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Abstract

In the context of neurologic disorders, dynamic susceptibility contrast (DSC) and dynamic 

contrast enhanced (DCE) MRI provide valuable insights into cerebral vascular function, integrity, 

and architecture. Even after two decades of use, these modalities continue to evolve as their 

biophysical and kinetic basis is better understood, with improvements in pulse sequences and 

accelerated imaging techniques and through application of more robust and automated data 

analysis strategies. Here, we systematically review each of these elements, with a focus on how 

their integration improves kinetic parameter accuracy and the development of new hemodynamic 

biomarkers that provide sub-voxel sensitivity (e.g., capillary transit time and flow heterogeneity). 

Regarding contrast mechanisms, we discuss the dipole-dipole interactions and susceptibility 

effects that give rise to simultaneous T1, T2 and T2
∗ relaxation effects, including their 

quantification, influence on pulse sequence parameter optimization, and use in methods such as 

vessel size and vessel architectural imaging. The application of technologic advancements, such as 

parallel imaging, simultaneous multi-slice, undersampled k-space acquisitions, and sliding 

window strategies, enables improved spatial and/or temporal resolution of DSC and DCE 

acquisitions. Such acceleration techniques have also enabled the implementation of, clinically 

feasible, simultaneous multi-echo spin- and gradient echo acquisitions, providing more 

comprehensive and quantitative interrogation of T1, T2 and T2
∗ changes. Characterizing these 

relaxation rate changes through different post-processing options allows for the quantification of 

hemodynamics and vascular permeability. The application of different biophysical models 

provides insight into traditional hemodynamic parameters (e.g., cerebral blood volume) and more 

advanced parameters (e.g., capillary transit time heterogeneity). We provide insight into the 

appropriate selection of biophysical models and the necessary post-processing steps to ensure 

reliable measurements while minimizing potential sources of error. We show representative 

examples of advanced DSC- and DCE-MRI methods applied to pathologic conditions affecting the 

cerebral microcirculation, including brain tumors, stroke, aging, and multiple sclerosis. The 
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maturation and standardization of conventional DSC- and DCE-MRI techniques has enabled their 

increased integration into clinical practice and use in clinical trials, which has, in turn, spurred 

renewed interest in their technological and biophysical development, paving the way towards a 

more comprehensive assessment of cerebral hemodynamics.

Keywords

dynamic susceptibility contrast MRI; dynamic contrast enhanced MRI; perfusion; vascular 
permeability

1 Introduction

Contrast enhanced MRI methods are widely used to interrogate hemodynamic and vascular 

properties of brain tissue, including pathologic conditions such as cancer, stroke, and other 

neurological disorders. Such studies involve the intravenous administration and serial 

tracking of MRI contrast agents through the cerebral circulation and, in the case of a 

disrupted blood brain barrier, the interstitial space. The intrinsic relaxation times (T1, T2 and 

T2
∗) of tissue water are shortened by the passage of contrast agent (CA), leading to detectable 

changes in the MRI signal. The two most commonly used contrast enhanced methods are 

divided based on the affected MR relaxation time, where dynamic contrast enhanced (DCE) 

MRI studies (Yankeelov and Gore, 2009) are designed to track changes in tissue T1 and 

dynamic susceptibility contrast (DSC) MRI methods (Willats and Calamante, 2013) rely on 

CA induced T2 (or T2
∗) changes. Pharmacokinetic and/or biophysical models are applied to 

the acquired DCE- and/or DSC-MRI signal time courses to estimate functional and 

structural features of the tissue vasculature (Ostergaard et al., 1996b; P. S. Tofts et al., 1999). 

Numerous studies have established the utility of DCE- and DSC-MRI biomarkers for 

diagnosis, prognostication, and therapeutic response assessment in the clinic and in the 

context of multi-institutional clinical trials. Given the maturation of DSC- and DCE-MRI 

and their increased clinical use, multiple national initiatives have established (or are working 

towards) standardized acquisition and analysis protocols (e.g. (QIBA, 2012; Welker et al., 

2015)).

As with most imaging technologies, the clinical applicability, interpretation, and fidelity of 

the derived DSC- and DCE-MRI parameters depends on three elements: 1) an appropriate 

understanding of the method’s biophysical basis, 2) the methods used to acquire the data and 

3) the MRI signal and kinetic analysis of the measured data. Over two decades of research 

have been devoted to characterizing the fundamental contrast mechanisms underlying 

contrast enhanced MRI, optimizing the pulse sequences to increase contrast to noise and 

temporal and spatial resolution, and developing postprocessing strategies that maximize the 

clinical accuracy of the extracted parameters. In addition, the advancement and synergistic 

integration of these three elements, along with improved MR hardware, have enabled the 

simultaneous interrogation of new structural and physiological biomarkers of interest. This 

paper reviews these three essential elements of DSC- and DCE-MRI methodology, with a 

particular focus on recent advancements.
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2 Biophysical Basis of DSC- and DCE-MRI

Unlike other imaging modalities (e.g., CT) contrast enhanced MRI is unique in that it does 

not directly detect the injected CAs. Instead, the change in the MRI signal reflects the 

influence of the CA on the local relaxation times of water. The indirect detection of CA 

through measured changes in MRI signal introduces challenges to quantification. As 

illustrated in Figure 1A, CA infusion can lead to two disparate effects: direct microscopic 

(on the order of a molecule size) interaction of CA with water and through-space 

mesoscopic (on the order of the cell or vessel size) effects induced by CA 

compartmentalization. Accordingly, the degree to which tissue T1, T2 and T2
∗ are shortened 

reflects a combination of the CA concentration, its magnetic properties, its distribution 

within tissue compartments, the local microstructure (e.g., vascular and cellular 

architecture), water diffusion, and water exchange across cellular membranes. The changes 

in relaxation times yield the representative DSC-MRI ( T2
∗-weighted) and DCE-MRI (T1-

weighted) signals shown in Figures 1B and 1C.

2.1 Contrast agent biodistribution

The biodistribution of CA in tissue largely determines the biophysical basis of the 

mechanism of relaxation time changes. Most clinically approved CAs for MRI are small 

molecular weight compounds (0.5 – 1 kD) that are freely diffusible and, after injection, will 

travel through the vasculature and pass into the interstitium (Caravan et al., 1999). An 

exception is in normal brain tissue, where the blood brain barrier (BBB) largely prevents 

extravasation. As detailed below (section 2.6), compartmentalization of CA within the 

vasculature, due to an intact BBB, predominantly influences T2 (or T2
∗) times (as illustrated 

by the lower blood vessel in Figure 1A and reflected in the signal shown in Figure 1C) and 

is typically assumed with conventional DSC-MRI methodology (Boxerman et al., 1995a). In 

many neuropathologies (e.g., brain cancer, stroke, multiple sclerosis), the BBB is disrupted 

and CA can diffuse into the extravascular space. The distribution of a CA across the 

vasculature and interstitium, due to BBB leakage, can lead to additional changes in T1 

(section 2.3), leading to the representative signal in Figure 1B, that can be quantified with 

DCE-MRI (P. S. Tofts et al., 1999). In neuroclinical practice, DCE-MRI is rarely used when 

the BBB is intact. However, DSC-MRI is used to assess hemodynamics in both normal and 

diseased tissue, the latter requiring specialized acquisition and/or analysis strategies to 

minimize or correct for the effects of CA leakage (as illustrated by the upper blood vessel in 

Figure 1).

2.2 Contrast agent relaxivity

The relaxivity of a CA is a measure of its ability to modulate proton relaxation rates (1/T1, 

1/T2, or 1/T2
∗) as a function of concentration, with units of mM−1s−1. A linear relationship 

between CA concentration and relaxation rate (e.g., R1 = 1/T1) is often assumed (Tóth et al., 

2002):
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Ri(t) = ri · Ct(t) + Rio [1]

where “i” is equal to 1, 2, or 2* and denotes the three different relaxation rates (R1, R2 and 

R2
∗), Rio and Ri(t) are the pre- and post-contrast relaxation rates, respectively, Ct(t) is the 

dynamic CA concentration in the tissue, and ri is the CA relaxivity. Note that each relaxation 

mechanism has a unique contrast agent relaxivity (r1, r2 and r2
∗) and their magnitude depends 

on field strength. As expected, for a given concentration in a tissue of interest, a CA with a 

higher relaxivity will induce a greater change in the relaxation rate. In DSC-MRI, this 

relaxivity value is unknown (for reasons that will be described in Section 2.5); in practice, it 

is either ignored or given a value based on prior simulations (Willats and Calamante, 2013). 

In DCE-MRI, the CA relaxivity values are measured in vitro. For simplicity, CA relaxivity 

values are typically assumed to be constant across patients and tissue types, but are known to 

vary with a tissue’s macromolecular composition (Stanisz and Henkelman, 2000).

2.3 Paramagnetic contrast agents and dipole-dipole interactions

Most clinical MRI CAs are Gadolinium (Gd)-based chelates due to the large dipole 

moments of paramagnetic metal ions. Since none of Gd’s seven unpaired electrons are 

involved in bonding, the large magnetic moment of Gd is preserved even when it is chelated 

to ligands, a necessary step owing to the toxicity of free Gd. The resulting magnetic moment 

of these electrons, which is 660 times higher than that of a proton due to their smaller mass, 

generates fluctuating microscopic magnetic fields that interact with those of water protons, 

leading to a change in proton relaxation. The theoretical and molecular basis of dipole-

dipole interactions and lanthanide based CAs has been described extensively in the literature 

(Aime et al., 1998; Belorizky et al., 2008; Bloembergen and Morgan, 1961; Caravan et al., 

1999; De Leõn-Rodríguez et al., 2015; Lauffer, 1987)

Given the microscopic distance over which dipole-dipole interactions occur, the net effect on 

tissue relaxation enhancement will largely depend on a CA’s biodistribution. When the BBB 

is intact and the CA is confined to the vasculature, only the protons within the blood are 

affected (assuming slow water exchange across the endothelial wall). In such cases, only 2 – 

4% of tissue water, the fractional blood volume range in normal white and gray matter 

(Leenders et al., 1990), will experience relaxation enhancement, while intracellular and 

interstitial protons remain unaffected. In order to reliably detect such changes with DCE-

MRI the relaxivity of the CA would have to be substantially higher than those in current 

clinical use, which explains the limited use of DCE-MRI to pathologies that disrupt the 

BBB.

2.4 Superparamagnetic contrast agents

Another class of MRI CAs are iron-oxide nanoparticles (Renshaw et al., 1986; Wang et al., 

2001; Weissleder et al., 1995), whose core can contain several thousand Fe ions. Such 

nanoparticles are superparamagnetic due to their single-domain nature, which in the 

presence of a magnetic field yields a net magnetic moment that far exceeds that of a single 
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paramagnetic atom. These nanoparticles form the basis of potent vascular imaging agents for 

MR angiography because their size (e.g. 20 – 100 nm) prevents extravasation over the course 

of a typical MRI exam. The real value of these blood pool nanoparticles originates from 

their substantial T2 and T2
∗ relaxivity, which can be an order of magnitude higher (e.g. >100 

mM−1sec−1) than that measured for Gd-based agents, rendering them highly effective for 

DSC-MRI studies (Bjørnerud et al., 2002; Tong et al., 2010). The marked increase in T2 and 

T2
∗ relaxivity exhibited by iron oxide nanoparticles is due to susceptibility contrast, a 

mechanism distinct from dipole-dipole interactions. The T1 relaxivity of commercially 

available iron oxide nanoparticles is higher than Gd-based agents, with values reported up to 

25 mM−1sec−1 (Rohrer et al., 2005). Even with enhanced T1 relaxivity from dipole-dipole 

effects, iron-oxide nanoparticles are rarely used for DCE-MRI studies. However, recent 

studies have demonstrated the use of ultrashort time-to-echo (UTE) sequences for DCE-MRI 

with iron-oxide-based CAs (Gharagouzloo et al., 2015; Rivera-Rivera et al., 2018).

While there are currently no iron-oxide nanoparticles approved for MRI, ferumoxytol is 

clinically indicated for iron replacement therapy in patients with anemia and can be used, 

off-label, for a wide range of MRI applications (Vasanawala et al., 2016). Moreover, it is 

under evaluation as a contrast agent for DSC-MRI in multiple clinical trials 

(NCT009785562, NCT00660543, NCT00103038). The T1 and T2
∗ relaxivities of 

ferumoxytol are 15 and 89 mM−1s−1, respectively (Corot et al., 2006). Ferumoxytol-based 

DSC-MRI maps of CBV have shown potential for differentiating pseudoprogression from 

treatment response in pediatric and adult brain tumor patients (Gahramanov et al., 2013; 

Nasseri et al., 2014; Thompson et al., 2012).

2.5 Magnetic Susceptibility effects

While dipole-dipole interactions are the predominant source of CA-induced T1 relaxation 

enhancement in DCE-MRI, susceptibility effects are the predominant contrast mechanism 

responsible for DSC-MRI signal changes. The underlying theoretical basis of susceptibility 

effects arising from exogenous CAs has been well characterized (Boxerman et al., 1995b; 

Frøhlich et al., 2005; Kiselev, 2001; Villringer et al., 1988; Weisskoff et al., 1994). The 

unequal distribution of CA, either Gd- or nanoparticle-based, in tissue gives rise to 

susceptibility differences between tissue compartments (e.g. intra- and extra-vascular space) 

that induce mesoscopic magnetic field gradients. These field inhomogeneities accelerate loss 

of phase coherence (and signal on T2- and T2
∗-weighted images) due to increased variability 

in local resonance frequencies experienced by protons as well as their diffusional motion. 

