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Abstract

In this article we discuss a streamlined, scalable, laboratory approach that enables medium-to-

large dataset analysis. The presented approach combines data management, artificial intelligence, 

containerization, cluster orchestration and quality control in a unified analytic pipeline. The unique 

combination of these individual building blocks creates a new and powerful analysis approach that 

can readily be applied to medium-to-large datasets by researchers to accelerate the pace of 

research. We have applied the proposed framework to a project that counts the number of 

plasmonic nanoparticles bound to peripheral blood mononuclear cells in dark-field microscopy 

images. By using the techniques presented in this article, we automatically process the images 

overnight, without user interaction, streamlining the path from experiment to conclusions.
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High throughput acquisition devices leave researchers with a deluge of data. Automated 

processing is often a challenging task. We propose a data processing framework based on deep 

learning, containerization and orchestration for the analysis of medium to large datasets. The 

framework is applied to microscopy images of cells.
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1. Introduction

Advances in computer technology, data acquisition hardware, laser technology, and 

automated imaging platforms have transformed the field of biomedical research. Hardware 

systems that once required manual intervention can now be programed to run continuously 

for days or even weeks. High content-screening systems enable the simultaneous testing of 

several experimental hypotheses automatically.[1],[2],[3],[4],[5] Precision mechanical advances 

enable optical systems that can scan and re-scale entire centimeters of samples at sub-

cellular resolution.[6] High-bandwidth communications networks enable large multi-site 

scientific datasets.[7] Data storage technology has evolved substantially to the point where 

the units of data measurements are terabytes, enabling the exploration of increasingly 

complex scientific questions.

These technologies have had an impact on biomedical research. Where it was once adequate 

to acquire a few data points to images to address a hypothesis, today’s tools enable 

considerably greater capabilities drive the exploration of increasingly complex scientific 

questions.
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Archiving and indexing large datasets is a non-trivial, but possible task, as demonstrated by 

the plethora of database repositories currently in use for biology research, 
[8],[9],[10],[11],[12],[13],[14],[15],[16],[17],[18] electron microscopy, [19] microarray analysis, [20] 

radiology [21],[22],[23],[24] or multidiscipline research.[25],[26]

While these tools allow us to acquire substantially more data, it is still incumbent on the 

scientist to transform data into useful and actionable information. Manual image processing 

is unfeasible for those datasets and automated data analysis techniques and methods are 

continuously being developed, [27],[28],[29],[30],[31],[32],[33] even more now with the advent of 

machine learning tools, [34],[35],[36],[37],[38],[39],[40],[39] that often perform on par with human 

observers. Open-source artificial intelligence software libraries such as Keras (https://

keras.io, accessed on 13.03.2019) [41] and Tensorflow (https://www.tensorflow.org, accessed 

on 13.03.2019), enable the power of neural networks and AI for the analysis of the datasets. 

Data inspection interfaces are built to inspect the results of such automated methods.[42],[36]

Beyond image processing, data visualization algorithms are being used to extract 

information from high dimensional datasets.[43],[44],[45],[46],[47] Reusable and reproducible 

software built over open source software such as python (www.python.org, accessed on 

13.03.2019) and R (https://www.r-project.org, accessed on 13.03.2019), making the 

development of software in repositories based on Git and Github commonplace.[48] Python 

notebooks, for example, enable data analysis sharing [49] and containerization software such 

as Docker (http://www.docker.com, accessed on 13.03.2019), enables the running of such 

software across computers and operating systems with minimal configuration overhead [50] 

Examples exist in the medical imaging community, to find image-based signatures of cancer,
[51] and in the optical coherence tomography (OCT) community,[52] where high-resolution 

volumetric images of vessel, esophagus or colon are routinely acquired.

All these tools can be daunting, especially to those who have developed many of their skills 

using more traditional, stand-alone computational analysis methods. This is the method 

predominantly taught to most scientists and engineers during their undergraduate and post-

graduate training. While this approach is perfect for initial development, small datasets and 

for exploring some outcomes, it generally suffers from a lack of scalability, making the 

transition to large datasets challenging.

