision of emergency treatment, such as the

https://doi.org/10.1016/j.jacep.2019.02.003
https://doi.org/10.1016/j.jacep.2019.02.003


FIGURE 3 Where to Look?

Four images depict 2 Advisa devices and 2 AT500 devices. (A) [Shows an] Advisa [model]. Readers are invited to identify which other panel

(B, C, or D) is also an Advisa. The other 2 are AT500s. Additionally, how would you advise others to make the same distinction? Once you have

made up your mind, consult Figure 4.
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delivery of anti-tachycardia pacing in a patient pre-
senting with ventricular tachycardia.

HUMAN LEARNING FROM MACHINE LEARNING:

SALIENCY MAPS. Machine learning has gained a
reputation as “black box” technology, which does not
provide insights to further human understanding
(17,18). More recently, however, saliency mapping has
been developed to provide a useful window into how
the neural network is making its decisions. In saliency
mapping, the pixels in an image are ranked based on
the strength of their effect on the network’s decision
(13).
In Figure 3, most humans and, indeed most expert
cardiologists, have difficulty in differentiating be-
tween the 2 models of pacemaker. However, not only
does the neural network accurately distinguish be-
tween them but the saliency map highlights the
feature that distinguishes them most clearly. More-
over, once this salient feature is pointed out to
humans (Figure 4), they now find it straightforward to
make the distinction.

Online Appendix 3 shows saliency maps for every
model group. Studying these may assist clinicians by
using it to sharpen their eye for cardiac device
identification.

https://doi.org/10.1016/j.jacep.2019.02.003


FIGURE 4 Saliency Plots

Saliency plots from the neural network can help guide us where to look. The answer to the question in Figure 2 is C. Saliency plots reveal that the network is focusing on a

feature present in the AT500s (red circles), which is absent in the Advisas. Having this pointed out by the network now makes it easy to return to Figure 3 and correctly

categorize them. These example images also demonstrate the neural network’s ability to deal with dramatic differences in image quality, radiography, penetration, and

orientation.
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NETWORK ARCHITECTURE GREATLY AFFECTS

PERFORMANCE. Table 2 shows markedly different
levels of performance across different neural network
architectures. Of the neural network designs that
launched machine learning into prominence, VGGNet
is the only 1 still in common use because of its elegant
simplicity yet relatively good performance. Surpris-
ingly, however, its performance on this task was poor.
This may reflect the necessity for more advanced
neural network components, such as “residual con-
nections” and “dimensionality reduction” through
“1 � 1 convolutions.”

ResNet was the design that pioneered residual
connections, which constitute a method that makes
available the original image to all subsequent layers
of the network rather than only the first layer. Sepa-
rately, GoogLeNet Inception was the pioneer for
condensing information between layers using 1 � 1
convolutions so that the network’s sophistication was
less constrained by the handling of large numbers of
parameters.

The design that performed best, however, was
Xception, the 1 that made extensive use of both of
these innovations, residual connections and 1 � 1
convolutions.
STUDY LIMITATIONS. This neural network recog-
nizes devices in common use in our region of the
United Kingdom. However, it will not be able to
identify devices not listed in Table 1. For example,
the network at present is only trained on 2
implantable loop recorders from 1 manufacturer.
However, the network is capable of continuous
augmentation. Only 25 examples of a new device are
needed to train the neural network.

Therefore, readers are invited to contribute images
of other cardiac device types. This can be done
conveniently through the Web interface and will be
acknowledged on the website when that model of
devices is identified for a future website visitor.

This study demonstrates this neural network has
superior accuracy in identifying the manufacturer of a
device compared with that of human cardiologists
and electrophysiologists using a flowchart approach.
However, it was found humans performed less well
on the present testing dataset than reported previ-
ously (3). Reasons for this may include the fact the
flowchart algorithm has not been updated in 8 years
and the relative abundance of ICDs in the dataset,
relative to which it was validated (47.1% vs. 24.4% for
this study) and against which the flowchart algorithm



PERSPECTIVES

COMPETENCEY IN MEDICAL KNOWLEDGE: Machine

learning and artificial intelligence are providing rapid

developments in medicine, especially in the field of medical

image analysis. Our approach may speed up the diagnosis and

treatment of patients with cardiac rhythm devices, but this paper

also demonstrates how neural networks are increasingly being

deployed to process large quantities of medical data throughout

the health care system, and how future patient care will likely

rely increasingly on computer-aided decision making.