While dipole-dipole interactions occur over distances of nanometers, these magnetic field 

inhomogeneities can extend over several micrometers, thereby affecting many more protons 

and yielding CA relaxivity values that can be an order of magnitude larger than T1 relaxivity. 

For example, the T2
∗ relaxivity of clinical Gd-based CAs, when compartmentalized within 

capillaries, is on the order of 80 mM−1sec−1 (Kjolby et al., 2006). Even with the enhanced 

T2
∗ relaxivity, DSC-MRI studies are intentionally designed to maximize these susceptibility 

effects through the use of rapid bolus injections and high temporal resolution imaging (~1 – 
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2 sec), in order to capture the tracer’s first pass through tissue when the concentration is the 

highest.

2.5.1 DSC-MRI quantification—As described in Section 2.2, the application of Equation 

1 to DSC-MRI data assumes that the CA relaxivity (r2 and r2
∗) for spin- and gradient-echo 

based DSC-MRI data, respectively) is constant and linear across the brain and pathologies. 

However, it is well understood that vascular architecture influences CA-based magnetic field 

inhomogeneities, such that the resulting contrast agent relaxivity could vary across normal 

brain tissue and certainly varies in cases of pathology (e.g., tumor angiogenesis). For 

example, in a computational study evaluating the influence of vascular morphology on T2
∗

relaxivity, it was found that by expanding the range of possible branching angles in a fractal-

based vascular tree to match the abnormalities observed in brain tumors, the relaxivity varied 

three-fold (Semmineh et al., 2014). In a pre-clinical brain tumor model, tumor vascular 

relaxivity was shown to be approximately half that found in normal cortical tissue (Pathak et 

al., 2002). While vascular relaxivity differences are readily apparent in the context of highly 

abnormal brain tumor vasculature, the differences across normal tissue are less substantial. 

In a cohort of eight volunteers, significant correlations between regional CBV data at rest 

and under hypocapnic conditions were demonstrated across DSC-MRI and SPECT imaging 

of 99mTc-labeled red blood cells (an established reference), demonstrating the validity of 

DSC-MRI, even without local quantification of vascular relaxivity (Engvall et al., 2008). By 

extension, heterogeneous vascular relaxivity should not confound DSC-MRI across most 

neurologic disorders since they do not extensively modify normal vascular architecture.

2.5.2 Contrast agent extravasation—A central assumption in DSC-MRI is that CA 

will remain confined inside blood vessels over the course of its passage through tissue. If the 

BBB is disrupted the CA will extravasate and distribute around cells in the interstitium, 

giving rise to pronounced T1 effects as described in Section 2.3. Leakage of CA will also 

reduce the susceptibility difference between the intra- and extravascular space because the 

difference in the concentration between these compartments is lowered. This effectively 

lowers the CA T2
∗ relaxivity and renders it temporally variant since the susceptibility effects 

at each time point after injection will be a function of the difference in the concentration in 

the plasma and interstitium (Quarles et al., 2009; Sourbron et al., 2009). The 

compartmentalization of CA around cells (as illustrated in Figure 1) also induces additional 

mesoscopic magnetic field gradients and greater T2
∗ signal losses. Similar to the influence of 

vascular architecture on susceptibility effects, these additional CA T2
∗ leakage effects depend 

on the interstitial microstructure, which is predominantly determined by cellular features 

like density, size, shape, atypia and polydispersity (Semmineh et al., 2015). This sensitivity 

to cellularity is responsible for the characteristic DSC-MRI signal differences observed 

across different brain tumor types, where primary central nervous system lymphomas and 

brain metastasis predominantly exhibit strong post-bolus T1 and T2
∗ leakage effects, 

respectively (Mangla et al., 2011). It should be noted that CA leakage effects are known to 

reduce the reliability (and clinical utility) of DSC-MRI measures of CBV (Boxerman et al., 

2006) but there are a wide range of acquisition and post-processing methods that can 
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minimize their influence (Bjornerud et al., 2011; Boxerman et al., 2012; Donahue et al., 

2000; Hu et al., 2015; Leu et al., 2016; Quarles et al., 2005; Stokes et al., 2016a).

2.5.3 Spin and gradient echo sensitivity to susceptibility effects—The sensitivity 

of DSC-MRI to microstructure-dependent magnetic field inhomogeneities also depends on 

whether gradient echo (GRE) or spin echo (SE) pulse sequences are used to acquire the data. 

DSC-MRI signals acquired with a GRE sequence experience larger signal loss, and thus 

greater contrast to noise ratios, than those acquired with SE. The static magnetic field 

inhomogeneities induced by the compartmentalization of CA are partially refocused using 

SE but not GRE acquisitions, which results in less signal loss (by approximately a factor of 

two). Neither sequence is able to refocus the dephasing of protons due to their diffusion 

through the susceptibility gradients over the duration of the pulse sequence echo time (TE). 

Simulations and experimental studies aimed at investigating this complex pulse sequence 

dependency have found that SE measurements are primarily sensitive to the 

microvasculature (~10 μm) because their size is similar to the diffusion distance of water 

during an echo time (Boxerman et al., 1995b; Stables et al., 1998; Weisskoff et al., 1994). 

Consequently, SE based DSC-MRI signals primarily reflect capillary cerebral blood volume 

(CBV) and cerebral blood flow (CBF). GRE measurements exhibit a sensitivity profile that 

is similar to SE for the microvasculature but then plateaus and remains constant for larger 

vessels, yielding CBV and CBF maps that reflect blood vessels of all sizes. As detailed in 

Section 4.5, the distinct microstructural sensitivity of GRE and SE measures can also be 

leveraged to estimate mean vessel diameter.

3. Acquisition strategies for DSC/DCE

Both DSC-MRI and DCE-MRI involve the dynamic acquisition of data before, during, and 

after injection of an exogenous CA. Despite this parallel, there are several differences with 

DSC and DCE-MRI that impact the preferred acquisition strategy for each method. One 

important difference is in selecting an acquisition strategy that is tuned to a specific type of 

contrast ( R2
∗ and R2 in DSC-MRI and R1 in DCE-MRI). Both methods can be adversely 

impacted by competing relaxation effects (Boxerman et al., 2006b; de Bazelaire et al., 2006; 

Ewing and Bagher-Ebadian, 2013; Stokes et al., 2016a). Therefore, typical acquisitions for 

DSC-MRI and DCE-MRI are intentionally designed to minimize the influence of competing 

effects – long TEs and TRs in DSC-MRI minimize T1 effects, while short TEs and TRs in 

DCE-MRI minimize T2
∗ effects. In addition to acquisition differences, the reported 

parameters inform on fundamentally different but complementary hemodynamic processes. 

Thus, the combination of DSC-MRI perfusion and DCE-MRI vascular permeability would 

provide a significant advantage for fully characterizing various neuropathologies. The 

acquisition strategies and their advantages and tradeoffs will be discussed in detail below for 

both DSC-MRI and DCE-MRI, as well as combined DSC-MRI/DCE-MRI. Consensus 

methods have been previously published (see (Welker et al., 2015) for DSC-MRI and (“DCE 

MRI Quantification Profile,” 2012) for DCE-MRI recommendations) and focus primarily on 

the minimum basic standards to ensure robust and reproducible results across locations, 

imaging platforms, and time. While the standardized methods will be presented here briefly 
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for context as traditional options, we will primarily focus on new and promising advanced 

acquisition strategies, particularly those highlighted in Table 1.

3.1 DSC-MRI

3.1.1 Contrast—As described in Section 2.5.3, GRE contrast has higher vessel sensitivity 

across vessels of all sizes, while SE contrast is maximally sensitive to capillary-sized 

vessels. As a result, GRE acquisitions have higher contrast to noise ratio (CNR) per dose and 

tend to be the preferred method clinically. Other advantages of GRE acquisitions are shorter 

echo times, which enables higher temporal resolution, and the ability to quantify the arterial 

input function (AIF) when needed. Conversely, for GRE acquisitions, the same susceptibility 

contrast that provides high vascular sensitivity also causes susceptibility-induced signal 

dropout in regions with an air-tissue interface. These distortions often preclude the 

quantification of perfusion parameters in these regions and are a major drawback of GRE 

acquisitions. While the GRE sensitivity to vessels of all sizes yields higher CNR, it also 

implies that the perfusion parameters are often dominated by large vessels (so-called large 

vessel blooming artifact) that overshadow the smaller capillary perfusion signal. As a result, 

GRE sequences tend to overestimate perfusion due to the impact of macrovascular signal, 

while SE sequences are more consistent with microvascular perfusion measurements from 

the reference positron emission tomography (Østergaard et al., 1998a, 1998b). 

Microvascular deficiencies have been implicated in a number of pathologies (see 

Applications section), and thus SE acquisitions – with their reduced sensitivity to 

susceptibility-induced image distortion and specificity to microvasculature – may be 

advantageous. While traditional single-echo DSC acquisitions require an a priori choice 

between GRE and SE contrast, more advanced methods can acquire both types of contrast 

within a single sequence to circumvent the individual disadvantages. These sequences have 

the advantages of providing more information (total and microvascular perfusion, plus 

vascular characteristics) within a single acquisition and CA dose (Donahue et al., 2000). 

Figure 2 demonstrates the use of a combined spin- and gradient-echo (SAGE) sequence 

(Schmiedeskamp et al., 2013, 2012; Skinner et al., 2014; Stokes et al., 2016a, 2016b) for 

DSC-MRI. These more advanced pulse sequences will be discussed in more detail in the 

multi-echo section below.

3.1.2 Pulse sequences: Choice of acquisition readout—For DSC-MRI, rapid 

imaging is required to accurately sample the dynamic contrast-induced MR signal changes. 

Without adequate temporal resolution, perfusion (specifically, cerebral blood flow) tends to 

be underestimated (Knutsson et al., 2004). The general consensus, according to the 

American Society of Functional Neuroradiology (ASFNR), is that a temporal resolution 

equal to or less than 1.5s is required for DSC-MRI (Welker et al., 2015). Due to the rapid 

temporal requirements, the most commonly used acquisition strategy for DSC-MRI is 

single-shot echo planar imaging (EPI). These sequences provide good spatial coverage 

(typically 15–25 slices for whole brain coverage) with rapid temporal resolution and are 

widely available on clinical platforms. The main drawbacks to EPI-based acquisitions are 

signal dropout (particularly around sinuses and, in the case of tumors, around resection 

cavities) and image distortion. More advanced readout options have been developed to 

overcome these drawbacks; these options include advanced EPI readouts (Gelderen et al., 
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2000a; Newbould et al., 2007a), single-line acquisitions (Quarles et al., 2012a), and non-

Cartesian readouts such as spiral or radial acquisitions (Jonathan et al., 2013; Paulson et al., 

2016a). While generally less available clinically, these advanced methods can provide 

significant advantages over traditional DSC-MRI methods with single-shot EPI.

A major source of image distortion in single-shot EPI arises from off-resonance effects 

during the long readouts required to fully sample k-space. One effective method to reduce 

the readout length is to split the k-space traversal into multiple shots using a segmented or 

interleaved EPI readout. Because n-shots are required to fully sample k-space, segmented 

EPI often requires reduced repetition times (TRs) to maintain adequate temporal resolution, 

but this comes at a cost of higher T1 sensitivity. One example of a novel segmented EPI 

sequence employs the PRinciples of Echo Shifting with a Train of Observations (PRESTO) 

to minimize EPI distortion while maintaining image resolution and adequate T2
∗ sensitivity 

(Gelderen et al., 2000b; Pedersen et al., 2004). Unlike most MR pulse sequences (wherein 

TE < TR), the PRESTO sequence employs additional gradients to shift the resulting gradient 

echo into later TR periods (such that TE > TR). However, one drawback of these time-

efficient PRESTO methods is higher T1 sensitivity due to the shorter TRs (typically less than 

20ms). An alternative multishot EPI method called PERfusion with Multiple Echoes and 

Temporal Enhancement (PERMEATE) was developed using image acceleration (see section 

below) to further reduce image distortion and motion sensitivity (Jochimsen et al., 2007; 

Newbould et al., 2007b). The significantly reduced readouts in PERMEATE also permit 

acquisition of multiple echoes, which provides more accurate R2
∗ quantification. This 

approach can provide multi-echo EPI images with reduced distortion in the same temporal 

resolution as single-shot EPI and was shown to provide improved quantification of DSC-

MRI perfusion parameters (Newbould et al., 2007b).

Other alternative readout options are currently under development and may provide 

advantages over EPI-based readouts. Single-line acquisitions lack the distortions of EPI, but 

often come at the cost of reduced spatial and temporal resolution and limited flexibility in 

TEs and TRs. These tend to be more popular options for DCE-MRI, where short TRs and 

TEs provide an advantage in T1 sensitivity. Non-Cartesian acquisitions, such as spiral or 

radial readouts, may provide further benefit over EPI: these acquisitions tend to be more 

robust to motion, have increased time efficiency, and may permit more aggressive 

undersampling to improve temporal and/or spatial resolution. One proposed approach is to 

use a novel hybrid 3D EPI acquisition with radial sampling in-plane (Jonathan et al., 2013). 