In this article, we present data management, automated analysis and software development 

methods and practices that are designed to enable the management and processing of 

medium-to-large datasets in a reliable and reproducible manner. Key aspects presented here 

are: a data policy to maintain order through projects that spans throughout years; a data 

processing pipeline based in artificial intelligence to automatically process imaging data; 

software techniques that ease the transition from prototyping to deployment; clustering 

techniques that can ease data analysis; and finally, data inspection techniques to monitor the 

validity of automation-generated analyses. We propose to make a distinct split among such 

elements of the data cycle, even if they are performed in the same machine or by the same 

researchers. This division enables distinct processing by different entities and establishes 

quality control procedures for each step (Fig 1). We present a concrete example of the 

presented concepts: a novel image processing pipeline that, from 3D microscopy image 
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stacks, extract cells and cell contours using deep convolutional neural networks and then 

analyzes individuals cell using computer vision image processing techniques. The pipeline is 

designed to be run overnight in a small cluster of computers. Further, a quality-control web-

based interface is used to validate the results of the automated pipeline. This approach will 

be useful to researchers that seek to acquire and process significant amounts of data all 

within the laboratory environment.

2. Standardized data enable automated processing

Data is the cornerstone of research. Strong efforts are being made towards data 

interoperability[53] and standardized data and metadata formats.[54],[55],[56] Guidelines for 

data storage and management are actively being published with a focus on open standards.
[57],[58],[59],[30],[60],[61] In this article we will detail methods to manage medium-to-large 

acquired datasets within the laboratory, with a focus on storing data for automated analysis.

Data in biomedical research is often acquired by devices that enable high throughput data 

acquisition such as microscopes, OCT devices, or MRI scanners. The data may be initially 

stored on the same computer that is attached to the physical acquisition device. After the 

acquisition session is ended, the data should be immediately archived to a data storage 

system. This can be automated via free and open source software such as rsync (https://

rsync.damba.org, accessed on 13.03.2019) to ensure that acquired data is safely stored.

To maximize efficiency, there should always be an inherent hierarchy associated with the 

data. It should be defined before the start of the project and imposed through its duration. In 

our laboratory, for example, we keep the following hierarchy: Project / Data type (raw, 

processed, ...) / Date of experiments/ Subject / Experiment. The hierarchy can be reflected in 

the directory structure of the file server system of the laboratory, or through the imposition 

of relational databases. In practice, we favor the former solution, for its ease of use. When 

using home-built programs and data acquisition software, data storage structure can and 

should be built directly into the code. For example, in one of our projects, a home-built 

confocal microscopy software package was designed to automatically create a file structure 

based on user-defined conditions for each experiment. This automatically generated 

structure included the project name, the date of data acquisition, the type of data being 

stored, and a timestamp that accompanied each collected file. This automatic storage 

structure mechanism made the collected data instantly traceable and straightforward to 

analyze en masse post-acquisition.

For automated data processing, we make use of centralized data storage systems, such as 

network attached storage (NAS) devices. This approach allows the different members of the 

team to “mount” and externally access data on their networked desktop machine for 

inspection. Centralized data storage systems with a large HD capacity (around 50 TB) are 

available for only a few thousand dollars. The market of NAS systems has blossomed, 

especially with the addition of easy-to-use web interfaces, computing capabilities, and 

containerization to these servers. In our laboratory, for example, we have centralized the data 

for a single project into a 10-disk 40Tb NAS server, to which more HDs could be added as 

need-be.
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Alternatively, the data can be stored on the cloud and cloud computing can be used for its 

analysis. Cloud services refer to online, on-demand computational services, such as file 

storage, that are managed by a cloud provider such as Google. Universities and hospitals 

often make these services available directly to users. Recently, services such as Dropbox, 

Google Cloud and Amazon Web Services can even be made HIPAA (the US Health 

Insurance Portability and Accountability Act) compliant if the right care is taken in their 

configuration. Cloud services can offer many advantages at the cost of a larger set-up time. 

