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Abstract

The transcription factor nuclear factor erythroid-2 (NF-E2)-related factor 2 (NRF2) is a central 

regulator of redox, metabolic, and protein homeostasis that intersects with many other signaling 

cascades. While the understanding of the complex nature of NRF2 signaling continues to grow, 

there is only one therapeutic targeting NRF2 for clinical use, dimethyl fumarate, used for the 

treatment of multiple sclerosis. The discovery of new therapies is confounded by the fact that 

NRF2 levels vary significantly depending on physiological and pathological context. Thus, 

properly timed and targeted manipulation of the NRF2 pathway is critical in creating effective 

therapeutic regimens. In this review, we summarize the regulation and downstream targets of 

NRF2. Furthermore, we discuss the role of NRF2 in cancer, neurodegeneration, and diabetes, as 

well as cardiovascular, kidney, and liver disease, with a special emphasis on NRF2-based 

therapeutics, including those that have made it into clinical trials.
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Introduction:

Originally characterized as a master regulator of redox homeostasis, the transcription factor 

nuclear factor erythroid-2 (NF-E2)-related factor 2 (NRF2) continues to emerge as a critical 

mediator of a diverse array of cellular functions. Through the ongoing identification of novel 

regulators, target genes, and disease contexts, a role for NRF2 has been indicated not only in 

redox homeostasis, but also drug/xenobiotic metabolism, DNA repair, mitochondrial 

function, iron, lipid and carbohydrate metabolism, proteostasis, and proliferation, all of 

which contribute to cell survival (1). While the beneficial role of NRF2 is well established, it 

has become increasingly clear that careful regulation of this pathway is critical for disease 

prevention. As the complex interplay between NRF2 physiology and pathology is revealed 

through careful mechanistic studies, a need for new compounds that allow for context-

dependent modulation of the NRF2 signaling cascade continues to grow.
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Due to new research revealing the previously unappreciated complexity of the NRF2 

signaling network, an increasing number of NRF2-based therapies continue to be brought to 

light; however, the progression of therapeutics from bench to bedside continues to lag 

behind. Adding to this deficiency is the fact that the number of pathological contexts in 

which NRF2 plays a role, either directly or indirectly, is expanding rapidly. In this review, 

we summarize the currently identified regulators and downstream targets of NRF2, its 

crosstalk with other signaling pathways, as well as the identified role of NRF2 in cancer and 

other diseases. We also highlight current therapies that have progressed to clinical trials, and 

other pharmacological modulators of NRF2 that could be developed into therapeutics for the 

treatment and prevention of disease.

Overview of the NRF2 signaling pathway:

Key discoveries in the NRF2 field: An historical perspective

The NRF2 field is relatively young, as the majority of the key discoveries have occurred 

over the past four decades (Figure 1). Although NRF2 was first cloned in 1994, the original 

notion of transcriptional control of the antioxidant response originated in the 1970s, when a 

number of studies demonstrated that the anti-carcinogenic effects of phenolic antioxidants 

were due to their ability to increase activation of phase II detoxifying enzymes, such as 

glutathione-S-transferase (GST) (2; 3). While it was unknown at the time that GST is 

regulated by NRF2, this was some of the first evidence that activation of enzymes that 

detoxify reactive intermediates, many of which are now established NRF2 transcriptional 

targets, could be useful for preventing chemical-induced carcinogenesis. In 1989, a protein 

that binds to a consensus sequence containing an activator protein 1 (AP-1) core motif, 

nuclear factor erythroid 2 (NF-E2) was identified (4). NF-E2 was the first of six mammalian 

cap’n’collar (CNC), basic leucine zipper (bZIP) transcription factors found to bind this 

motif, with the others, NRF1 (5), NRF2 (6), NRF3 (7), BACH1 (8), and BACH2 (9) being 

identified shortly thereafter. This NF-E2/AP-1 sequence was later identified in the promoter 

of the rat GST-Ya gene, and was responsive to t-butylhydroquinone (t-BHQ), resulting in the 

coining of the term “antioxidant response element” (ARE) (10). It was then discovered that a 

wide array of sulfhydryl reactive chemicals induce ARE-driven gene expression, indicating 

that the transcription of phase II detoxifying enzymes was sensitive to electrophiles (11), a 

key functional feature of many currently identified activators of NRF2.

Many of the studies detailing the molecular interactions that drive NRF2 signaling were 

conducted in the mid to late 1990s. During this time, the domains of NRF2 were 

characterized (12), it was demonstrated that NRF2 dimerizes with small MAF (sMAF) 

proteins to activate transcription of ARE-containing genes (13), and it was determined that 

NRF2 is negatively regulated at the protein level by Kelch-like ECH associated protein 1 