This method – termed 3D RAZIR – permitted acquisition of whole-brain high resolution 

(1.7 mm isotropic) perfusion data in close agreement with literature values. The drawback to 

this method is a low native temporal resolution of 10.3s per 3D volume, which was 

reconstructed to sub-second resolution using a sliding window approach (see Acceleration 

methods, Section 3.1.4). While the low temporal resolution may preclude its use in brain 

tumor studies, other neuropathologies with less stringent temporal kinetics may benefit from 

the whole-brain coverage of this approach. Another promising example is the Spiral 

Perfusion Imaging with Consecutive Echoes (SPICE) method that was used to 

simultaneously acquire DSC- and DCE-MRI data (Paulson et al., 2016b). Using this 

Quarles et al. Page 9

Neuroimage. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approach, two echoes with tunable T1 and T2
∗-weightings, corresponding to short and long 

TEs, respectively, were acquired with high temporal resolution (Figure 3). This method is 

particularly promising as it provides both perfusion and vascular permeability parameters 

using a single contrast injection with good spatial and temporal resolution. While non-

Cartesian options lack the distortions associated with EPI, these methods may induce other 

types of image artifacts (e.g., spiral-induced blurring) that could impact the resulting 

perfusion quantification. The other drawbacks for non-Cartesian sampling include limited 

clinical availability and more complex reconstruction.

3.1.3 Pulse sequences: Parameter selection—The chosen TE in GRE DSC-MRI can 

impact the amount of T2
∗-weighting and image SNR. Longer TEs provide higher T2

∗-

weighting but can induce significant signal saturation, particular near large vessels, (Johnson 

et al., 2004), while shorter TEs result in higher image SNR but also increase sensitivity to T1 

effects (Thilmann et al., 2004). To balance these effects, the typical recommendation for TE 

is 25–35 ms. Using rCBV error minimization as a metric for TE optimization, the optimal 

TE is equal to a weighted average of the changes in tissue T2
∗ during contrast agent passage 

(Bell et al., 2017a; Boxerman et al., 1997; Thilmann et al., 2004). Due to the bolus-induced 

signal drop, this is lower than the baseline T2
∗, which is often cited as the preferred TE. 

While the typical recommendation is acceptable for most applications, the optimal TE for 

AIF is often shorter due to the reduced T2
∗, and care should be taken with longer TEs to 

avoid AIF voxels with noise floor or saturation issues. For SE DSC-MRI, the TE is typically 

longer than GRE acquisitions to permit time for the refocusing pulse.

Compared to conventional single-echo DSC-MRI, advanced multi-echo acquisitions provide 

several advantages for DSC-MRI, including flexibility in both contrast and TEs. Multi-echo 

acquisitions can be leveraged to acquire multiple gradient echoes (≥ 2), single gradient- and 

spin-echoes, and multiple gradient- and spin-echoes. The simplest of these options is a dual 

GRE, where an additional short-TE echo is acquired between the excitation pulse and the 

traditional longer-TE echo. This method also provides more flexibility in the TEs, which 

may improve characterization of both the AIF (using an optimized shorter TE) and brain 

tissue (Bell et al., 2017a; Newton et al., 2016). Perhaps more importantly, T1 leakage effects 

can be quantified, permitting both direct DCE-MRI analysis and correction of DSC-MRI 

data for more accurate perfusion analysis (Quarles et al., 2012; Sourbron et al., 2009; Stokes 

et al., 2016a).

The combination of GRE and SE into the SAGE sequence involves acquisition of two GREs, 

two asymmetric spin-echoes, and a single SE (Schmiedeskamp et al., 2013, 2012; Skinner et 

al., 2014; Stokes et al., 2014). The clinically-feasible simplified SAGE (sSAGE) sequence 

similarly involves acquisition of two GREs and a single SE, trading the asymmetric spin-

echoes for a more efficient analysis method and potential for shorter SE TEs (Stokes et al., 

2016b; Stokes and Quarles, 2016). These advanced multi-echo SAGE and sSAGE sequences 

provide a multitude of hemodynamic parameters (Figure 4 below): both macro- and 

microvascular perfusion (with additional post-processing for CA leakage effects), vascular 
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permeability, and vessel architectural properties (Schmiedeskamp et al., 2013, 2012; Skinner 

et al., 2014; Stokes et al., 2016b; Stokes and Quarles, 2016). The ability to inform upon 

multiple distinct hemodynamic parameters in a single acquisition provides a more complete 

basis for understanding various neuropathologies.

Repetition time is closely tied to the resulting temporal resolution of the dynamic time-

course; with traditional single-shot EPI acquisitions, the repetition time is equivalent to the 

temporal resolution and is driven by the number of slices and TE. The typical 

recommendation is a TR less than or equal to 1.5 seconds. More advanced acquisitions may 

have shorter repetition times, but at a cost of increased T1-weighting.

Flip angle recommendations for GRE DSC-MRI are typically between 60 and 70°. Higher 

flip angles increase the image SNR but induce more T1-weighting, while lower flip angles 

lead to lower SNR and reduced CBF accuracy (Calamante et al., 2007). For SE DSC-MRI, a 

flip angle of 90° is generally prescribed.

The minimum recommended requirements for spatial resolution are generally 1–3 mm in-

plane and 3–5 mm through-plane, with adequate slice coverage for whole brain imaging. 

Insufficient spatial resolution leads to partial volume effects (PVEs), particularly in the AIF, 

and can impact the accuracy of the resulting perfusion metrics (Chen et al., 2005). The trade-

off between spatial and temporal resolution may be tuned based on the clinical application, 

where temporal resolution may be sacrificed for finer spatial resolution or vice versa.

The dynamic scan time is generally determined by the pathology of interest. For brain 

tumors, the minimum recommendation is 2 minutes, with the injection occurring at 30–60s 

to provide an adequate measure of the baseline signal intensity. At least 120 points should be 

acquired, particularly if leakage correction is to be performed, corresponding to 2–3 minutes 

for 1–1.5 second temporal resolution (Paulson and Schmainda, 2008). For stroke and other 

pathologies with significant bolus dispersion and delay, longer dynamic scan times may be 

required, with similar baseline duration (Calamante et al., 2006). While longer scan 

durations can emphasize the influence of tracer recirculation, this does not generally impact 

the resulting perfusion metrics (provided deconvolution is used); on the other hand, 

truncated scan durations can lead to significant errors in the resulting perfusion metrics 

(Kosior and Frayne, 2010).

3.1.4 Pulse sequences: Acceleration methods—DSC- and DCE-MRI have 

considerable competing pulse sequence demands to both sample fast (to characterize rapid 

signal changes) and with high resolution (to resolve anatomical structures). In order to attain 

adequate temporal and spatial resolution, some form of image acceleration is often required. 

This is typically achieved with k-space undersampling strategies, though care must be taken 

to avoid undersampling artifacts. For example, in parallel imaging, additional information 

from receiver coils is exploited for image reconstruction, either in image-space (SENSitivity 

Encoding (SENSE)) or k-space (GeneRalized Autocalibrating Partial Parallel Acquisition 

(GRAPPA)). Using parallel imaging in the PERMEATE method, the reduced acquisition 

readout was leveraged for improved temporal resolution, acquisition of multiple echoes, and 

reduced image distortion (Jochimsen et al., 2007; Newbould et al., 2007b).
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Other methods of undersampling include partial Fourier acquisitions, where high-frequency 

k-space is undersampled and reconstructed from the remaining k-space, or view-sharing 

methods, where the undersampled data is reconstructed from other dynamic time-frames. A 

sliding window view-sharing method, where k-space is split into interleaves and consecutive 

“windows” are combined for image reconstruction, has been used to improve DSC-MRI 

temporal resolution (d’Arcy et al., 2002; Jonathan et al., 2013). Keyhole view-sharing 

techniques have also been proposed for DSC-MRI (Oesterle et al., 2000), where center low-

frequency k-space is acquired at each dynamic, while the high-frequency information is 

obtained from a reference image and is shared among the undersampled dynamic images. 

The use of compressed sensing to randomly undersample k-space may also provide further 

image acceleration (Smith et al., 2012).

A promising new method of image acceleration is simultaneous multi-slice (SMS) 

acquisitions, which leverages multi-band RF pulses to acquire multiple slices simultaneously 

that are then separated using parallel imaging. SMS was recently shown to improve slice 

coverage in a gradient- and SE DSC-MRI sequence; in principle, either spatial or temporal 

resolution could be improved using SMS (Chakhoyan et al., 2018; Eichner et al., 2014).

3.1.5 Dosing recommendations—The vast majority of clinical DSC-MRI studies use 

gadolinium-based contrast agents, as they tend to be well characterized and widely available. 

Historically, many studies have used gadopentetate (Gd-DTPA, trade name Magnevist), 

which is a linear Gd-based CA. More recent studies have employed macrocyclic Gd-based 

CAs (such as gadebenate dimeglumine, trade name MultiHance, and gadobutrol, trade name 

Gadavist) due to their preferable pharmacokinetic properties (Frenzel et al., 2008). High 

concentration CAs have also been developed, such as Gadavist, which have the advantage of 

smaller injection volumes and thus tighter bolus profiles. Care must be taken to account for 

the different relaxivity properties of each CA when converting to CA concentration. The 

limitations for Gd-based CAs include risks of nephrogenic systemic fibrosis (NSF) in 

patients with renal insufficiency (Leiner and Kucharczyk, 2009) and concerns about Gd 

accumulation over time in normal brain regions as a function of dose (Kanda et al., 2015; 

McDonald et al., 2015).

In clinical applications with BBB breakdown (e.g., brain tumors), there is the potential for 

significant Gd-based CA extravasation, which severely impacts the accuracy of the resulting 

perfusion metrics (Boxerman et al., 2006). To minimize the impact of T1 leakage effects due 

to extravascular CA, a preload dose of CA can be administered. In addition to clinical 

indication, a preload may be appropriate in more T1-weighted sequences (high flip angle, 

short TR and TE). A recent study in brain tumors with varying preload doses showed 

diminishing returns for increasing preload doses: while T1 leakage effects decreased with 

each preload dose up to 0.1 mmol/kg, T2
∗ leakage effects increased with each preload dose 

up to 0.25 mmol/kg (Bell et al., 2017b). As such, in cases where a preload dose is indicated, 

a CA preload dose of ≤ 0.1 mmol/kg body weight should be given 5 to 10 minutes prior to 

primary bolus. It should be noted that this preload dose can also be used as the primary 

injection for DCE-MRI acquisition (see DCE-MRI section).

Quarles et al. Page 12

Neuroimage. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The primary CA dose in DSC-MRI should balance the need for a significant T2
∗ effect (i.e., 

drop in MR signal intensity) with the potential for signal saturation. For GRE acquisitions, 

the doses typically range from 0.1 to 0.2 mmol/kg body weight (single- and double-dose, 

respectively), while for SE acquisitions, higher doses up to 0.3 mmol/kg may be required to 

induce similar MR signal drops (Hu et al., 2010). The dose should be administered with a 

power injector at a rate greater than 4 ml/s, followed by a saline flush at the same rate, to 

produce an adequate bolus profile. Slower injections may lead to underestimated perfusion 

parameters (van Osch et al., 2003). The injection should be performed in the right arm if 

possible to prevent CA flux into venous structures.

As an alternative to Gd-based CA, iron-oxide-based agents such as ferumoxytol have been 

proposed. These agents are known to stay intravascular over the dynamic time frame and 

permit steady-state CBV mapping (Troprès et al., 2001; Varallyay et al., 2013). In addition, a 

combined R1 and R2* relaxometry approach was recently developed to obtain ferumoxytol-

based CBV without confounding signal-concentration non-linearities (Rivera-Rivera et al., 

2018). For DSC-MRI, the recommended dose for ferumoxytol is 3 mg Fe/kg body weight 

(range: 1–7 mg/kg); this dose should be diluted by a factor of 5 in saline and injected using a 

power injector at a rate of 1–2 ml/s, followed by a saline flush (20–30 ml) at the same rate 

(Varallyay et al., 2017). While Fe-based CAs prevent CA leakage effects and may be used in 

patients with renal insufficiency, they are less well-characterized and may induce 

hypersensitivity reactions (Toth et al., 2017). In addition, they do not provide same expected 

enhancement on T1w post-CA images, necessitating the use of additional injections of Gd-

based agents, when identifying regions of BBB disruption is desired (e.g. glioblastoma).

3.2 DCE-MRI

3.2.1 Special considerations for DCE-MRI in the brain—DSC-MRI perfusion has 

been the radiologic mainstay for brain imaging due to the high susceptibility effects induced 

by BBB sequestration of CA in the vasculature. DCE-MRI is more widely utilized outside 

the brain, where CA extravasates into the extravascular space to induce significant T1 

relaxation effects. However, it has long been recognized that intracranial neoplasms cause 

breakdown of the BBB, permitting CA extravasation. It is also increasingly recognized that 

BBB disruption occurs in cerebrovascular disease (including stroke), normal and 

pathological aging, and multiple sclerosis. This section will cover the use of DCE-MRI to 

assess BBB integrity and the unique challenges for DCE-MRI in the brain.

3.2.2 Pulse sequences: T1 mapping and dynamic data acquisition—The data 

acquisition in DCE-MRI largely determines the appropriate level of data analysis, which can 

include qualitative (“curvology”), semi-quantitative, and/or quantitative analysis. 

Quantitative analysis of DCE-MRI requires knowledge of the CA concentration, which is 

proportional to the tissue T1 value. In order to convert the T1-weighted DCE-MRI signal to 

dynamic T1 values, a pre-contrast T1 map must be acquired. Inversion recovery sequences – 

the gold standard method for T1 mapping – are rarely used clinically due to the long 

acquisition times. More clinically feasible methods for T1 mapping include Variable Flip 

Angle (VFA) and Look-Locker (LL). Though these methods are faster, this may come at the 

expense of accuracy (Stikov et al., 2015). As VFA methods generally overestimate tissue T1 
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and LL methods generally underestimate tissue T1, it may be possible to create site-specific 

calibration schemes using IR validation (Stikov et al., 2015). In contrast to these voxel-wise 

T1 mapping methods, several studies have proposed the use of a fixed predefined T1 value 

for conversion to CA concentration (T Abe et al., 2015; Haacke et al., 2007). As the spatial 

distribution of T1 values can vary significantly, this method has been shown to introduce bias 

into the resulting DCE-MRI parameters (Tietze et al., 2015b); therefore, voxel-wise T1 

mapping methods are generally recommended.