TRANSLATIONAL OUTLOOK: Translating achievements in

machine learning from ‘bench to bedside’ (or the computing

laboratory to the point of care) has often proved difficult. With

this study we have provided an educational online portal where

physicians can interact with the network online. However, as

always, further clinical studies will be essential in assessing the

network’s ‘real world’ accuracy before it can be deployed as a

validated clinical tool.
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appears to perform particularly well (Figure 4 of the
original publication).

The accuracy for identifying the model group in the
present study is only 96.4%. Furthermore, the “real
world” accuracy may differ slightly from this (either
better or worse) depending on the distribution of
pacemaker model groups in the population. For
example, if the neural network performs relatively
well on the most popular model groups and relatively
poorly on more rarely used devices, the accuracy may
be higher than quoted in this paper. For this reason,
some studies “weight” their training and testing
datasets by the prevalence of classes in the popula-
tion to give a more accurate representation of real-
world performance. Unfortunately, however, no
data exist describing the relative incidence of pace-
maker models in the population, and so the present
dataset must assume balanced class sizes. Fortu-
nately, in clinical practice, the most urgent question
is the device manufacturer so that the correct pro-
grammer can be brought to the patient’s bedside.
There was only 1 classification error for this endpoint
across the entire dataset, corresponding to an accu-
racy of 99.6%, which is less likely to change dramat-
ically with the distribution of devices in the
population.

Sometimes, neural networks can come to the
wrong conclusion. The present website assists
humans by displaying, alongside the medical staff’s
uploaded image, not only an image of the model the
network thinks this is but also images of the 2 most
similar alternatives. These authors have found that,
although the network’s selection is correct only
96.4% of the time, in a (coincidental) 99.6% of occa-
sions the correct model group is 1 of those top 3
displayed.

With all neural networks, there is a risk of
“overfitting.” This refers to a phenomenon where
the neural network becomes excellent at recognizing
images it has seen before and been trained on but
much less well on real-world examples. It could be
explained as the neural network “memorizing” in-
dividual images rather than actually “learning” how
to tell devices apart. The authors have tried to
minimize the risk of overfitting in 2 ways. First, the
network’s performance has been defined as its
accuracy on the “test set” on which it was not
trained. Second, various methods of “regularization”
have been included in the network such as dropout
and weight decay. These methods penalize the
model for making decisions based on only a few very
specific elements of an image and, instead, favor
training the model to look at a larger variety of
features present.

Deployment from “bench to bedside” can be diffi-
cult with neural networks, because the large pro-
cessing power needed is not always present at the
point of care. This was mitigated by providing an
online Web portal that anyone could use (19).

CONCLUSIONS

This study demonstrates a convolutional neural
network is able to accurately identify the manufac-
turer and model of a cardiac rhythm device from a
radiograph. Furthermore, its performance signifi-
cantly exceeds that of a cardiologist using a flowchart
approach.

ACKNOWLEDGMENTS The authors thank European
Research Council 281524 for infrastructural support
from the National Institute for Health Research
Biomedical Research Centre based at Imperial College
Healthcare NHS Trust and Imperial College London.
This neural network is free to try (19).

ADDRESS FOR CORRESPONDENCE: Dr. James P.
Howard, National Heart and Lung Institute, Imperial
College London, B Block, Hammersmith Hospital, Du
Cane Road, London W12 0HS, United Kingdom.
E-mail: jphoward@doctors.org.uk.

mailto:jphoward@doctors.org.uk


Howard et al. J A C C : C L I N I C A L E L E C T R O P H Y S I O L O G Y V O L . 5 , N O . 5 , 2 0 1 9

Identifying Cardiac Devices From X-rays With AI M A Y 2 0 1 9 : 5 7 6 – 8 6

586
RE F E RENCE S
1. Mond H, Proclemer A. The 11th world survey of
cardiac pacing and implanTable cardioverter-
defibrillators: calendar year 2009-a world society
of arrhythmia’s project. Pacing Clin Electrophysiol
2011;34:1013–27.

2. Raatikainen MJP, Arnar DO, Zeppenfeld K, et al.
Statistics on the use of cardiac electronic devices
and electrophysiological procedures in the Euro-
pean Society of Cardiology countries: 2014 report
from the European Heart Rhythm Association.
Europace 2015;17 Suppl 1:i1–75.

3. Jacob S, Shahzad MA, Maheshwari R,
Panaich SS, Aravindhakshan R. Cardiac rhythm
device identification algorithm using x-rays: CaR-
DIA-X. Heart Rhythm 2011;8:915–22.