(KEAP1) (14). Also, the first Nrf2−/− mouse was generated, which developed normally (15), 

but exhibited a significant reduction in the levels of GST and NAD(P)H:quinone 

oxidoreductase (NQO1) in the intestines and liver compared to wild type mice following 

administration of phenolic antioxidants (13). Further, the Nrf2−/− mouse was critical in 

demonstrating that NRF2 plays a direct role in chemoprevention, as the chemoprotective 

effects of oltipraz, a dithiolethione, were lost in Nrf2−/− mice (16).
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Once the chemoprotective role of NRF2 was introduced, the field shifted towards identifying 

ways to activate the NRF2 pathway. As many of the activators of key phase II detoxifying 

enzymes were electrophiles, the belief was that the redox sensitivity of NRF2 was conferred 

by a regulator capable of sensing oxidative/electrophilic stress. In 2002, it was shown in 

vitro that KEAP1 senses electrophilic stress via specific cysteine residues, with adduction of 

electrophilic inducers to the thiol group disrupting the KEAP1-NRF2 interaction (17). A 

year later, it was demonstrated in cells that different KEAP1 cysteines were sensitive to 

different inducers, a concept known as the “cysteine code” (18). Around the same time, 

studies showed that KEAP1 recruits the Cullin 3-Ring box 1 (CUL3-RBX1) E3 ubiquitin 

ligase complex that ubiquitylates seven key lysine residues that target NRF2 for degradation 

(19; 20). Not long after, it was discovered that KEAP1-independent degradation of NRF2 

can occur as a result of glycogen synthase kinase β (GSK3-β) phosphorylation of key 

residues in NRF2, which triggers the recruitment of the S-phase kinase associated protein 1-

Cullin1-Rbx1/β-transducin repeat containing protein (SCF/β-TrCP) E3 ligase complex (21; 

22).

In 2006, the discovery that KEAP1 is mutated in non-small lung cell carcinomas, leading to 

chronically elevated levels of NRF2, presented the first evidence that NRF2 could contribute 

to cancer progression and chemoresistance, later termed the “dark side” of NRF2 (23; 24). 

This led to a shift in the field towards investigating the role of high NRF2 expression in 

cancer, and the premise that inhibition of NRF2 may be necessary to treat certain cancers. 

Another landmark discovery regarding the dark side was that autophagic dysfunction, which 

results in the p62-dependent sequestration of KEAP1, leads to prolonged activation of NRF2 

in a non-canonical, cysteine-independent manner (25; 26). As the NRF2 field continues to 

expand, our understanding of the complexity of this pathway continues to advance.

Negative regulators and modes of activation of NRF2

Regulation of NRF2 mainly occurs through the controlled maintenance of NRF2 protein 

levels. There are three E3 ubiquitin ligase complexes responsible for the ubiquitylation and 

degradation of NRF2, the CUL3-RBX1-KEAP1 complex, the SCF/β-TrCP complex, and 

HRD1. Each mediates the degradation of NRF2 upon different stimuli in specific subcellular 

compartments. The CUL3-RBX1-KEAP1 complex responds to electrophilic/oxidative stress 

in the cytosol. The SCF/β-TrCP complex, which can be nuclear or cytosolic, is more 

sensitive to metabolic changes, and is regulated by GSK3-β. HRD1 is localized to the ER 

and has only been demonstrated to ubquitylate NRF2 during ER stress (27). It is important 

to note that other signaling pathways, epigenetic factors, and post-translational modifications 

also regulate NRF2. Furthermore, activation or inhibition of the NRF2 pathway can be 

achieved by targeting the negative regulation of NRF2 (Figure 2).

NRF2 target genes

There are over 250 currently identified NRF2 target genes involved in a multitude of cellular 

processes, including: redox regulation; phase I, II, and III drug/xenobiotic metabolism; 

protein homoeostasis; DNA repair; carbohydrate and lipid metabolism; iron homeostasis; 

transcriptional regulation; and mitochondrial function (Figure 3).
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Redox regulation—Perhaps the best-known function of NRF2 is maintaining redox 

homoeostasis, mainly via the synthesis and redox cycling of GSH and thiol-based 

antioxidant enzymes. For example, the catalytic and modulatory subunits (GCLM and 

GCLC) of glutamate cysteine ligase (GCL) are NRF2 target genes, with GCL being 

responsible for the de novo synthesis of glutathione. Additionally, glutathione peroxidases 

(GPX2 and GPX4), which utilize GSH to reduce peroxides, glutathione reductase (GSR), 

that reduces oxidized glutathione, and peroxiredoxins (PRDX1 and PRDX6), which reduce 

peroxides directly, are all NRF2 target genes (28). The reduction of oxidized protein thiols 

by the coordinated action of thioredoxin 1 and thioredoxin reductase 1 (TXN1 and 

TXNRD1), as well as the import of cysteine via the xCT transporter (SLC7A11) which is 

critical for GSH production, are also transcriptionally regulated by NRF2 (28).

Drug/xenobiotic metabolism—NRF2 regulates all three phases of drug/xenobiotic 

metabolism. Examples of NRF2 targets involved in phase I metabolism are aldo-keto 

reductase family members (i.e. AKR1C1, AKR1B1, and ARK1B10) (29), aldehyde 

dehydrogenase family members (i.e. ALDH1A1, ALDH3A1, and ALDH7A1) (30), and 

NQO1 (13), which are involved in the reduction of toxicants/drugs to active metabolites. 

This allows phase II NRF2 transcriptional targets, including glutathione S-transferases (i.e. 