For the dynamic data acquisition, the temporal requirements for DCE-MRI tend to be less 

stringent than DSC-MRI, unless an AIF is required, and largely depend on the brain tissue 

kinetics in the pathology of interest, and to some extent on the chosen analysis method (see 

Analysis section). While high temporal resolution and T2
∗ sensitivity dominate pulse 

sequence choice in DSC-MRI, DCE-MRI pulse sequences are often optimized to maximize 

sensitivity to T1 effects. The vast majority of DCE-MRI studies utilize 3D GRE sequences 

(including spoiled GRE sequences (SPGR) and ultrafast SPGR variations) (Heye et al., 

2014). These sequences provide high T1-weighting and flexibility in balancing the requisite 

spatial and temporal resolution. Using a pre-contrast T1 map, the T1-weighted signals can be 

converted to dynamic CA concentration curves for subsequent DCE-MRI analysis.

Similar to DSC-MRI, image acceleration is often used in DCE-MRI to improve spatial 

and/or temporal resolution. For example, dynamic compressed sensing can be combined 

with parallel imaging (GRAPPA) and either 3D or 2D+SMS encoding schemes for DCE-

MRI, resulting in improved noise characteristics and higher spatiotemporal resolution (Yoon 

et al., 2014). Another promising method is the golden-angle radial sparse parallel (GRASP) 

scheme, which employs radial k-space encoding with golden angle ordering to achieve high 

spatial resolution and flexible post-hoc temporal resolution as high as 2.5 s (Rossi Espagnet 

et al., 2015). As high undersampling factors can induce significant image artifacts, another 

technique is to combine highly undersampled data (acceleration factors up to 30x) with a 

constrained reconstruction to improve both spatial resolution (< 1 mm in-plane) and provide 

whole brain coverage (Guo et al., 2016). Time-resolved MR angiography sequences that 

exploit keyhole view-sharing have also been utilized for DCE-MRI, under multiple vendor-

specific acronyms (including TWIST, TRICKS, and 4D-TRAKS). These methods are 

particularly promising to achieve higher temporal resolution in brain tumor studies (Zhao et 

al., 2015). As an alternative to image acceleration, dual-temporal resolution protocols have 

been proposed to achieve high temporal resolution during the first-pass (at the expense of 

spatial resolution) and high spatial resolution thereafter (with low temporal resolution) 

(Jelescu et al., 2011).

Rather than measuring a T1-weighted signal, some studies have employed quantitative T1 

mapping at each dynamic time point, which may reduce sensitivity to signal instabilities and 

pulse sequence parameters. As T1 mapping requires longer acquisition time, several rapid T1 

mapping methods have been developed. These fast T1-mapping variants are typically based 

on the LL method and can provide quantitative dynamic T1 measurements with temporal 

resolution adequate for certain pathologies. For example, T1 mapping with partial IR 

(TAPIR) has been utilized for DCE-MRI in multiple sclerosis and vascular cognitive 
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impairment with a temporal resolution of 3.5 minutes (Taheri et al., 2011), while TOMROP 

(T-One by Multiple Read-Out Pulses) has been utilized in a preclinical stroke model (Ewing 

et al., 2003). Even with these faster T1 mapping schemes, these methods suffer from 

relatively poor temporal resolution, which may preclude both some analysis methods and 

their use in certain neuropathologies.

3.2.3 Pulse sequences: Parameter selection—DCE pulse sequence design is 

primarily driven by need for high T1-weighting, coupled with balancing temporal and spatial 

resolution. The chosen set of parameters (TE, TR, and flip angle) influence the level of T1-

weighted and the resulting sensitivity to CA concentration. Specifically, expressions can be 

derived for both the minimum detectable and maximum measurable CA concentrations (i.e., 

the detection envelope) (Schabel and Parker, 2008a). Typically, TE and TR are minimized 

for rapid acquisition, with flip angle more flexible for optimization. According to the 

consensus recommendations, the acceptable limit for pulse sequence parameters are TE up 

to 2.5 ms and TR up to 7 ms, while the ideal pulse sequence parameters are TE < 1.5 ms, TR 

< 3 ms (“DCE MRI Quantification Profile,” 2012). The recommendation for flip angle is 

between 25 and 35°.

The balance between spatial and temporal resolution is determined by the pathology. BBB 

disruption in brain tumors leads to rapid extravasation kinetics, necessitating higher 

temporal resolution at the expense of spatial resolution. On the other hand, reduced flow is 

often observed in ischemia, which permits moderate temporal and spatial resolution. Other 

applications such as aging and multiple sclerosis have slow extravasation, permitting low 

temporal resolution that can be traded for the necessary high spatial resolution. According to 

a 2014 meta-analysis of DCE-MRI in the brain, the median temporal resolution was 5.3 s in 

intracranial neoplasms (30 studies, 716 subjects), 14.0 s in stroke or cerebrovascular disease 

(11 studies, 482 subjects), 34.8 s in MS (8 studies, 186 subjects), and 229.0 s in Alzheimer’s 

disease (1 study, 30 patients) (Heye et al., 2014). The desired spatial resolution is typically at 

least 1–2 mm in plane and < 5 mm through-plane (“DCE MRI Quantification Profile,” 

2012).

The total scan time in DCE-MRI is substantially longer than DSC-MRI and is similarly 

determined by pathology. The scan time also determines the appropriate level of analysis, 

and short scan durations may preclude quantitative assessment of certain parameters, such as 

that described in Section 4.7. Relative to other pathologies, brain tumors have the shortest 

scan duration requirements, while aging and MS have slower extravasation and thus longer 

scan durations. More specifically, the meta-analysis by Heye et al. found that the median 

scan duration was 5.5 min for intracranial neoplasms, 9 min for stroke or cerebrovascular 

disease, 21.8 min in MS, and 34.4 min in Alzheimer’s disease (Heye et al., 2014). Reducing 

the dynamic scan time (or temporal resolution) results in increased parameter uncertainty 

(Larsson et al., 2013; Vidarsson et al., 2009).

For quantitative analysis of DCE-MRI, an arterial input function (commonly either 

individual or population-based) is required. To adequately sample the AIF, high temporal 

resolution is required to accurately sample the CA first-pass. In addition, the AIF has a 

substantially higher peak CA concentration (often 5–10 mM) compared to the tissue CA 
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concentration (typically 1–2 mm) (Schabel and Parker, 2008b). This can lead to an 

additional challenge in pulse sequence design – optimizing parameters for lower tissue CA 

concentration sensitivity while not saturating the AIF CA concentration. Another technical 

challenge for AIF determination in DCE-MRI is the presence of strong T2
∗ effects from 

intravascular CA. These effects can manifest even at the relatively short TEs in DCE-MRI 

(Ewing and Bagher-Ebadian, 2013). Potential solutions include the use of UTE sequences to 

minimize the influence of T2
∗ effects (Gharagouzloo et al., 2015; Rivera-Rivera et al., 2018) 

or multi-echo pulse sequences that measure and remove T2
∗ effects (Ewing and Bagher-

Ebadian, 2013).

3.2.4 Dosing recommendations—DCE-MRI studies employ both linear and 

macrocyclic Gd-based CAs to induce T1 effects, with Gd-DTPA being the most commonly 

used CA (Heye et al., 2014). The advantages and limitations of these agents are discussed 

above in the DSC-MRI dosing section. Unlike DSC-MRI, iron-oxide based agents are not 

generally used for DCE-MRI as they remain intravascular over the dynamic time frame. The 

standard Gd-based CA dose for DCE-MRI is 0.1 mmol/kg body weight; furthermore, no Gd-

based CA should be injected in the 24 hours prior to DCE-MRI. Similar to DSC-MRI, the 

injection should be performed using a power injector in the right arm if possible to prevent 

CA flux into venous structures. The injection rate is lower for DCE-MRI at 2–4 ml/s, 

followed by saline flush (20–30ml) at same rate.

4. Analysis of DSC-MRI and DCE-MRI data

The conventional hemodynamic parameters calculated from DSC-MRI are CBV, CBF and 

mean transit time (MTT), while DCE-MRI in the brain is primarily used to estimate the 

contrast agent volume transfer constant between blood plasma and the extravascular 

extracellular space (Ktrans) and the volume fraction of the extravascular extracellular space 

(ve). These hemodynamic parameters reflect the process of arterial blood flow (liters of 

blood per minute) through the capillary system of the brain tissue (grams of tissue), and into 

the interstitium in the case of DCE-MRI, resulting in units of mL/min/g.

4.1 Conversion of MRI signal into concentration curves

The measured MR signals require conversion to contrast agent concentration time profiles 

prior to kinetic analysis. The approximation of MR signal (S(t)) as a function of time for 

both DSC/DCE, assuming an SPGR sequence, is based on:

S(t) = M0
sin( ∝ ) 1 − exp − TR × R1(t)
1 − cos( ∝ ) exp − TR × R1(t) exp( − TE × R2

∗(t))

= M0 × E1(t) × E2(t)

[2]
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where M0 is the equilibrium longitudinal magnetization; ∝ is the flip angle; and Ri(i = 1,2) 

is the relevant relaxation rate (Ri = 1/Ti).. For brevity, Ei(i = 1,2) is the term containing 

either T1 or T2
∗ effects.

4.1.1 Estimating concentration curves in tissue using single echo DSC-MRI—
As shown in Eq. [1], the change in CA concentration is assumed to be linearly proportional 

to the change in transverse relaxation rate, ΔR2
∗(t), within the tissue, with a proportionality 

constant that is equal to the contrast agent relaxivity, r2
∗ (Kiselev, 2001). In conventional 

DSC-MRI, r2
∗ is not known a priori and is often set to unity. By rearranging Eq. 2, the 

change in transverse magnetization can be calculated. For a single echo DSC-MRI 

acquisition:

ΔR2
∗(t) = R2

∗(t) − R2
∗(0) = − 1

TE ln S(t)
S(0) +

E1(0)
E1(t) ≈ − 1

TE ln S(t)
S(0) [3]

where S(0) is the baseline signal before CA arrival. Typically, T1 effects, as notated by the 

E1 term, are assumed to be negligible. When this assumption is not valid (i.e., when the 

BBB breaks down), specialized acquisition methods (described in Sections 3.1.3 and 3.1.5) 

and/or post-processing methods (see Section 4.9.2) should be employed. In order to ensure 

good CNR, S(0) is typically averaged over approximately 60 seconds worth of pre-contrast 

time points (Welker et al., 2015).

4.1.2 Estimating concentration curves in tissue using dual echo DSC-MRI—
With a dual echo DSC acquisition, contrast agent induced T1 effects can be removed 

(Kuperman et al., 1996; Vonken et al., 1999a, 2000):

ΔR2
∗(t) = 1

TE2 − TE1
ln

STE1
(t)

STE2
(t) ×

STE1
(0)

STE2
(0) [4]

4.1.3 Estimating concentration curves in tissue using SAGE—For SAGE data, 

there are two primary methods for analysis. The original SAGE analysis (Schmiedeskamp et 

al., 2013; Skinner et al., 2014) is based on non-linear fitting of all five echoes to derive R2(t) 

and R2
∗(t). As the nonlinear fit for SAGE can be time-consuming, the simplified SAGE 

(sSAGE) analysis uses a simplified acquisition of three echoes and an analytical solution for 

ΔR2(t) and ΔR2
∗(t) (Stokes et al., 2016b; Stokes and Quarles, 2016). The sSAGE method 

provides statistically equivalent hemodynamic measures in a clinically efficient manner. The 

ΔR2
∗(t) for sSAGE can be obtained using Eq. 4. The signal extrapolated to TE = 0 (see Eq. 10 

below) can be used to estimate and remove T1 effects from ΔR2(t):
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ΔR2(t) = 1
TESE

ln
STESE, pre

STESE
(t) − ln

STE = 0, pre
STE = 0(t) [8]

As in the SAGE implementation, the dual-echo ΔR2
∗(t) and sSAGE ΔR2(t) can be used for 

subsequent DSC-MRI analysis (Section 4.2), while STE = 0 can be used for DCE-MRI 

analysis (Section 4.7). This simplified acquisition may permit shorter SE TEs, while the 

analytical computation of T1-corrected ΔR2
∗(t) and ΔR2(t) was over 450 times faster than the 

nonlinear fitting method (Stokes et al., 2016b). Representative examples of uncorrected 

ΔR2
∗(t) and ΔR2(t) and T1-corrected ΔR2

∗(t) and ΔR2(t) curves are shown in Figure 4.

4.1.4 Estimating concentration curves in arterial voxels using DSC-MRI—While 

intravascular T1 effects are assumed negligible in brain tissue due to the low vascular 

volume fraction, this is not the case when voxels used to measure the AIF are located within 

major vessels. The adverse effects of T1 on AIF estimation and the derived perfusion 

parameters (Calamante et al., 2007) can be mitigated using dual- or multi-echo acquisitions 

(Newton et al., 2016). Additionally, it is well established that the assumption of a linear 

relationship between ΔR2
∗(t) and contrast agent concentration is not reliable. Instead, a 

quadratic relationship should be assumed in order to avoid errors in CBF (Calamante et al., 

2009).