4. Mazurowski MA, Habas PA, Zurada JM, Lo JY,
Baker JA, Tourassi GD. Training neural network
classifiers for medical decision making: the effects
of imbalanced datasets on classification perfor-
mance. Neural Networks 2008;21:427–36.

5. Simonyan K, Zisserman A. Very deep convolu-
tional networks for large-scale image recogni-
tion. 2015. Available at: https://arxiv.org/abs/
1409.1556. Accessed March 8, 2019.

6. Szegedy C, Vanhoucke V, Ioffe S, Shlens J,
Wojna Z. Rethinking the inception architecture for
computer vision. Proceedings of the IEEE confer-
ence on computer vision and pattern recognition.
2016; 2818-26.
7. He K, Zhang X, Ren S, Sun J. Deep residual
learning for image recognition. Proceedings of the
IEEE conference on computer vision and pattern
recognition. 2016; 770-8.

8. Chollet f. Xception: deep learning with depth-
wise separable convolutions. Proceedings of the
IEEE conference on computer vision and pattern
recognition. 2017; 1251-8.

9. HuangG,LiuZ,VanDerMaatenL,WeinbergerKQ.
Densely connected convolutional networks. Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition. 2017; 4700-8.

10. Zeiler MD. ADADELTA: an adaptive learning
rate method. Available at: https://arxiv.org/ 2012;
1212.5701. Accessed March 8, 2019.

11. Abadi M, Agarwal A, Barham P, et al. TensorFlow:
large-scale machine learning on heterogeneous distrib-
uted systems. 12th {USENIX} Symposium on Operating
Systems Design and Implementation. 2016; 265-83.

12. Chollet F. Keras: The Python Deep Learning
Library. Available at: www.keras.io. Accessed
February 26, 2019.

13. Simonyan K, Vedaldi A, Zisserman A. Deep
inside convolutional networks: visualising image
classification models and saliency maps. arXiv:
1312.6034v2.

14. Kotikalapudi R. Keras-vis-Keras Visualization
Toolkit. Available at: https://raghakot.github.io/
keras-vis/. Accessed June 28, 2018.
15. Bansal R, Raj G, Choudhury T. Blur image
detection using Laplacian operator and Open-CV.
2016 International Conference System Modeling
and Advancement in Research Trends (SMART).
IEEE 2016:63–7.

16. R Core Team. R: a language and environment
for statistical computing 2014. Available at:
http://www.R-project.org/. Accessed March 8,
2019.

17. Benitez JM, Castro JL, Requena I. Are
artificial neural networks black boxes?
IEEE Trans Neural Networks 1997;8:1156–64.

18. Schwartz-Ziv R, Tishby N. Opening the black
box of deep neural networks via information.
2017. Available at: https://arxiv.org/ 1703.00810 .
Accessed March 8, 2019.

19. Howard JP. PPMnn: Pacemaker identification
with neural networks. Available at: http://ppm.
jph.am. Accessed February 26, 2019.
KEY WORDS cardiac rhythm devices,
machine learning, neural networks,
pacemaker
APPENDIX For supplemental figures, please
see the online version of this paper.

http://refhub.elsevier.com/S2405-500X(19)30144-6/sref1
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref1
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref1
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref1
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref1
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref2
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref2
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref2
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref2
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref2
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref2
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref3
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref3
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref3
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref3
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref4
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref4
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref4
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref4
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref4
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/
http://www.keras.io
https://raghakot.github.io/keras-vis/
https://raghakot.github.io/keras-vis/
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref15
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref15
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref15
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref15
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref15
http://www.R-project.org/
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref17
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref17
http://refhub.elsevier.com/S2405-500X(19)30144-6/sref17
https://arxiv.org/
http://ppm.jph.am
http://ppm.jph.am

	Cardiac Rhythm Device Identification Using Neural Networks
	Methods
	Data extraction
	Convolutional neural network architecture and training
	Visualization of learning
	Human expert performance using manual algorithm
	Statistical analysis

	Results
	Dataset
	Stage 1: Comparative performance of the different neural network architectures
	Stage 2: Final neural network performance on the unseen “test set.”
	Comparison with performance of human experts using CaRDIA-X algorithm
	Visualizing learning with saliency mapping

	Discussion
	Immediate clinical applications
	Human learning from machine learning: saliency maps
	Network architecture greatly affects performance
	Study limitations

	Conclusions
	Acknowledgments
	References