GSTA1–4 and GSTM1–4) (31) and UDP glucuronosyltransferases (i.e. UGT1A1 and 

UGT2B7) (32; 33) to conjugate these intermediates to glutathione (GSH) or glucuronic acid, 

respectively. Finally, NRF2 also regulates the transcription of phase III membrane 

transporters (the ATP-binding cassette family members/multidrug resistance proteins (i.e. 

ABCC1-5 and ABCG2)) (34; 35) that excrete xenobiotics/drugs from the cell.

Protein homeostasis—NRF2 downstream genes are involved in maintaining proteostasis 

via autophagy and the ubiquitin proteasome system (UPS). It was recently identified that a 

number of autophagy initiation proteins, including autophagy related (ATG) 5 and 7, as well 

as unc-51 like autophagy activating kinase (ULK) 1 and 2, contain putative AREs (36). 

NRF2 may directly regulate mTOR, a master regulator of both protein translation and 

autophagy (37). Furthermore, p62/SQSTM1, a protein that targets ubiquitylated proteins for 

autophagic degradation, is an NRF2 target. NRF2 also controls expression of proteasomal 

subunits (i.e. proteasome subunit alpha 1 (PSMA1) and proteasome subunit beta 5 

(PSMB5)) (38), as well as the proteasome maturation protein (POMP) (39), which are 

critical for proteasome assembly.

Lipid, carbohydrate, and iron metabolism—NRF2 regulates a number of metabolic 

enzymes necessary for processing glucose and fatty acids for anabolic metabolism. Pentose 

phosphate pathway enzymes, including glucose-6-phosphate dehydrogenase (G6PD), 6-

phosphogluconate dehydrogenase (PGD), and transaldolase (TALDO1), which are critical in 

regenerating NADPH, are all NRF2 target genes (40). NRF2 also modulates the expression 

of malic enzyme (ME1) and isocitrate dehydrogenase 1 (IDH1), two key TCA cycle 

enzymes (40; 41). Lipid catabolism is regulated by NRF2, as lipase H (LIPH), 

phospholipase A2 (PLA2G7), and acetyl-CoA oxidase 2 (ACOX2) (42) are NRF2 targets. 

Finally, NRF2 regulates heme metabolism and iron homeostasis through the transcription of 
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heme oxygenase 1 (HMOX1), biliverdin A and B (BVRD½), and the light and heavy chains 

of ferritin (FTH1/FLH1) (43).

Transcriptional regulation, DNA repair, and prevention of apoptosis—Functional 

AREs have been identified in the promoters of a number of transcription factors, including 

aryl hydrocarbon receptor (AhR), neurogenic locus notch homolog protein 1 (NOTCH1), 

and retinoic receptor α (RXRA), indicating NRF2 can indirectly control the transcription of 

a host of non-ARE-containing genes, discussed in detail below. NRF2 also plays a role in 

DNA damage repair and preventing apoptosis, as p53-binding protein 1 (53BP1), DNA 

repair protein RAD51 homolog 1 (RAD51) (44), anti-apoptotic proteins B-cell lymphoma 2 

(BCL2), and B-cell lymphoma-extra-large (BCLXL) (45; 46), are transcriptionally regulated 

by NRF2. The diversity of NRF2 targets indicates the central role of NRF2 in mediating 

cellular function.

Crosstalk with other signaling pathways

While NRF2 directly regulates a host of cellular responses via its transcriptional targets, it 

can also mediate cellular function via crosstalk with other major signaling cascades. These 

pathways, which include NOTCH1, AhR, nuclear factor-κB (NF-κB), cellular tumor antigen 

p53 (p53), AMP-activated protein kinase (AMPK), PI3K-AKT, and mTOR, are critical in 

responding to stress, highlighting a key role for NRF2 in maintaining cell survival.

The NOTCH signaling pathway mediates cell cycle and apoptosis during embryonic 

development and the determination of cell fate. The NOTCH1 gene has a functional ARE in 

the proximal region of its promoter, and NOTCH signaling is diminished in Nrf2−/− mouse 

embryonic fibroblasts (47). This NRF2-NOTCH signaling axis is critical during liver 

regeneration, as Nrf2−/− mice demonstrate delayed liver regrowth compared to wild type 

mice following partial hepatectomy; however, crossing these mice with a mouse strain that 

over-expresses the NOTCH-intracellular domain (NICD), completely rescues the NRF2 null 

phenotype (47). Conversely, NRF2 can be regulated by NOTCH, as the RBPjκ sequence, 

which is required for canonical NOTCH transcription, is highly conserved in the NRF2 

promoter region across animals. Furthermore, NICD-overexpressing mice exhibit 

hyperactivation of NRF2, displaying a phenotype very similar to liver-specific Keap1−/− 

mice (48). Thus, crosstalk between NRF2 and NOTCH appears to play an integral role in 

mediating cytoprotection, particularly in the context of liver regeneration.