4.1.5 Estimating concentration curves in tissue using DCE-MRI—In a DCE-MRI 

acquisition, the change in CA concentration is assumed to be linearly proportional to the 

change in the longitudinal relaxation rate, ΔR1. Quantifying ΔR1(t) is not as straightforward 

as the logarithmic approach used in DSC-MRI. The pre-contrast T10 values must be first 

determined by a separate T1 mapping acquisition before DCE-MRI. Once pre-contrast T10 

values have been established, T1 changes over time can be found through derivation of Eq. 2 

(Landis et al., 2000):

1
T1(t) = − 1

TRln
1 −

1 − exp( − TR/T1)
1 − cos( ∝ )exp( − TR/T1)

S(t)
S(0)

1 − cos( ∝ )
1 − exp( − TR/T1)

1 − cos( ∝ )exp( − TR/T1)
S(t)
S(0)

[9]

Note here that it is assumed that T2
∗ effects are negligible ( TE ≪ T2

∗). Equations 2 and 9 can 

be used to derive the tissue contrast agent concentration, assuming a known contrast agent 

T1 relaxivity.

4.1.6 T1-weighted signal from multi-echo acquisitions—Dual-echo and SAGE 

acquisitions, in addition to providing ΔR2
∗(t) curves free from T1 effects (Eq. 4), also have 
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the advantage of providing T1-weighted signals (free from T2
∗ effects) by extrapolation to TE 

= 0 (Vonken et al., 1999b):

STE = 0(t) = STE1
(t) ·

STE1
(t)

STE2
(t)

TE1/(TE2 − TE1)

[10]

This T1-weighted signal can be used for DCE-MRI analysis, particularly in multi-echo DSC 

studies (Paulson et al., 2016b; Schmiedeskamp et al., 2013, 2012; Skinner et al., 2014; 

Stokes et al., 2014; Vonken et al., 1999b). For DCE-MRI studies with multiple echoes, 

removal of T2
∗ effects (due to intravascular CA compartmentalization) using Eq. 10 can 

prevent underestimations of the AIF CA concentration (de Bazelaire et al., 2006; Ewing and 

Bagher-Ebadian, 2013).

4.2 DSC-MRI Kinetic modeling

The DSC-MRI hemodynamic parameters are derived from indicator dilution theory (Axel, 

1980; Meier and Zierler, 1954). Assuming the CA is compartmentalized within blood 

vessels, a simple closed, one-compartment model can be applied. The arterial input function, 

CAIF(t), characterizes the system’s input and the residue function, R(t), describes the fraction 

of contrast agent remaining in the vasculature at time t after injection. Note here that the 

residue function is always a positive, decreasing function over time with R(t = 0) = 1. In a 

DSC-MRI study, the signal in each voxel reflects the tissue contrast agent concentration, 

Ct(t), which is related to CAIF(t) and R(t) according to the following convolution equation:

Ct(t) = ρ
H f

CBF∫
0

t
CAIF(t)R(t − τ)dτ [11]

where ρ is the brain tissue density (typically, 1 g/mL tissue) and Hf is the hematocrit factor 

(typically, 0.67) which accounts for the difference in hematocrit between the AIF and the 

capillary system (Rempp et al., 1994). From the MR perfusion dataset, the only two 

measured concentration time curves are CAIF(t) and Ct(t). The residue function is 

determined by deconvolving these two measured time curves, and CBF (mL of blood/100 g 

of tissue/min) is determined from the initial height of the residue function, since R(0) = 1. 

Maps of CBV (mL of blood/100 g of tissue) can be derived using:

CBV =
H f
ρ

∫ −∞
+∞Ctissue(t)dt

∫ −∞
+∞CAIF(t)dt

[12]

Finally, the central volume principle states that the MTT (sec) is simply:
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MTT = CBV
CBF [13]

Representative CBV, CBF and MTT maps are illustrated in Figure 5.

4.3 Capillary transit time heterogeneity and the oxygen extraction fraction

While CBV, CBF, and MTT represent the primary biomarkers of interest for the majority of 

DSC-MRI studies, there is an increased use of advanced kinetic models to estimate sub-

voxel transit time heterogeneity and oxygen extraction fraction. The CA bolus can take 

varying amounts of time to traverse the capillary system depending on its path and velocity, 

and the resulting distribution of transit times, h(t), can be derived from the residue function 

using:

h(t) = − dR(t)
dt [14]

In practice, the CNR of DSC-MRI data is insufficient to enable reliable estimation of h(t) 
and necessitates the use of a parametric estimation of the residue function. Previous studies 

have suggested that gamma-variate modeling of the transit time distribution provides a good 

estimation of the underlying microvasculature (Jespersen and Ostergaard, 2012; Mouridsen 

et al., 2014):

h(τ; α, β) = 1
βαΓ(α)

τα − 1e−τ/β [15]

where α and β are the gamma-variate parameters. With this definition, the MTT can be 

determined as αβ and the standard deviation of the distribution, typically referred to as the 

capillary transit time heterogeneity (CTH), is CTH = β α. Additionally, a delay parameter, δ, 

can be added to the model to account for the delay between the AIF and tissue time curves. 

This model-dependent formulation of h(t), and by extension, R(t), can be substituted into Eq. 

11. A representative map of CTH is illustrated in Figure 5.

It is well established that capillary flow heterogeneity directly influences the efficacy of 

oxygen extraction, and homogenization of flow patterns can increase oxygen extraction 

efficacy (Kuschinsky and Paulson, 1992; Ostergaard et al., 2000). Jespersen et al. derived a 

method to quantify the maximum oxygen extraction fraction (OEFmax) by first modeling the 

oxygen extraction from a single capillary as a function of transit time, Q(τ), and then 

integrating over the distribution of transit times as defined in Eq. 16 (Jespersen and 

Ostergaard, 2012):

OEFmax = ∫
0

∞
h(τ)Q(τ)dτ [16]
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4.4 Computing the residue function

Multiple perfusion biomarkers depend on the determination of the residue function from the 

continuous convolution represented by Eq. 11. Two main approaches exist for 

deconvolution: model-independent and model-dependent methods. The most commonly 

used model-independent approach is the singular value decomposition (SVD) method, 

which was shown to perform better against the early, simple model-dependent approaches 

(Ostergaard et al., 1996c, 1996a). However, more sophisticated model-dependent 

approaches, specifically a Bayesian Estimation model, have been developed and are 

promising especially for advanced DSC-MRI modeling. For these reasons, the SVD method 

and Bayesian estimation will be covered in the following sections.

4.4.1 Model-independent method: Singular Value Decomposition (SVD)—The 

SVD approach necessitates two important steps during the deconvolution process: first, 

discretization of the continuous convolution (Eq. 11) and second, regularization of the 

resulting ill-posed inverse problem. Through simulations and patient data, Sourbron et al. 

rigorously examined the different options for each of these two steps considering the 

presence of delay and dispersion and implementation into a clinical workflow (Sourbron et 

al., 2007b, 2007a). Here, we will introduce the discretization and regularization methods 

most commonly used today along with best practices.

The discrete measurements of the AIF and the tissue time curves are represented as two n-

element vectors where n is the number of measurement points: Ci = Ct(i · Δt) and Ai = 

CAIF(i · Δt) where i = 0, …, n − 1. Once discretization is applied, the continuous convolution 

integral can be written in matrix form (Sourbron et al., 2007c):

C = ARΔt [17]

where matrix C is the tissue concentration time curve, matrix A is the AIF concentration 

time curve and is dependent on the chosen discretization method, matrix R is the residue 

function, and Δt is the sampling interval. The resulting matrix R follows the same notation 

as matrices C and A, Ri = R(i · Δt).

As mentioned, the elements aij in matrix A will depend on the discretization method. The 

complete derivation of matrix A can be found in (Sourbron et al., 2007c). First, the notation 

for elements ak
± is given as follows and ai

± = ai
+ + ai

−:

ai
− =

2ai + ai − 1
6

ai
+ =

2ai + ai + 1
6

[18]

Ostergaard et al. first proposed a singular discretization method (Ostergaard et al., 1996a; an 

extension of this method, the block-circulant method, is a commonly applied discretization 

method (Wu et al., 2003). Wu et al. proposed the block-circulant method to minimize errors 
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that may arise due to potential delay between the AIF and tissue concentration curves 

(explained in detail in the following section). First, both matrices C and A must be zero-

padded to length L, where L ≥ 2n. Then, matrix A is as follows for the block-circulant 

discretization method:

A =

ai j = ai − j
± , (0 < i − j ≤ n − 1)

ai j = ai − j + 2n − 1
± , (i − j ≤ − n)

ai j = 0, elsewhere

[19]

The block-circulant method is advantageous as it provides a means to ensure delay-

invariance, although ringing artifacts can arise due to the zero-padding. These ringing 

artifacts can distort the shape of the residue function, which may not be ideal for some 

advanced modeling techniques (i.e., estimating capillary transit time heterogeneity).

An alternative and promising approach for the AIF discretization is the Volterra method 

where the matrix A is defined as follows (Sourbron et al., 2007c):

A =

ai0 = ai
−, (0 < i ≤ n − 1)

aii = a0
+, (0 < i ≤ n − 1)

ai j = ai − j
± , (1 < i ≤ n − 1, 0 < j < i)

ai j = 0, elsewhere

[20]

Here the diagonal and first column of matrix A will be different than that of the block-

circulant method (Equation 19). It has been shown that this Volterra method provides more 

accurate perfusion calculations.

After discretization, one must then solve a least-squares problem to find the residue 

function:

min
R

‖AR − C‖2 [21]

The inverse of matrix A is typically written by its SVD components:

A−1 = V Diag(1/σ1, 1/σ2, …, 1/σn)UT [22]

Matrices V and UT are the orthogonal and transpose orthogonal matrices that contain the 

singular vectors of A. The diagonal elements are the singular eigenvalues of the matrix. 

Then the solution for the residue function to the least-squares problem in Eq. 22 is:
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R = V Diag(1/σ1, 1/σ2, …, 1/σn)UTC [23]

This is an ill-posed problem that necessitates regularization to determine both a 

mathematical and physiological solution. A common approach is the truncated SVD method, 

which sets eigenvalues to zero below a certain threshold and results in diminished 

oscillations in the residue function, providing a more physiologically reasonable result. This 

threshold may either be enforced a priori as proposed early on by Ostergaard et al. 

(recommended to be 20% of the maximum eigenvalue element) (Ostergaard et al., 1996a) or 

adaptive based on the SNR of the tissue concentration curve (Liu et al., 1999). Both of these 

means are common in DSC-MRI today. However, alternative methods using a standard-form 

Tikhonov regularization (SFTR) have been suggested (Sourbron et al., 2007a).

SFTR is another form of regularization that adds an L2-norm of the solution as a quadratic 

constraint:

minR {‖AR − C‖2
2 + μ2‖R‖2

2} [24]

The regularization parameter μ is determined a priori and determines the weight of the 

regularization term. If μ is set too high, the solution will be over-regularized and the residue 

function may lose all its structure. If μ is set too low, the solution will become under-

regularized and the residue function will be dominated by high-frequency oscillations. To 

determine this regularization parameter, the L-curve criterion (LCC) or generalized cross 

validation (GCV) methods have been suggested and may produce similar results (Sourbron 

et al., 2007a).

In summary, the model-independent approach requires the implementation of SVD to 

calculate the residue function. The SVD approach demands that two decisions are made with 

regards to the AIF discretization and regularization method. The most widely-implemented 

combination today utilizes a block-circulant AIF discretization matrix along with a truncated 

SVD regularization approach. However, more recent publications show promising results for 

perfusion estimation utilizing a Volterra AIF discretization matrix along with a SFTR 

regularization approach (Sourbron et al., 2007a).

4.4.2 Model-dependent method: Bayesian Estimation—Model-dependent methods 

force specific assumptions about the underlying microvasculature by modeling the residue 

function with a specific analytical model. In the simplest form, a decaying exponential 

equation, representative of a well-mixed, one compartment model, is used to model the 

residue function and perfusion parameters can be solved for by using a general nonlinear 

least squared minimization fit. These methods can be sensitive to noise and have been shown 

to unreliable when compared to model-independent methods, and therefore have not been 

widely used (Ostergaard et al., 1996b).

Quarles et al. Page 23

Neuroimage. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In recent years, more complex modeling using Bayesian estimation has shown to be 

successful for advanced DSC-MRI perfusion calculations such as transit time heterogeneity 

(Mouridsen et al., 2006). The Bayesian framework utilizes the analytical representation of 

the transit time distribution (and associated residue function) described in Eq 13. The 

advantage of a Bayesian model is that it incorporates prior knowledge about all model 

parameters by embedding them into a posterior distribution defined by Bayes’ rule. 

Mouridsen et al. demonstrated through simulations and in a stroke patient that a Bayesian 

model resulted in less bias in CBF measurements than when compared to the SVD (singular 

discretization with an eigenvalue threshold of 20% for regularization) (Mouridsen et al., 

2006).

4.5 Vessel size imaging

Simultaneous ΔR2 and ΔR2
∗ measures enable the estimation of several vascular features, 

beyond conventional CBV maps, that can be used to assess abnormal vascular structure 

(Lemasson et al., 2013). The ratio ΔR2
∗/ΔR2 was originally proposed as relative measure of 

the mean vessel diameter (mVD) in a voxel (Dennie et al., 1998). Conversely, Jensen et al 

demonstrated that the index, Q, is a sensitive marker of microvascular density but not vessel 

size (Jensen and Chandra, 2000):

Q =
ΔR2

ΔR2
∗ 2/3 [25]

Finally, quantitative measures of the vessel size index, VSI, can be computed using (Tropes 

et al., 2001):

VSI = 0.425 ADC
γΔχBo

1/2 ΔR2
∗

ΔR2

3/2

, [26]

where ADC is the apparent diffusion coefficient, typically averaged over three directions 

with a diffusion weighted imaging pulse sequence, γ is the gyromagnetic ratio of the 

protons, Δχ is the increased susceptibility difference between blood and the surrounding 

tissue due to the presence of contrast agent, and Bo is the magnetic field strength. In 

practice, Δχ is measured in vitro (Tropes et al., 2001) or estimated in vivo by assuming a 

blood volume fraction in normal tissue (Lemasson et al., 2013; Tropres et al., 2004). A 

representative map of VSI is illustrated in Figure 5.