Their use should be considered based on the amount of data to be collected, the time 

required to upload the data to cloud services, as well as the processing power needed to 

analyze the data. For example, Dropbox and other companies offer cloud storage tiers as 

large as tens of petabytes, storage sizes that are currently unavailable to many scientists. 

While setting up servers for remote computing and storage on a cloud provider can be 

slower than deploying on a locally-accessed machine, the availability of virtualized 

computing power for some applications can more than make up for this. For example, 

Google offers the Google Cloud Platform for data analysis where a user can log in to request 

a virtual computer with specific characteristics for data analysis, such as number of CPUs, 

RAM size, and number and type of graphics processing cards. Processing data on such cloud 

systems can make use of computing time on hardware, billed by the minute, that may 

otherwise be too expensive or exotic to be normally accessible. At the same time, cloud data 

storage and processing can be expensive; terabytes of cloud data storage can lead to 

prohibitively large costs if not planned or managed correctly. Table 1 shows a price 

comparison of data storage and computing possibilities between local and cloud-based 

sollutions.

3. Automated pipelines turn raw data into actionable insights

Data processing can be abstracted in the concept of a pipeline - a set of processes applied to 

the data to synthesize conclusions. Often, at each step of the pipeline, the data is reduced by 

eliminating information that is irrelevant for the project. Depending on the specific project 

and analytical methods, the steps of the pipeline can be automated or require manual input. 

For many of our projects, the ultimate goal of automated data processing is to let the 

scientist draw conclusions from the acquired data without any manual input. This push 

towards full automation removes the burden of step-by-step manual data analysis, freeing 

the scientist to focus on experiment design, data acquisition and interpretation.

Recent advances in computer vision and artificial intelligence have brought automated 

image analysis algorithms to a level that could be often considered on-par with inter-reader 

agreement. Deep convolutional neural networks excel at object localization, image 

segmentation and object tracking in video sequences. These findings have been adopted for 

biomedical image analysis. As an example, In Fig. 2 we present an automated data 

processing pipeline for microscopy. Raw images are first acquired. Cells are then identified 

in each field of view using an object detector based on a deep convolutional neural network 

(SSD).[62] Regions of interest around the cells are then extracted from the raw data. From 

each of them we extract the contour of the cell, including bound PNPs, with a segmentation 

deep convolutional neural network (U-Net).[63] Finally, we count -- using a standard image 

processing technique (blob-detection) -- the number of gold nanoparticles attached to the 
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cell. This tabular data is then ready for analysis via R or Python scripts. In this project, the 

raw data collected can be quite large. Each experiment consists of roughly 20 fields of view, 

each field of view consisting of an uncompressed 3D color image 650 MB in size. If four 

experiments are carried daily, this makes the total data collection nearly 52 GB per day.

It is worth noting that while the analytic tools developed here, including deep-learning based 

methods, are used for post-acquisition data analysis, such approaches can be implemented in 

the future to improve data acquisition. Neural networks and computer vision techniques 

could play a potential role in real-time processing of a live image feed to provide guidance 

and feedback a scientist or operator. For example, images acquired on a camera system 

could be processed to guide the selection of optimal image fields, or to ensure that the cells 

of interest are at the center of the microscope focus. Similarly, neural networks could be 

used to process image data during acquisition in a quality control step: real-time analysis of 

the image could provide a user information on the signal-to-noise, signal-to-background, 

viability of the cells, lineage of the cells, and so on. These automated feedback methods may 

be of importance when technology of this kind is commercialized to ensure quality data 

acquisition by minimally trained users or even enable fully automated, computer-guided 

image acquisition.

3.1. Deep learning as a pipeline building block

Training and development of deep learning neural networks is still subject of research. 