NRF2 signaling also overlaps with pathways that respond to exogenous stressors. For 

example, AhR, which forms a complex with aryl hydrocarbon receptor nuclear translocator 

(ARNT), can be bound by polycyclic aromatic hydrocarbons, such as dioxin, and translocate 

from the cytosol to the nucleus to regulate transcription of xenobiotic-responsive element 

(XRE) containing genes (49). NRF2 and a number of its target genes, such as GST (50) and 

NQO1 (51), also contain an XRE. Moreover, it was shown that NRF2 could directly regulate 

AhR transcription via an ARE (52), as well as the bardoxolone-imidazolide (synthetic, 

triterpenoid, CDDO-Im) inducible transcription of AhR target genes (53).

Another major pathway that has a bidirectional relationship with NRF2 is the NF-κB 

pathway. NF-κB has been shown to repress transcription of genes containing AREs, as both 
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NRF2 and p65/RelA, a component of the NF-κB transcriptional complex, require CREB-

binding protein (CBP) to transcribe their respective target genes (54). Thus, if p65 is bound 

to CBP it prevents NRF2-driven transcription of the ARE. Interestingly, a number of NRF2 

activators, including sulforaphane (SF) (55), bardoxolone methyl (CDDO-Me) (56), and 

curcumin (57) have all been shown to suppress NF-κB signaling. In contrast, Nrf2−/− mice 

exhibit increased signs of NF-κB activation compared to wild type mice following 

stimulation with pro-inflammatory stimuli (58). It has also been demonstrated that inhibitor 

of NF-κB kinase β-subunit (IKKβ), a well-established negative regulator of NF-κB, is 

ubiquitylated and degraded by the KEAP1-CUL3-RBX1 complex (59). Lastly, a number of 

NRF2 target genes, such as NQO1, TRX1, and HMOX1, have all been shown to modify NF-

κB-driven transcription, indicating these pathways crosstalk at both the upstream and 

downstream levels (60).

NRF2 directly interacts with the p53/p21 cascade, an important target for anti-cancer 

therapies due to its regulation of apoptosis. Specifically, co-expression of NRF2 and p53 

results in the suppression of SLC7A11, NQO1, and GST in a variety of cell lines (61). It has 

been shown that NRF2 may control the expression of E3-ubiquitin protein ligase MDM2, a 

negative regulator of p53, implying that NRF2 can directly regulate the activity of p53 (62). 

Furthermore, p21 (CDKN1A), a p53 target gene involved in the regulation of cell cycle, 

apoptosis, and differentiation, directly binds to the DLG and ETGE motifs of NRF2, 

resulting in its stabilization and transcription of ARE-containing genes (63). The interaction 

between NRF2 and p53 is further confirmed by the fact that Nrf2−/−;p53+/− mice are more 

susceptible to nitrosamine-induced carcinogenesis than their Nrf2−/− or p53+/− counterparts 

(64), indicating that both are critical in mediating cell survival during stress.

NRF2 also interacts with key pathways that respond to changes in metabolism. For example, 

AMPK, a sensor of the overall energetic state of the cell via the AMP:ATP ratio, 

phosphorylates NRF2 at S550, enhancing its nuclear translocation (65). Similarly, GSK3-β, 

which as mentioned earlier is necessary for the degradation of NRF2 by β-TrCP, is 

phosphorylated by the PI3K-AKT signaling axis (66) or mTOR (67), indicating the stability 

of NRF2 can be determined by these two pathways. It has also been shown that mTOR 

phosphorylates p62/SQSTM1, enhancing its interaction with KEAP1, leading to autophagic 

degradation of the p62-KEAP1 complex and upregulation of NRF2 (68). Overall, NRF2 

interacts with a number of key signaling cascades responsible for dictating cell growth and 

survival.

Other modes of NRF2 regulation

Epigenetic control of the NRF2 signaling pathway, as well as a number of single nucleotide 

polymorphisms in KEAP1 and NRF2/NFE2L2 that affect NRF2 expression, has been 

extensively studied in the context of cancer. Promoter methylation regulates the expression 

of NRF2 and KEAP1, as well as a number of NRF2 target genes including GST, NQO1, 

GPX, and UGT1A1 (69). Chemotherapy can decrease methylation of the NRF2 promoter, as 

5-fluorouracil (5-FU)-induced ROS production results in hypomethylation of the NRF2 
promoter and elevated NRF2 levels in drug-resistant colon cancer (70). NRF2 activity can be 

affected by hypermethylation of the KEAP1 promoter, which results in increased expression 
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of NRF2. Not all epigenetic modifications enhance NRF2 activity, as hypermethylation of 

the NRF2 promoter suppresses NRF2 in late stage prostate cancer (71). The acetylation/

deacetylation, methylation/demethylation of histones, as well as microRNAs have also been 

shown to affect NRF2 activation (69). Additional studies are needed to determine the 

potential epigenetic targets for modulating the NRF2 pathway in disease.

Aside from ubiquitylation and phosphorylation of key residues in the Neh2 and Neh6 

domains to control its stability, NRF2 can also be modified by a number of other post-

translational modifications (PTMs), including methylation, acetylation, and SUMOylation. 

Activity of NRF2 is increased by acetylation of key lysine residues in the Neh1 domain by 

p300/CBP, enhancing its DNA binding capability, which is reversed by deacetylation (72). 