With Gd-based contrast agents, the peak ΔR2(t) and ΔR2
∗(t) values are used for estimating 

these vascular parameters since the underlying theory assumes high Δχ values. With iron-

oxide nanoparticles steady-state data can be used since they induce a substantially higher 

Δχ. In a pre-clinical validation study comparing VSI, Q and mVD with similar parameters 

derived from histology, VSI provided the highest correlation with histology but all 
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parameters were positively correlated (Lemasson et al., 2013). The quantification, validation 

and translational challenges of absolute vessel size and microvascular density measures have 

been previously reviewed (Troprès et al., 2015). In the context of human breast cancer 

xenografts, a comparison of DSC-MRI and quantitative microCT data revealed that there 

was no difference between the predictive accuracy of absolute and relative indices of 

microvascular morphology. This finding highlights the potential clinical value of relative 

metrics, which could be more amenable to widespread clinical use as they are more easily 

acquired and computed (Kim et al., 2013).

4.6 Vessel architectural imaging

VAI parameters are derived from simultaneously acquired (either single or multi-echo) ΔR2 

and ΔR2
∗ curves. As summarized in Section 4.9.2 leakage correction is applied, as necessary, 

to remove the effects of contrast agent extravasation. The curves are fit to a gamma variate 

function and area normalized to a reference tissue. The vortex curves are generated by 

plotting ΔR2
∗(t) versus ΔR2(t). A number of parameters are then used to characterize the 

voxel-wise vortex curves. First, vortex direction is determined by identifying which time 

profile peaks first. If ΔR2
∗ peaks prior to ΔR2 the vortex direction is clockwise and vice versa. 

A linear fit can be used to determine the length of the principal axis (from the origin to the 

vortex apex) and its magnitude is related to blood volume. The slope of the principal axis 

can also be computed. Finally, using a best fit approach, the area of the vortex is computed 

and can be normalized by the length of the long axis to account for variations in blood 

volume fraction. Several physiologic parameters influence these vortex parameters and their 

biophysical basis is still under investigation (Digernes et al., 2017). Figure 6 shows example 

VAI based vortex curves along with representative parameters in a glioblastoma patient.

4.7 DCE-MRI Kinetic Modeling

The most conventional quantitative analysis of DCE-MRI data relies upon a 

pharmacokinetic, two-compartment model, that consists of blood plasma volume fraction 

(vp) and the extravascular extracellular space (EES) volume fraction (ve). After the CA is 

injected into the blood stream it can reversibly diffuse into the EES with rate constants that 

reflect the contrast agent’s influx and efflux across the vascular endothelium. Building off 

the kinetic models developed by Kety (Kety, 1951), the DCE-MRI community adopted the 

following formalism to describe the contrast agent concentration in the tissue, Ct(t), (P. Tofts 

et al., 1999):

Ct(t) = Ktrans∫
0

t
Cp(t)exp( − kep(T − t))dt, [27]

where Cp(t) is the concentration of agent in blood plasma, Ktrans is the volume transfer 

constant between blood plasma and the EES and kep = Ktrans/ve. A formal derivation of Eq. 

27, which is often termed the Tofts model, is presented elsewhere (Yankeelov and Gore, 

2009). Note that Cp(t) is not the voxel-wise vascular concentration but is taken to be the AIF, 

thus assuming that the vascular contribution to Ct(t) is negligible. To account for tissues with 
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high vascular volume fractions, the term vpCp(t) can be added to the right side of Eq. 27, and 

is typically termed the extended Tofts model. Two compartment models that account for 

both arterial delivery and potentially dispersed or unique voxel-wise vascular concentration 

profiles have been described (Brix et al., 2004, 1999). Such models enable the 

characterization of both regional blood flow and the vascular permeability. For an in-depth 

of description of the many types of compartmental models applied to DCE-MRI data the 

reader is referred to this review (Sourbron and Buckley, 2012). After a model has been 

selected, a nonlinear least squares fit is used to estimate the corresponding kinetic 

parameters. A representative map of Ktrans is illustrated in Figure 5.

The heterogeneity of contrast profiles in disease and its impact on the suitability of applying 

a single DCE-MRI model to every voxel is well-appreciated. For example, the application of 

the Tofts model to voxels in the brain that exhibit no contrast agent extravasation would lead 

to spurious kinetic parameter estimates. This has spurred the development of nested-

modeling strategies that attempt to identify the most appropriate, and simplest, model for a 

given characteristic concentration profile (Chwang et al., 2014; Dehkordi et al., 2017; Ewing 

and Bagher-Ebadian, 2013). The statistical F-test is used to determine whether models of 

increasing complexity improve curve fitting. In brain tumor patients, three versions of the 

extended Tofts model, representing tissues with 1) no contrast leakage, 2) unidirectional 

leakage and 3) bidirectional leakage, have been found to sufficiently fit the full range of 

DCE-MRI data encountered across normal and tumor bearing tissue.

4.8 Relative versus Absolute Quantification

Based on the initial assumptions outlined above, it is already noticeable that achieving 

absolute quantification is difficult. Typically, the hematocrit and proton density constants in 

Eq. 11 are assumed to be of literature values or often ignored (set to unity) during post-

processing. However, it is known that these factors can vary among patients, different 

diseases, and differently during treatment response (Metry et al., 1999; Ostergaard et al., 

1996a). Furthermore, in DSC experiments the contrast agent relaxivity is unknown and, as 

mentioned, set to unity. In addition, potential issues with arterial abnormalities and BBB 

breakdown may affect the signal time curves further confounding absolute quantification. 

For these reasons, relative parameters are more commonly reported. In DSC-MRI, relative 

quantification of perfusion parameters is normalized to reference regions, typically 

contralateral normal appearing white matter (NAWM).

Semi-quantitative perfusion parameters have also shown to be useful for both DSC and DCE 

acquisitions and do not require pharmacokinetic modeling. Common parameters for 

assessing stroke disease are time-to-maximum (Tmax), time-to-peak (TTP) and initial area 

under the curve (iAUC) (Calamante et al., 2010; Evelhoch, 1999; Sobesky et al., 2004). For 

DSC MRI, percent signal recovery (PSR) has also shown utility in differentiate of brain 

tumor types (Mangla et al., 2011).
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4.9 Potential issues affecting quantification

Several factors may confound quantification of perfusion parameters during both DSC- and 

DCE-MRI analysis. When these factors are neglected, a scaling error is typically introduced 

into the perfusion estimations conflating clinical decision-making.

4.9.1 AIF considerations—One of the leading sources of error in quantifying perfusion 

is the direct result of the determination of the AIF during analysis, specifically where and 

how the AIF is determined. Where the AIF is determined is dictated by its location relative 

to the tissue concentration curve, and can either be classified as a global or regional AIF. The 

most common method uses a global AIF, typically located in the middle branch of the 

cerebral artery (MCA), which implies that a single AIF measurement is used voxel-wise 

over the entire brain. A global AIF can be straightforward to define; however, it is not the 

true input function to the linear time-invariant system used for modeling. Consequently, AIF 

delay and dispersion may occur and has been shown to introduce substantial errors in CBF 

and MTT (Calamante, 2013; Calamante et al., 2006; Ferreira et al., 2010; Wu et al., 2003). 

Delay is defined as the delay in arrival time between the AIF and tissue concentration curve, 

whereas dispersion is the consequence of the contrast bolus becoming dispersed over time. 

In general, delay effects can easily be accounted for when the deconvolution is computed 

either by the SVD (i.e. – by choosing AIF discretization methods that have been shown to be 

insensitive to delay such as both methods described in this review) or Bayesian (i.e. – by 

incorporating a delay parameter into the posterior distribution used during modeling). On the 

contrary, dispersion effects are not that simple to account for when a global AIF is used. 

Dispersion effects may be mitigated by introducing a vasculature model, however additional 

errors can easily arise in model-dependent analysis. Instead, implementing multiple regional 

AIFs, typically located in small branched arteries, during analysis might be a better solution 

especially for stroke patients where severe dispersion occurs due to stenosis and occlusions 

(Willats et al., 2011). Recent publications show promising results when applying a novel 

cerebral vascular model based on fluid dynamics to the branching arteries to compute 

multiple regional AIFs (Nejad-Davarani et al., 2017a, 2017b).

How the AIF is determined refers to the method used to locate the AIF. Typically, the global 

AIF is manually selected in (or in voxels adjacent to) either the internal carotid artery or the 

middle cerebral artery; despite being a simple method, it can be time consuming and user-

dependent rendering the process non-reproducible. Furthermore, when local AIFs are 

warranted, such in stroke patients, a manual selection of multiple local AIFs is unreasonable. 

Much work has been done to robustly determine the AIF using computer algorithms such as 

Monte Carlo blind estimation or clustering algorithms (Fluckiger et al., 2010; Schabel et al., 

2010; Shi et al., 2014). Although these automatic algorithms improve quantitative perfusion 

analysis for a single-site, single measurement time-point study, variations in AIF 

determination methods across multicenter sites may still result in variability with analysis 

(Huang et al., 2016). For DCE-MRI analysis, variations in AIF methods across 9 imaging 

sites caused higher variations in Ktrans and ve, however, kep was shown to be less sensitive to 

variations in AIF. Their results suggest that a fixed AIF determination method and/or kep 

might be more ideal for multicenter clinical trials, and for longitudinal multicenter clinical 

trials the percent changes, instead of absolute values, in parameters should be reported.
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4.9.2 BBB Breakdown—CA extravasation creates both T1 and T2
∗ leakage effects (as 

described in Section 2.5.2) which is problematic for analysis since the pharmacokinetic 

modeling assumes that the CA remains intravascular. These leakage effects can artificially 

increase (due to T1 effects) or decrease (due to T2
∗ effects) post-contrast DSC signal intensity 

time curves, and the degree of influence depends on the pulse sequence parameters, preload 

dose, CA kinetics, and the underlying tissue microstructure (Bell et al., 2017b; Leu et al., 

2016; Quarles et al., 2009; Semmineh et al., 2015). During post-processing, these leakage 

effects are mitigated by applying a model-based leakage-correction algorithm (Bjornerud et 

al., 2011; Boxerman et al., 2006; Donahue et al., 2000; Leu et al., 2016; Quarles et al., 2005; 

Stokes et al., 2016a). The most commonly used, and recommended leakage-correction 

strategy, is to employ contrast agent preload dosing and the Boxerman-Schmainda-Weisskoff 

(BSW) approach, which assumes unidirectional CA efflux and uses DSC-MRI curves from a 

“whole-brain non-enhancing” region to estimate and remove the T1- or T2
∗-based leakage 

effects from the data measured within the tumor (Boxerman et al., 2006). To avoid the use of 

preloads, dual-echo and multi-echo acquisitions are currently being evaluated in patients as 

described in Section 3.1.3. Since these methods eliminate T1 effects, the acquired data only 

requires correction of T2
∗ leakage effects (Stokes et al., 2016a). The relative magnitude of T1 

and T2
∗ leakage effects depends on the pulse sequence parameters and dosing schemes used 

to collect the data, which, in turn, influences the success of postprocessing-based leakage 

correction. Given the difficulty of comparing the accuracy of different acquisition and post-

processing methods in an individual patient, recent efforts have turned to simulations (Leu et 

al., 2016) and the development of patient data driven digital reference objects (DRO) 

(Semmineh et al., 2017) in order to identify the optimal DSC-MRI acquisition and analysis 

protocols. To date, these efforts reveal that the most accurate and precise approach for DSC-

MRI at 3T, when using the recent ASFNR recommendations (Welker et al., 2015). requires 

the use of a full dose preload and a full dose bolus injection.

5 Applications of DSC- and DCE-MRI

For over two decades investigators have leveraged DSC- and DCE-MRI to non-invasively 

interrogate vascular structure, function and integrity of neurologic disorders, stroke and 

brain tumors. Conventional DSC- and DCE-MRI are increasingly employed in clinical trials 

in order to assess early, and more specific, response to therapy. In this section, we will limit 

our representative examples to advanced applications, specifically those using updated pulse 

sequences and expanded biophysical and kinetic models that enable the derivation of novel 

biomarkers of cerebral structure and function. Table 2 summarizes the recommended use of 

conventional DSC- and DCE-MRI methodology across a range of neuropathologies, 

potential challenges that need to be considered and advanced hemodynamic metrics that are 

under investigation.

5.1 Brain tumors

5.1.1 DSC-MRI in brain tumors—In the context of brain tumors, DSC-MRI based 

measures of CBV reliably detect the abnormal vascular characteristics exhibited in 
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glioblastoma (Aronen et al., 1994; Donahue et al., 2000; Hakyemez et al., 2005; Schmainda 

et al., 2004), exhibit high sensitivity to treatment induced changes (Boxerman et al., 2017; 

Fuss et al., 2001; Schmainda et al., 2015b; Weber et al., 2004) and are highly repeatable 

(Prah et al., 2015).