However, for many applications, recently developed methods are readily applicable. In the 

processing pipeline we use deep learning to automate two tasks: finding cells in a field of 

view and outlining the contour of the cells for subsequent analysis. Each task is solved by a 

different network structure. For instance, in cell detection networks, the input space is an 

image and the output is a list of boxes representing the location and size of the cells. For cell 

contouring, the input space is an image and the output is another image where pixels 

belonging to the cell are marked as ‘1’, while pixels belonging to the background are marked 

as ‘0’. A key aspect of training deep learning algorithms is the definition of a high-quality 

training database that spans all of the expected image variabilities.

3.1.1 Finding cells in fields of view with deep learning object detection 
networks—Finding objects in natural images has been an intense are of research in 

computer vision and artificial intelligence. Open databases, such as ImageNet [64] have been 

used to benchmark the performance of different algorithms, such as Fast R-CNN [65], 

SSD[62] or YOLO.[66] The choice of which algorithm to implement should be done on the 

basis of the performance of the network on images and the availability of open-source 

implementations that can be integrated with the rest of the pipeline. In our case there is only 

one type of object to be detected: cells. While this may seem a simplistic target at first 

glance, the cells in our experiments are extracted from blood, span a range of sizes and 

compositions, and are often accompanied by spurious image features such as dead cells and 

cellular debris. We have chosen to implement a SSD network due to the availability of a 

python-based implementation, its good performance on ImageNet and the underlying 

simplicity of the network structure.
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Briefly, we reduce each input image stack of 2496 pixels x 3328 pixels x 40 layers x 3 RGB 

channels into a maximum intensity projection down-sampled image of 624 pixels x 832 

pixels x 3 RGB channels. Each cell occupies roughly a window of 20 × 20 pixels on such 

down-sampled image. We define the output of the network as a 39 × 52 grid with 4 channels, 

where the first channel denotes the likelihood of the pixel of belonging to the background, 

the second one the likelihood of the pixel belonging to the cell, and the third and fourth 

channels model the displacement in normalized units in the x and y directions. The reference 

standard is composed of similar grids where background pixels have a 1 in the first channel 

and 0 on the second. In this scenario, pixels that have cells have a 1 in the second channel 

and a 0 in the first channel and the third and fourth channel encode their normalized 

displacement in the original image.

The network is trained using the adaptive momentum optimizer and a hybrid cost function, 

where the first term corresponds to the normalized cross entropy between the first two 

channels of the reference standard and the network’s output. The second term is defined 

only on pixels that have cells in the reference standard and represents the mean error 

between computed and reference displacements. There is a lambda factor between two terms 

to modulate the weight of correct localization with respect to detection, which is fixed 

experimentally to 0.1.

The training database is formed of 7097 fields of view (fov) manually annotated by image 

analysis experts by placing a dot in the central point of the cells. We use 4000 fovs for 

training, 1000 for validation and 2097 for testing. A custom non-maxima suppression 

method is applied to eliminate close-by detections. The Pearson correlation coefficient 

between the number of detected cells using this SSD-based method and the number of cells 

obtained by an expert is of 0.827. The resulting average error in the test set between the 

number of cells found in a field of view and the number of cells present is of 1.7 cells/fov. 

Such results were deemed of good quality by the researchers that are using the system. Most 

of the errors happened in close-by cells, or cells that were partially in the field of view. 

Improvements on the metrics would probably arise from a cleaner dataset. Examples of the 

fovs can be found in Figure 3. The network process the 2097 testing images in 73 seconds, 

at a rate of 35 ms/image using an Nvidia GTX1080Ti graphics card.

It is important to note that, using current AI libraries, this network can be written in 300 

lines of code, as shown in the github repository of the project (https://github.com/

evansgroup/BioEssays2018 ).

3.1.2. Deep learning finds the contours of cells with segmentation networks
—Encoder-decoder network structures with skip connections, such as the U-Net,[63] 

outperform most specialized segmentation methods in a wide variety of tasks. The U-Net 

has, since its creation, been subject to modifications and improvements, with the addition of 

more complex convolutional blocks[67] or squeeze-and-excite methods.[68] While the SSD 

network structure was well suited for object identification tasks, such as the automated 

identification of cells, the architecture of the U-net is particularly optimized for the 

partitioning of images based on image features such as shapes and edges. This makes the U-

net a natural choice for image segmentation tasks.