Methylation of NRF2 on R437 also affects its transcriptional activity (73). As mentioned 

above, phosphorylation of NRF2 targets it for degradation; however, phosphorylation of 

other serine residues by a number of upstream kinases also occurs (S40, S215, S408, S550 

and S577) (65; 74; 75). Phosphorylation of these serine residues has been proposed to 

increase NRF2 translocation to the nucleus, although the effect on the transcriptional activity 

of NRF2 may depend on the kinase/serine combination. Another identified NRF2 PTM is 

SUMOylation, which enhances the ubiquitylation and degradation of NRF2 in HepG2 cells 

(76), whereas in pancreatic β-islet cells, it enhances NRF2 activity and promotes cell 

survival (77), indicating the cell type-specific relevance of NRF2 PTMs.

Targeting NRF2 in disease:

Modulating NRF2 for the prevention and treatment of cancer and other chronic diseases

There is a developing theme in the NRF2 field that targeting NRF2 in disease is both context 

and time dependent. Harnessing the beneficial effects of pharmacological activation of 

NRF2 remains an important aspect of NRF2-based chemoprevention, and intervention in 

other chronic diseases, such as neurodegeneration, diabetes, cardiovascular disease, and 

chronic kidney and liver disease. However, a growing number of studies have revealed that 

NRF2 is already high in certain cancer and disease stages, indicating that pharmacological 

agents designed to mitigate the potentially harmful or transformative effects associated with 

prolonged activation of NRF2 should also be considered. Examples of current NRF2 

activators and inhibitors, as well as NRF2 expression levels in disease are summarized in 

Figure 4.

NRF2 in chemoprevention—To date, hundreds of studies have evaluated the in vitro and 

in vivo chemopreventive properties of NRF2-activating compounds (78; 79). Importantly, 

most of these chemopreventive compounds (or their bioactive metabolites) are electrophilic 

and activate NRF2 through the modification of cysteines, although peptides and small 

molecules that bind to the Kelch domain of KEAP1 have also been developed (80). To date, 

SF (natural, isothiocyanate), CDDO-Me (synthetic, triterpenoid), RTA 408 (synthetic, 

triterpenoid, Omaveloxolone), and DMF (synthetic, Tecfidera) are the only NRF2 activators 

that have entered clinical trials in the US, with only Tecfidera having been approved for the 

treatment of multiple sclerosis (MS). Clearly, the development of safe, potent, and specific 

NRF2-based therapies is still an area of exploration for cancer prevention. However, there is 
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controversy regarding the use of NRF2 activators which may promote the dark side of NRF2 

and support progression of pre-existing tumors. Thus, target populations and dosing schemes 

should be very carefully timed and planned depending on NRF2 level and the cancer stage.

Constitutive NRF2 activation in cancer—Considering the survival advantage 

conferred by NRF2, it is not surprising that cancer cells hijack the NRF2 pathway. Mutations 

in the Kelch or intervening region (IVR) domains of KEAP1 reduce its interaction with 

NRF2, resulting in constitutive activation in lung cancer cell lines and tissues (81). 

Additionally, several somatic mutations in KEAP1, as well as loss of heterozygocity (LOH) 

of the wild type allele, increase NRF2 and confer chemoresistance (23). Importantly, studies 

have corroborated that in lung adenocarcinoma, KEAP1 is as frequently mutated as TP53, 

whereas in lung squamous carcinoma both KEAP1 and NRF2 are among the most mutated 

genes (82; 83). The Cancer Genome Atlas (TCGA) project reported mutations and copy 

number alterations for KEAP1 and NRF2, as well as deletions or mutations of CUL3, in 

over 30% of squamous cell carcinoma cases (84). Studies have also identified reduced 

expression of RBX1 as a result of deletion or promoter hypermethylation (85; 86). 

Mechanisms that result in constitutive activation of NRF2, and the cancer types in which 

they are observed, are summarized in Table 1.

NRF2 inhibitors in overcoming cancer resistance—Screening of natural product 

extracts resulted in the discovery of the first NRF2 inhibitor, brusatol (natural, quassinoid) 

(105). Brusatol sensitized several cancer cell lines to chemotherapeutic drugs by reducing 

the protein levels of NRF2 and its target genes (105). In combination with cisplatin, brusatol 

enhanced the chemotherapeutic sensitivity of lung cancer cells in a xenograft model, and 

overall tumor burden in a mouse lung cancer model (LSL-KrasG12D/+) (105). While two 

recent publications have determined that brusatol is a global translation inhibitor (106; 107), 

it continues to be a useful tool to study NRF2 inhibition in cancer chemosensitization, since 

short-lived proteins such as NRF2 are most susceptible to protein translation inhibition.

Other NRF2 inhibitors include ARE expression modulator 1 (AEM1), a small molecule 

inhibitor with an unknown mechanism of action (108), and ML385, a molecule that binds to 

the Neh1 domain of NRF2, blocking dimerization with MAFG and binding to the ARE 

(109). ML385 is the most intriguing of the current inhibitors, but it is unorthodox that it 

leads to a dramatic dose and time dependent decrease in NRF2 mRNA and protein levels. 