Recent efforts have sought to leverage the sensitivity of SE and GRE acquisitions to vessel 

microstructure and function as well as the insensitivity of multi-echo acquisitions to 

confounding T1 effects. As described in Sections 2.5.3 and 4.6 (and illustrated in Fig. 2), 

VAI relies on characterizing temporal shifts in ΔR2(t) and ΔR2
∗(t) data in order to detect 

disease related changes in vascular hemodynamics, oxygen saturation and vessel 

morphology. Emblem et al recently acquired serial VAI data in recurrent glioblastoma 

patients receiving anti-angiogenic therapy with cediranib (Emblem et al., 2013). Of the VAI 

parameters, the vortex direction was best able to differentiate between responding and non-

responding patients and predict progression free survival, as illustrated in Figure 4. In 

responding patients, the fraction of tumor voxels with a clockwise vortex direction increased 

with therapy, whereas non-responders exhibited a decrease.

As would be expected, unregulated tumor angiogenesis gives rise to sub-voxel capillary 

transit time and flow heterogeneity due to, for example, increased vessel tortuosity, regional 

edema, shunts and thrombosis. DSC-MRI studies of CTH in brain tumors, such as that 

shown in Fig. 4, confirm this heterogeneity (Ostergaard et al., 2013; Quarles and Schmainda, 

2007)(Ostergaard et al., 2013; Quarles and Schmainda, 2007; Tietze et al., 2015a). Anti-

angiogenic therapy has also been shown to normalize transit time heterogeneity in murine 

gliosarcoma models (Quarles and Schmainda, 2007). Recently, the potential of CTH, 

quantified as the standard deviation of the transit time distribution, to predict tumor grade 

was evaluated (Tietze et al., 2015a). The combination of CTH and CBV data provided the 

best delineation of tumor grade (AUC = 0.88), as compared to CBV alone (AUC = 0.78).

5.1.2 DCE-MRI in brain tumors—DCE-MRI provides a quantitative assessment of the 

breakdown of the BBB that accompanies most aggressive brain tumors. Similar to the use of 

DSC-MRI, kinetic parameters from DCE-MRI differentiate between tumor types (e.g. low 

versus high grade glioblastoma and primary central nervous system lymphoma) (Takashi 

Abe et al., 2015; Li et al., 2015), prognostication (Dehkordi et al., 2017) and prediction of 

molecular status (Choi et al., 2017).

A recently developed strategy for DCE-MRI holds the potential to radically shift its 

structural sensitivity into the realm of metabolic neuroimaging (Rooney et al., 2015). This 

approach relies on detecting water exchange across cellular membranes. The rate of water 

exchange has been shown to be proportional to plasma membrane Na+,K+- ATPase turnover, 

hypothesized to be due to active transmembrane water cycling (Rooney et al., 2015; 

Springer et al., 2014). Though not covered herein the influence of water exchange on DCE-

MRI measurements is well-established and acquisition and analysis strategies have been 

developed to quantify such effects (Bains et al., 2010; Landis et al., 2000; Lee and Springer, 

2003). In glioblastoma patients, the water exchange rates were significantly diminished and 

is postulated as a potential marker of tumor hypoxia. If validated, this reported new 
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application of DCE-MRI would provide a clinically practical approach to identify abnormal 

tumor metabolism.

5.2 Acute Stroke

5.2.1 DSC-MRI in Acute Stroke—Perfusion imaging, with either MRI or CT, continues 

to be heavily utilized in the context of acute stroke imaging, with the primary goal of 

identifying patients who are candidates for intravenous tissue plasminogen activator (tPA) or 

endovascular therapy in order to restore blood flow. Automated analysis tools, such as 

RAPID, are available and are being used in clinical trials (Albers et al., 2017; Lansberg et 

al., 2011). A recent meta-analysis, that included 994 patients with perfusion-based treatment 

and 1819 without perfusion, found that perfusion imaging improves the identification of 

patients who will benefit from combined intravenous tPA and endovascular thrombectomy. 

Using this approach patients had nearly twice the probability of achieving independent 

functional status at 3 months as those without perfusion scans (Ryu et al., 2016).

Given the importance of both perfusion and oxygen extraction on identifying the ischemic 

penumbra there is an increased interest in using advanced kinetic modeling of DSC-MRI 

data to derive markers of flow heterogeneity and OEFmax. In a cohort of seven patients with 

anterior circulation strokes, model-dependent (Section 4.4.2) and model-independent (SVD) 

algorithms were used to compute conventional DSC-MRI perfusion metrics as well as CTH 

and OEFmax (Mouridsen et al., 2014). Final infarct volumes were determined using T2 

FLAIR follow up images that were acquired 1 week to 1 month after the perfusion study. As 

illustrated in Figure 8, the MTT, CTH and OEFmax maps, determined with model-dependent 

methods, were best able to regionally predict the final infarct location and volume.

5.2.2 DCE-MRI in Acute Stroke—Acute ischemic stroke may disrupt the BBB and is 

generally considered a poor prognostic indicator as it may lead to edema and hemorrhagic 

transformation (Sandoval and Witt, 2008). DCE-MRI was recently used to characterize the 

temporal evolution of BBB status after acute ischemic stroke in 42 patients that did not 

undergo hemorrhagic transformation (Merali et al., 2017). Prolonged BBB disruption (> 48 

hours) was detected in all patients and the vascular permeability was highest in the acute 

phase (6 – 48 hours) as compared to hyperacute (<6 hours) and the subacute (> 48 hours). 

The sensitivity of DCE-MRI to BBB degeneration, such as seen in this study, makes it 

valuable tool with which to select patients for and monitor treatments that attempt to 

stabilize the BBB.

5.3 Aging

Diseases of aging are often associated with deleterious vascular changes, including impaired 

cerebral microvasculature and increased BBB permeability. In Alzheimer’s disease (AD) 

and other forms of dementia, these changes are thought to be contributing factors in the 

pathological cascade that leads to cognitive decline.

5.3.1 DSC-MRI in aging—Cerebral hypoperfusion occurs early in the AD trajectory, 

preceding both structural brain changes and clinical symptoms (Binnewijzend et al., 2016; 

Bozzao et al., 2001; Chao et al., 2010; Johnson et al., 2005; Maas et al., 1997; Mattia et al., 
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2003). While hypoperfusion can be measured using standard DSC-MRI, advanced DSC-

MRI methods may extend our understanding of cerebrovascular age-related changes and 

provide more sensitive biomarkers of pathology-specific vascular changes. Two advanced 

biomarkers obtained from DSC-MRI will be discussed here – microvessel density and 

capillary transit time heterogeneity (CTH).

AD is associated with changes in the vascular architecture, including the density and 

morphology of cerebral blood vessels. Microvessel density can be assessed using the 

relaxation shift index Q from GRE and SE acquisitions (Tropes et al., 2001; Wu et al., 

2004). In a preclinical study by Ielacqua et al. (2015), DSC-MRI was performed with an 

iron-oxide CA, and the Q-index was obtained from high-resolution maps of ΔR2
∗ and 

ΔR2 (Q ≡ ΔR2/(ΔR2
∗)2/3). The Q-index was validated as a biomarker of microvessel density 

(using histopathological CD31 vessel staining) and was found to be decreased in a 

transgenic amyloid mouse model compared to control mice (Ielacqua et al., 2015). This 

method could be a novel biomarker for amyloid-related microvascular changes and could be 

acquired clinically using a multi-echo DSC-MRI study.

In addition to alterations in microvessel density, the capillary morphology is also altered in 

the development of AD. Cerebral metabolism is impacted by both CBF and the capillary 

transit time heterogeneity (CTH) (Østergaard et al., 2013). Capillary dysfunction limits the 

maximum achievable O2 extraction fraction and could contribute significantly to AD 

pathology. CTH can be assessed using advanced DSC-MRI methods (Section 4.3) 

(Mouridsen et al., 2014). Using sequential GRE and SE DSC-MRI, Nielsen et al. (2017) 

found that hypoperfusion (reduced CBF and CBV) and concomitant elevated MTT and CTH 

were associated with declines in cognitive function and regional brain atrophy (Nielsen et 

al., 2017). A strong negative correlation was found between changes over six months in 

subjects brief cognitive status examination and their change CTH. Relative CTH (= CTH/

MTT) has also been shown to correlate with both white matter hyperintensities and 

symptom severity (Eskildsen et al., 2017). Overall, metrics that incorporate capillary flow 

information may provide additional prognostic information on cerebral microcirculatory 

insufficiencies in AD.

5.3.2 DCE-MRI in aging—In addition to microvascular architectural changes, AD 

pathology has been associated with increases in BBB permeability (Farrall and Wardlaw, 

2009a; Wang et al., 2006a). Using DCE-MRI, several studies have demonstrated regional 

variations in BBB disruption that are consistent with known AD-vulnerable regions. In one 

study, BBB permeability was elevated in the hippocampus – a region critical to learning and 

memory – in patients with mild cognitive impairment compared to healthy controls, while 

the cerebellum was not impacted (Wang et al., 2006b). BBB permeability has been shown to 

increase with normal aging, with further increases observed in patients with AD (Farrall and 

Wardlaw, 2009b). Conversely, another study demonstrated that BBB permeability may not 

be a global brain phenomenon in patients with AD, with no significant vascular permeability 

differences between AD patients and healthy controls across several white and gray matter 

regions (though altered temporal kinetics were observed) (Starr et al., 2009).
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Given the subtle CA extravasation in the aging brain, even in AD pathology, the DCE-MRI 

protocol for assessing BBB disruption must be adapted for high sensitivity and prolonged 

time-scales. Using an advanced high-resolution (both spatial and temporal) DCE-MRI 

protocol, Montagne recently showed that BBB disruption occurs in the hippocampus early in 

AD pathogenesis and may be implicated in AD-related cognitive decline (Montagne et al., 

2015). Haar et al. (2016) utilized a dual-time resolution DCE-MRI consisting of fast and 

slow pulse sequences to characterize both initial vascular arrival and slower CA tissue 

extravasation/wash-out, respectively (Haar et al., 2016). Using this method, they found 

significantly higher BBB permeability in early AD patients than normal controls in multiple 

brain regions and that this elevated BBB permeability was associated with poorer cognitive 

test scores. Overall, these advanced methods may permit more sensitive assessment of BBB 

permeability associated with normal and pathological aging processes.

5.4 Multiple sclerosis (MS)

Multiple sclerosis (MS) is characterized by neuroinflammation, demyelination, gliosis, 

axonal degeneration, and neuronal loss (Trapp and Nave, 2008). Although the precise 

mechanism of MS is unknown, vascular inflammation is known to play a critical role in the 

early pathogenesis (Bester et al., 2015a; Gaitan et al., 2011a; Ge et al., 2005a; Wuerfel et al., 

2004). Chronic widespread neuro-inflammation is consistently accompanied by 

hemodynamic changes, and ongoing inflammation in active MS lesions leads to BBB 

disruption.

5.4.1 DSC-MRI in MS—Numerous studies have shown both increased and decreased 

locoregional perfusion across the brain in patients with MS, reflecting the complex 

spatiotemporal dynamics of MS disease progression. More specifically, standard DSC-MRI 

has been used to demonstrate both normal-appearing white matter (NAWM) hypoperfusion 

(Ge et al., 2005b; Inglese et al., 2008a; Sowa et al., 2015) and hyperperfusion (Bester et al., 

2015b), where the latter may indicate imminent focal WM lesion formation. GM perfusion 

is also modulated by MS pathology, with deep GM and cortical lesions showing reduced 

perfusion compared to NAGM (Inglese et al., 2007a; Peruzzo et al., 2013). Recent studies 

have suggested that reduced perfusion is indicative of persistent low-grade inflammation, 

metabolic or vascular dysfunction, neuronal loss, or even primary ischemia; increased 

perfusion may indicate a high-inflammatory phase or increased metabolic activity. 

Moreover, unlike conventional MRI, regional perfusion changes have been found to 

correlate with clinical disability (Adhya et al., 2006; Bester et al., 2015b) and 

neuropsychological dysfunction (Francis et al., 2013; Inglese et al., 2008b, 2007b). Overall, 

these studies suggest that DSC-MRI biomarkers may ultimately play a critical role in 

revealing the underlying pathophysiology and etiology of MS.

5.4.2 DCE-MRI in MS—One of the hallmark radiological indicators for MS is the 

formation of contrast-enhancing lesions, which are observed on T1-weighted imaging. By 

exploiting the dynamic nature of contrast enhancement, DCE-MRI may be able to better 

characterize the spatiotemporal enhancements patterns in active inflammatory MS lesions. 

Several advanced imaging acquisitions have been developed to increase the sensitivity to 

BBB permeability occurring over long time-frame. Several studies have developed 
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acquisitions with varying temporal resolution to characterize both the rapid perfusion and 

slow extravasation kinetics (Jelescu et al., 2011; Larsson et al., 1990). Rapid T1-mapping for 

DCE-MRI using TAPIR (Section 3.2.2) was shown to be highly sensitive to subtle BBB 

vascular permeability (Taheri et al., 2011). Another advanced method demonstrated 

simultaneous characterization of perfusion and BBB permeability using a combination of 

view-sharing and parallel imaging to improve both spatial and temporal resolution (Ingrisch 

et al., 2012). Given the importance of the enhancement pattern, advanced DCE-MRI 

analysis has been implemented to characterize enhancement heterogeneity parameters, 

including magnitude, rate, shape (ring-like or nodular), and dynamics (centrifugal or 

centripetal) (Gaitan et al., 2011b; Shinohara et al., 2011). By optimizing both the pulse 

sequence parameters and analysis model, Cramer and Larsson (2014) showed that long scan 

durations (> 15 min) and high temporal resolution (1.25 s) provided sufficient sensitivity to 

characterize BBB permeability as low as 0.1 mL/100 g/min (Cramer and Larsson, 2014). 

Overall, these advanced DCE-MRI acquisitions and analysis methods may provide a more 

complete picture of the complex neuropathological processes associated with inflammatory 

phases of MS.