This is unlikely to result from direct inhibition of ARE-binding, and thus warrants further 

investigation. Other natural products that negatively regulate NRF2 activity without a 

precisely defined mode of action include trigonelline (110), malabaricone A (111), 

ochratoxin A (112), and wogonin (113). Additionally, nuclear receptors can bind directly to 

NRF2 and inhibit its transactivation activity, so some studies have proposed dexamethasone/

budesonide (glucocorticoid receptor agonists) and all-trans retinoic acid (ATRA, retinoid 

acid receptor agonist) as NRF2 inhibitors (114). However, since the primary targets of these 

compounds are nuclear receptors and not NRF2 specifically, these are unlikely to be 

developed as NRF2-targeted therapeutics.

NRF2 in neurodegeneration—Similar to cancer, the role of NRF2 in neurodegenerative 

diseases is complex. Interestingly, reduced expression of NRF2 is associated with an age-
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related decline in neural stem cell function (115), and the NRF2 response to oxidative stress 

also diminishes with age (116). During neurodegeneration, NRF2 can be activated or 

suppressed depending on the affected cell type and stage of disease. For example, some 

studies have indicated that NQO1 and HMOX1 are decreased in Alzheimer’s disease (AD) 

brains; whereas others indicate that NRF2 remains confined to the cytosol, resulting in 

decreased target gene expression (117). NRF2 and NQO1 expression is elevated in 

infiltrating macrophages and astrocytes found in active, but not inactive, MS lesions; 

whereas NQO1, HMOX1 and PRDX levels, as well as nuclear localization of NRF2, are 

consistently elevated in the substantia nigra of Parkinson’s disease (PD) patients (117). In 

contrast, NRF2 protein levels are decreased in the primary motor cortex and spinal cord of 

patients with amyotrophic lateral sclerosis (ALS) (118). These discrepancies could be cell 

type and brain region specific but may also occur as a result of the stage of disease 

investigated. Since the responsiveness of the NRF2 pathway decreases with age, NRF2 

activation could occur in the early stages but decline during later stages of disease.

A number of pharmacological activators of NRF2 improve neurodegenerative phenotypes. 

Bardoxolone-methylamide (synthetic, triterpenoid, CDDO-MA) has been shown to improve 

memory and decrease amyloid-β plaque formation in transgenic AD mice (119). Similarly, 

puerarin (natural, phytoestrogen), SF, orientin (natural, flavone), and baicalin (natural, 

flavone) all improved the AD phenotype (120–123). 3H-1,2-dithiole-3-thione (natural, 

dithiolethione, D3T) and bardoxolone-ethylamide/trifluoroethylamide (synthetic, 

triterpenoids, CDDO-EA/TFEA) protected wild type, but not Nrf2−/− mice, from 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD (124; 125). DMF is the 

only current NRF2 activator to make it through phase III clinical trials for the treatment of 

MS, however recent studies using SF, CDDO-TFEA, and matrine (natural, alkaloid) were 

shown to reduce MS phenotypes in mice (126–128). It is curious that DMF is the only FDA 

approved drug, despite not being the most potent activator of NRF2, which could be a result 

of NRF2-independent immunomodulation (129), synergistic effects with other pathways, or 

because the degree of NRF2 activation is critical depending on the disease context.

Dual role of NRF2 in diabetes—Dysregulation of NRF2 has also been demonstrated in 

type I and II diabetes. Increased oxidative stress is a prevalent feature of diabetes that leads 

to cellular dysfunction and metabolic changes in a number of tissues. However, much like 

NRF2 in cancer and neurodegeneration, the role of NRF2 in diabetes is complex and tissue/

cell type dependent. SF and cinnamic aldehyde (CA, natural, flavonoid) were both shown to 

suppress oxidative damage and restore normal kidney function in a streptozotocin-induced 

mouse model of type I diabetes (130). Oral administration of CDDO-Im resulted in 

enhanced NRF2 activity and attenuation of the diabetic phenotype in db/db mice (131). 

CDDO-Im, CDDO-Me, oltipraz, and curcumin improved insulin sensitivity and glucose 

tolerance in both genetic and high fat-diet induced diabetic models (132–135).

Interestingly, Keap1flox/- mice, which have constitutively higher levels of NRF2, also 

exhibited delayed onset of diabetes when crossed with db/db mice (131); yet, other studies 

indicated that KEAP1 knockdown enhanced the diabetic phenotype in Lepob/ob mice and 

mice fed a high fat diet (136; 137), indicating dietary and genetic factors controlling NRF2 

may affect the onset and progression of diabetes differently. CDDO-Me was shown to 
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enhance kidney function and decrease body weight in patients with diabetic nephropathy 

(138); however, the study was terminated due to increased risk of cardiovascular events. 

Importantly, improved specificity and the proper clinical context could still yield a positive 

outcome for this and other NRF2-based drugs (139).

NRF2 in cardiovascular, kidney, and liver disease—Cardiovascular disease (CVD) 

covers a wide range of conditions from hypertension to coronary artery disease. Much like 

other chronic diseases, the progression of many CVDs can take decades. A common feature 

of CVD is increased oxidative damage to endothelial cells and cardiomyocytes, which can 

prevent proper cardiac function and result in chronic damage to the heart and vasculature 

leading to heart failure. Pharmacological activation of NRF2 via SF, t-BHQ, MG132, 

resveratrol, and α-lipoic acid have all been shown to rescue models of heart failure (140). 

Conversely, chronic activation of NRF2 in a mutant αB crystallin mouse model of cardiac 

hypertrophy results in reductive stress (141), indicating that controlled activation of NRF2 

can prevent cardiac dysfunction, whereas prolonged activation may result in detrimental 

effects.

Chronic oxidative stress and inflammation are also prevalent features of chronic kidney 

disease (CKD) and chronic liver disease. CDDO-Me is still the most promising therapy that 

has reached the clinical trial phase for CKD, at least for patients without cardiac risk factors 

(142), and CDDO-Im has been shown to protect against drug-induced liver injury, as well as 

reduce hepatic lipid accumulation in models of non-alcoholic fatty liver disease (143). These 

studies indicate that activation of NRF2 confers protection against oxidative stress in 

diseases associated with chronic inflammation and ROS production; nevertheless, prolonged 

activation of the NRF2 pathway may result in metabolic changes that also contribute to 

disease progression via reductive stress.

Clinical trials targeting NRF2 and drug repositioning for NRF2-based therapies

As discussed above, a number of NRF2 activators have proceeded to clinical trials for the 

treatment of various pathologies; however, only DMF has been approved for the treatment of 

relapsing MS. One of the most popular current regimens is dietary supplementation with SF, 

which is being or has been tested in the treatment of chronic obstructive pulmonary disease 

(COPD) [ClinicalTrials.gov Identifier (CTI): NCT01335971, (144)], exposure to ozone and 

other airborne pollutants [CTI: NCT01625130, (145); CTI: NCT01437501, (146)], cystic 

fibrosis [CTI: NCT01315665], asthma [CTI: NCT01845493], sickle cell disease [CTI: 

NCT01715480, (147)], and head and neck cancer [CTI: NCT03182959, NCT03268993, and 

NCT03402230] with limited or yet to be reported efficacy. A number of recent clinical trials 

also tested SF in the treatment of symptoms associated with autism spectrum disorders [CTI: 

NCT0256148] and schizophrenia [CTI: NCT01716858, (148)], as well as an ongoing study 

in type II diabetic patients [CTI: NCT02801448]. Interestingly, topical SF is being tested in 

protecting skin from UV-associated damage [CTI: NCT03126539]. Other NRF2 activators 

are also being investigated, such as curcumin for later stage diabetic nephropathy [CTI: 

NCT03262363], and a recently completed trial of resveratrol for CKDs [CTI: 

NCT02433925]. RTA 408 is being tested for patients with mitochondrial myopathies [CTI: 

NCT02255422] and Friedrich’s ataxia [CTI: NCT02255435].

Dodson et al. Page 10

Annu Rev Pharmacol Toxicol. Author manuscript; available in PMC 2019 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ClinicalTrials.gov


The idea of drug repositioning has also been gaining traction. Two recent examples are DMF 

for the treatment of PD (149), and bardoxolone in the treatment of sickle cell disease (150) 

and pulmonary hypertension (CTI: NCT02036970). Another intriguing possibility is 

utilizing a medicinal chemistry approach to derivatize pre-existing therapeutics to improve 

their specificity and efficacy. Moreover, there has been a recent shift towards non-

electrophilic small molecule modifiers of the NRF2-KEAP1 interaction to help minimize off 

target effects (80). Studies designed to discover novel therapies, as well as optimize current 

approaches, should both be considered.
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Summary points

• The relationship between NRF2 and pathological states is complex and 

requires careful evaluation prior to the development of effective therapies

• Activation of the NRF2 pathway can be achieved by targeting the negative 

regulators of NRF2

• Inhibition of the NRF2 pathway has proven to be a challenge, with the most 

promising strategy being to interfere with NRF2-sMAF-ARE binding

• NRF2 controls a host of transcriptional targets, either directly via AREs, or 

indirectly via regulation of other transcription factors, indicating its central 

role in cell survival

• Activating NRF2 has had great success in experimental models of disease; 

however, many cancers/metabolic diseases have chronically elevated levels of 

NRF2, indicating a need for targeted NRF2 inhibitors in certain contexts

• While a number of NRF2 activators have made it to clinical trials, only DMF 

is FDA approved for the treatment of MS

• Repositioning of NRF2 therapeutics, through repurposing or derivatization of 

existing drugs may, help improve the number of NRF2-based therapies

Future issues:

• How do we narrow the gap in advancing therapies from bench to bedside? 