6 Outlook

In general, the most exciting acquisition-related advances on the frontier of DSC- and DCE-

MRI are the use of multiple echo acquisitions, improved k-space sampling strategies, and the 

use of multi-band to improve spatial and/or temporal resolution. The motivations behind the 

development of these advanced acquisitions are to provide improved estimation of 

hemodynamic parameters and to obtain new physiologically-relevant parameters. For 

example, multi-echo SAGE sequences provide both macro- and microvascular perfusion 

(with correction for CA leakage effects), vascular permeability, and vessel architectural 

properties (Schmiedeskamp et al., 2013, 2012; Skinner et al., 2014; Stokes et al., 2016b; 

Stokes and Quarles, 2016). Given the importance of MR angiography (MRA) and 

venography in many applications (such as stroke), the development of novel multi-echo 

sequences with strategic parameter selection could enable the simultaneous derivation of 

both MRA and perfusion-based vascular parameters (Chen et al., 2018b, 2018a; Ye et al., 

2013). Recent developments in k-space sampling strategies include the use of non-Cartesian 

sampling strategies, such as spiral (Paulson et al., 2016b; Schmainda et al., 2015a) and radial 

(Jonathan et al., 2013; Rossi Espagnet et al., 2015) trajectories, to circumvent the known 

image distortion and signal artifacts associated with EPI trajectories. Additionally, the ability 

to combine acceleration strategies (such as parallel imaging, partial Fourier techniques, 

compressed sensing, and view-sharing) has the potential to significantly improve the spatial 

and/or temporal resolution. Similarly, the implementation of multiband represents a unique 

opportunity to improve both spatial and temporal resolution with minimal SNR penalty and 

similar parameter estimation (Chakhoyan et al., 2018; Eichner et al., 2014). The challenges 

remaining for clinical adoption of these advanced pulse sequences includes the 

implementation and standardization of these acquisitions across MR platforms and the 

development of FDA-approved analysis tools to generate the numerous relevant 

hemodynamic parameters.

Quarles et al. Page 33

Neuroimage. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Over the past decade, MR Fingerprinting has emerged as a highly promising, quantitative 

imaging strategy to simultaneously characterize multiple MR relaxation properties of tissue 

(e.g. T1, T2). In order to accomplish this, a dictionary of “fingerprints” is developed by 

computationally modeling the MR signal evolution across a range of parameters (e.g. TR, 

flip angle). Such data is then matched to in vivo MRI data, acquired with the same 

parameters, in order to identify the voxel-wise relaxation properties. Recently, this strategy 

has been modified for application to steady-state susceptibility-contrast agent based MRI 

data acquired with multi-gradient and spin echo data, an approach termed MR vascular 

fingerprinting (Christen et al., 2014; Lemasson et al., 2016). As proposed, it provides 

measures of blood volume, vessel size and blood oxygenation. This unique approach 

represents a major shift in how vascular parameters can be quantified since it involves 

biophysical modeling of the underlying tissue-specific susceptibility-based contrast 

mechanisms, multi-echo pulse sequences and correlation, rather than kinetic analysis for 

parameter estimation. This approach has yet to be extended to serial acquisitions during CA 

passage, like that acquired with SAGE, but a similar strategy could be developed and 

potentially provide a more comprehensive characterization of tissue microstructure and 

function (e.g. quantitative measures of vascular tortuosity, vascular phenotyping, oxygen 

extraction) than is achievable with traditional kinetic analysis. The integration of temporal 

fingerprinting with SAGE would require the generation of sophisticated biophysical models 

of MR contrast mechanisms with heterogeneous vascular architecture and CA kinetics (N. 

Semmineh et al., 2014), but could provide new opportunities for biomarker development.

For conventional DSC-MRI metrics (e.g. CBV, CBF) the field has sufficiently matured to 

enable standardization of acquisition and post-processing methods. For DCE-MRI, such 

consensus recommendations already exist (“DCE MRI Quantification Profile,” 2012). While 

the ASFNR recommendations provide guidelines for DSC-MRI acquisition and dosing 

protocols in brain tumors (Welker et al., 2015), there has yet to be a consensus protocol on 

how to analyze this data nor has there been multi-site trials to validate their clinical utility, 

similar to the evaluation of RAPID software in acute stroke (Lansberg et al., 2011; Warach 

et al., 2016). Given the challenges of optimizing these protocols over all parameter space in 

clinical cohorts, digital reference objects have been developed for broad-scale parameter 

testing and may ultimately drive protocol development (Bosca and Jackson, 2016; 

Semmineh et al., 2017; Zhu et al., 2015).

To begin to address this limitation, members of the National Cancer Institute’s Quantitative 

Imaging Network (QIN) recently performed a multi-site, multi-platform analyses (7 sites, 20 

different analysis methods) of a shared database of DSC-MRI data in low- and high-grade 

patients (Schmainda et al., 2018). This analysis revealed excellent cross-site and cross-

platform agreement with more than 90% of entries exhibiting concordance correlation 

coefficients greater than 0.8. This analysis confirms that multi-site consistency is a clinically 

viable goal and could be further enhanced through adoption of common analysis algorithms. 

In addition to cross-site protocol uniformity, there remains a need in the field for the 

identification of automated analysis tools that reduce interpatient and inter-study variability. 

The application of image standardization, which is an approach that translates imaging data 

to a consistent scale, to DSC-MRI measures of rCBV has been shown to increase 

repeatability in glioma patients (Prah et al., 2015). The development, validation, and wide 
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spread adoption of such automated analysis tools could greatly facilitate the continued 

incorporation of DSC- and DCE-MRI into clinical practice.

Across a range of pathologies, contrast enhanced MRI methods have a strong track record of 

providing valuable and actionable clinic readouts that support their increased use in clinical 

practice and in the context of clinical trials. The maturation of these methods is the product 

of continued investigative efforts into their biophysical basis, optimized acquisition 

strategies, and automated and rigorous analysis algorithms. As highlighted in this article, 

there remains enormous developmental potential on each of these fronts that will only serve 

to further advance the clinical integration of DSC-MRI and DCE-MRI.
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Abbreviations

CA contrast agent

DSC dynamic susceptibility contrast

DCE dynamic contrast enhanced

CBV cerebral blood volume

CBF cerebral blood flow

MTT mean transit time

BBB blood brain barrier

SE spin echo SE

GRE gradient echo

VSI vessel size imaging

VAI vessel architectural imaging

TE short echo times

TR repetition time

SAGE spin and gradient echo

CNR contrast to noise ratio

AIF arterial input function

EPI echo planar imaging

Quarles et al. Page 35

Neuroimage. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PRESTO principles of echo shifting with a train of observations

PERMEATE perfusion with multiple echoes and temporal enhancement

SENSE sensitivity encoding

GRAPPA generalized autocalibrating partial parallel acquisition

SMS simultaneous multi-slice

GRASP golden-angle radial sparse parallel

sSAGE simplified SAGE

SPICE spiral perfusion imaging with consecutive echoes

PVE partial volume effects

VFA variable flip angle

LL look-locker

SPGR spoiled gradient-echo sequences

CTH capillary transit time heterogeneity

ADC apparent diffusion coefficient

NAWM normal appearing white matter

Tmax time-to-maximum

TTP time-to-peak

iAUC initial area under the curve

PSR percent signal recovery

ROI region of interest

Mathematical symbols

T1 spin-lattice relaxation time

T2 spin-spin relaxation time

T2
∗ effective T2 reflecting magnetic field inhomogeneities

R2
∗ T2

∗ relaxation rate

R2 T2 relaxation rate

R1 T1 relaxation rate

r1 contrast agent T1 relaxivity
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r2 contrast agent T2 relaxivity

r2
∗ contrast agent T2

∗ relaxivity

ΔR2
∗ the contrast agent induced change in R2

∗ from baseline

ΔR2 the contrast agent induced change in R2 from baseline

ΔR1 the contrast agent induced change in R1 from baseline

TE pulse sequence echo time

TR pulse sequence repetition time

∝ pulse sequence flip angle

Bo static magnetic field strength

STEx MRI signal from a multi-echo sequence for TE = x

Ct(t) tissue contrast agent concentration time profile

CAIF(t) arterial input function

R(t) residue function

h(t) transport function

ρ brain tissue density

Hf hematocrit

A arterial input function matrix

R residue function matrix

C tissue concentration time curve

S0
I baseline signal intensity of a SAGE acquisition before the 180° pulse

S0
II baseline signal intensity of a SAGE acquisition after the 180° pulse

δ parameter to quantify slice-profile mismatch in a SAGE dataset

γ gyromagnetic ratio of the protons

Δχ susceptibility difference

Q vessel density

VSI vessel size index

mVD mean vessel diameter

Quarles et al. Page 37

Neuroimage. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ktrans contrast agent volume transfer constant between blood plasma and 

the extravascular extracellular space

ve volume fraction of the extravascular extracellular space
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Highlights

• The biophysical basis underlying advanced DCE- and DSC-MRI methods are 

reviewed.

• Next generation acquisition protocols incorporate accelerated and multi-

contrast techniques.

• Synergistic integration of acquisition and analysis methods yields new 

biomarkers.

• Representative DSC/DCE-MRI studies of neuropathologies are shown.
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Figure 1. 
Illustration of CA distribution within tissue, its interaction with water protons (A) and the 

induced T1-weighted (B) or T2
∗-weighted (C) signal changes. When the blood brain barrier is 

intact, as illustrated in the lower blood vessel, the CA only has direct access to intravascular 

water (red arrow) so that the associated change in the effective tissue T1 is small. However, 

if the blood brain barrier is disrupted (top blood vessel, black triangles) the CA distribution 

and microscopic interaction with water within the extravascular space (red arrow) 

substantially decreases tissue T1 and increases a T1-weighted signal (B), like that used for 

DCE-MRI. The compartmentalization of CA in blood (lower blood vessel) or in the 

extravascular extracellular space (top blood vessel) gives rise to mesoscopic magnetic field 

gradients surrounding these compartments (as denoted by the asterisks). The diffusion of 

water through these fields (small black arrows) decreases T2
∗ and a T2

∗-weighted signal (C), 

like that used for DSC-MRI.
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Figure 2. 
Representative DSC-MRI data in a recurrent glioblastoma patient. Example EPI images (A) 
and time series using a spin and gradient echo (SAGE) acquisition approach that acquires 

two GREs (TE1 and TE2), two asymmetric spin echoes (TE3 and TE4) and a SE (TE5). 

Each echo time yields a dynamic signal time course as shown in normal appearing white 

matter (NAWM) (B) and enhancing (C) ROIs. TE1 – TE5 = 8.3, 24, 50, 67, and 83 ms, 

respectively.
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Figure 3. 
The SPICE pulse sequence employing dual GRE spiral-out trajectories (A). Multi-slice 

images from the first and second TE (top and bottom, respectively) (B). Analysis of the 

acquired DSC-MRI data in a gliobastoma patient yielding maps of rCBV (C) and Ktrans (D). 
Figure adapted with permission from (Paulson et al., 2016b).
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Figure 4. 

The spin and gradient echo DSC-MRI signals shown in Figure 2 were used to compute R2
∗(t)

(and ΔR2(t)) curves for each of the five echoes in NAWM (A) and enhancing tumor (B) 
ROIs. Note that the signals for the lower echo times are influenced by T1 effects (negative 

R2
∗(t)). By leveraging multiple echoes, the ΔR2

∗ and ΔR2 curves can be corrected for T1 

effects as shown in NAWM (C) and enhancing tumor (D) ROIs. TE1 – TE5 = 8.3, 24, 50, 

67, and 83 ms, respectively.
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Figure 5. 
Example spin and gradient echo (SAGE) based DSC-MRI maps in the glioblastoma patient 

data highlighted in Figs. 2 and 3 along with the corresponding post-contrast T1-weighted 

and fluid-attenuated inversion recovery (FLAIR). As would be expected, the tumor CBV, 

CBF, MTT and VSI values are higher than those found in contralateral NAWM. Also note 

the differences between GRE and SE maps within the tumor, particular for CBF and MTT. 

The Ktrans and CTH maps also exhibit regional heterogeneity within the tumor. Such 

differences highlight the unique and complementary nature of multi-echo SAGE 

hemodynamic and vascular sensitivity. For clarity, relative parameter maps are shown using 

the illustrated colorbar.
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Figure 6. 
Vessel architectural imaging parameters derived from the same recurrent glioblastoma 

patient data shown in Figures 2 – 4. Post-contrast T1 weighted image and vessel vortex 

direction and vortex area maps are shown in row (A) and example vortex plots for the two 

directions are plotted in (B). In this patient, the majority of voxels (77%) exhibited a 

clockwise vortex direction, which reflects a normal vascular architectural phenotype 

(Emblem et al., 2013). Vortex area maps were highly dissimilar from any of the parameter 

plots in Figure 4, potentially highlighting their unique sensitivity.
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Figure 7. 
Assessment of anti-angiogenic therapy in recurrent glioblastoma patients using vessel 

architectural imaging. Post-contrast T1- weighted images (A) and maps of vortex direction 

(B) before (left) and 28 days after (right) therapy onset. (C) Progression free survival curves 

in responding (median = 153 days) and non-responding patients (median = 64 days) that 

were identified based on vortex direction. Figure adapted with permission from (Emblem et 

al., 2013).
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Figure 8. 
Example perfusion data acquired in stroke patients, including oxygen extraction fraction 

(OEFmax, unitless) and capillary transit time heterogeneity (CTH, sec) maps and a follow up 

T2 FLAIR image acquired 1 week – 1 month after the perfusion images. Note the strong 

agreement, in terms of location and size, between the perfusion markers and the final infarct 

volume depicted on the FLAIR images. Figure adapted with permission from (Mouridsen et 

al., 2014).
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