While the past two decades of research have clearly indicated the dual role of 

NRF2 in disease, the number of clinically approved therapeutics is limited to 

DMF

• What is the proper time course for targeting NRF2 in disease? The beneficial 

or detrimental activation of NRF2 is time and context dependent, presenting a 

significant challenge in developing NRF2-based therapeutic regimens moving 

forward

• Why are NRF2 activators different? Many NRF2 activators have been 

reported, but all are not equal, showing differential activation of ARE-

regulated genes and disease related effects, possibly due to synergistic effects 

with other modes of regulation

• Can specific inhibitors of NRF2 be developed? Targeted inhibitors of NRF2 

are needed, as the current options exhibit off target effects
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Figure 1. Key discoveries in the NRF2 field.
Timeline depicting important discoveries in the NRF2 field over the past four decades.
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Figure 2. Regulation of NRF2 and possible modes of activation.
Schematic representation of NRF2 modes of regulation. NRF2 is regulated at the post-

transcriptional and post-translational level, as well as via epigenetic factors and interaction 

with other signaling pathways. Modulation of NRF2 protein levels can be achieved through 

activation or inhibition of the KEAP1-CUL3-RBX1 complex, SCF-β-TrCP complex, or 

HRD1. Electrophilic/oxidative modification of key cysteines, competitive binding of ETGE 

containing proteins, protein-protein interaction inhibitors, increased levels of p62/SQSTM1, 

mTOR inhibitors, and CUL3-Ring E3 ligase (CRL) inhibitors (i.e. MLN4924), can all 

disrupt the KEAP1-NRF2 interaction. Hypermethylation of the KEAP1 promoter can also 

increase expression of NRF2. The SCF/β-TrCP-NRF2 interaction can be modulated by 

insulin/growth factors, or GSK3-β, CRL, PI3K-AKT-PKC, mTOR, ERK/p38-MAPK, and 

WNT inhibitors. Inhibitors of HRD1 (i.e. LS-102) could be utilized to prevent ER-stress 

associated degradation of NRF2.
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Figure 3. Cellular pathways driven by NRF2 target genes.
NRF2 heterodimerizes with sMAF proteins to initiate the transcription of ARE-containing 

target genes. Verified NRF2 target genes are involved in proteasome assembly, autophagy, 

prevention of apoptosis, maintaining redox balance, lipid and carbohydrate metabolism, 

heme metabolism, iron homeostasis, all three phases of drug/xenobiotic metabolism, 

transcriptional regulation of other transcription factors, and DNA repair. Representative 

target genes are included in parentheses below each transcriptional response.
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Figure 4. Targeting NRF2 in disease is time and expression level dependent.
Graphical representation of NRF2 activators/inhibitors, and the current treatment options 

based on NRF2 levels in cancer and other chronic diseases. A number of NRF2 activators 

and inhibitors have been characterized that could be developed into translational 

therapeutics. The white box outlines therapies that have made it into clinical trials. DMF 

(Tecfidera), the only FDA approved drug, is indicated in bold. NRF2 levels and treatment 

possibilities vary depending on the timing and stage of disease. NRF2 activators are thought 

to provide the most therapeutic benefit prior to cancer initiation or onset of 

neurodegenerative or chronic inflammatory diseases. Some diseases, such as diabetes, 

cardiovascular disease, prostate cancer, inflammatory diseases, and post-initiation/early 

stage cancer have been reported to have either low or high levels of NRF2 depending on the 

context. Treatment options following onset of disease target NRF2 to intervene and prevent/

delay progression. Many cancer types exhibit constitutively high levels of NRF2. For 

diseases where high levels of NRF2 are having a deleterious effect, an NRF2 inhibitor or 

adjuvant approach would be most effective. Cancers and late stage diseases with high levels 

of NRF2 are generally associated with poor prognosis, and treatments at this stage are 

designed to mitigate symptoms and enhance the efficacy of other therapies.
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Table 1.

Genetic alterations in NRF2 pathway genes resulting in high expression of NRF2, as well as the tumor types in 

which they have been described.

Gene Alteration Tumor types References

KEAP1

Somatic mutations (±LOH)

Lung (adenocarcinoma, squamous cell carcinoma, papillary 
carcinoma), breast, gallbladder, sporadic papillary renal cell carcinoma, 
clear cell renal cell carcinoma, ovarian, colorectal, prostate, liver, 
endometrial, head and neck

(23; 81–85; 87–93)

Promoter hypermethylation Lung, prostate, malignant glioma, colorectal, breast, head and neck, 
papillary thyroid carcinoma, clear cell renal cell carcinoma (85; 86; 94–99)

Succination by fumarate Hereditary type 2 papillary renal cell carcinoma (100)

CNV - deletion Head and neck (85)

NRF2

Somatic mutations
Clear cell renal cell carcinoma, lung squamous cell carcinoma, head 
and neck, skin squamous cell carcinoma, esophagus, larynx, 
endometrial, sporadic type 2 papillary renal cell carcinoma

(82; 84; 90; 91; 93; 101; 
102)

CNV - amplification Squamous cell lung cancer (84)

Splice variants Lung, head and neck (103)

CUL3

Somatic mutations Sporadic type 2 papillary renal cell carcinoma, clear cell renal cell 
carcinoma, head and neck (85; 90; 91)

CNV - deletion Clear cell renal cell carcinoma, squamous cell lung cancer, head and 
neck (84; 85; 91)

Promoter hypermethylation Papillary thyroid carcinoma (86)

RBX1
CNV - deletion Head and neck, ovarian, papillary thyroid carcinoma (85; 86; 104)

Promoter hypermethylation Ovarian (104)
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