González and Evans Page 7

Bioessays. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/evansgroup/BioEssays2018
https://github.com/evansgroup/BioEssays2018


In this work we have used a simplified version of the U-Net to segment the contour of the 

cells and bound PNPs due to its ease to code with current AI libraries. The network is 

composed of a 3-step encoder path, each of them with two convolution layers, each of 32, 64 

or 128 filters according to the depth. An image of the network can be found in Fig. 3. The 

network is trained with a database of 1704 manually segmented maximum intensity 

projections of 200 × 200 pixel cell images. 800 images were used for training, 200 for 

validation and 704 were used for testing. The network was optimized using the DICE 

coefficient between the resulting segmentation and the reference standard. The DICE 

coefficient measures the similarity between two segmentation masks by taking twice the 

area of the product of such images and dividing it by the sum of the areas of the two 

segmentation masks. The DICE coefficient will approach 1 when the masks are equal and 0 

when the masks do not share common pixels. Such metric has been proven to have better 

properties than a per-pixel classification method.[69] The network is trained with the ADAM 

optimizer, with a learning rate of 1e-5 and default parameters. The average DICE coefficient 

on the test set was of 0.935. Examples of the contours over the cells can be found in Fig. 3. 

Once the data is loaded, cell contouring provides a mask for a cell in 1ms using a Nvidia 

GTX1080Ti GPU.

3.2. Automated algorithms need to be quality controlled

While a given image analysis routine may seem to be performing well, it is critical to ensure 

that data is being processed correctly and reproducibly. We configure our code to generate 

Intermediate quality control (QC) images that can be readily checked so that researchers can 

trust the data generated via automated processes. QC intermediates, whether they be images, 

tables, or spreadsheets, allow for rapid inspection to make sure that the data and associated 

analysis is working correctly. A QC inspection step can save considerable time and effort 

and ensures that the data meets standards consistently long before a paper, presentation, or 

publication is written. QC is especially important in large-scale experiments, since often it is 

impossible to analyze each intermediate step of the pipeline. Semi-automated methods for 

the identification of outliers are valuable tools to control large-size experiments.
[70],[71],[72],[73] QC-inspection interfaces can be put into place. They are especially important 

when the conclusions of the experiments challenge the experimental setup or the data 

acquisition method. Current web-frameworks, such as Django, (https://

www.djangoproject.com, accessed on 13.03.2019) enable the creation of software that 

expose the contents of a folder structure and create links among their items with few lines of 

code, enabling data analysis to all members of the team. An example of an interface 

developed to inspect the results acquired with the pipeline of Fig. 2 can be seen in Fig. 4. 

Such interface has the capacity to mark cells for exclusion for analysis, for example, in case 

the image processing pipeline fails.

The analysis step typically follows automated image analysis to validate the hypotheses of 

the experiment or infer if more data needs to be acquired. The analysis is often performed at 

the researcher’s computer since a graphical visualization of the extracted data and statistical 

methods are generally needed. Any data analysis software, from python and R to Matlab or 

SAS, can be used to perform such exploration. Both Jupyter and R Studio additionally 

provide outstanding notebook environments that allow for data analysis, exploration, and 
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documentation. When analysis output is either too large to easily transport between 

computers or too complex to analyze on a researcher’s computer, Jupyter and R Studio 

server software provide a browser-based means of remote graphical processing that process 

data in-place. For example, we have deployed multiprocessor and GPU-equipped data 

processing servers running Jupyter to enable GPU-accelerated data analysis routines that 

would not be feasible on a personal computer.

4. Deploying experimental software for routine use

Software is often developed on personal computer, validated in a subset of the data, and then 

encapsulated for deployment in the whole dataset. This process is often iterative as 

improvements or adaptations are needed when new data arises. For good practices on 

software development we refer the reader to Wilson et al.[74] Software version control 

systems, such as git, should be used to track changes in the developed software. General 

guidelines on their use can be found in Blischak et al.[48] Git provides a powerful set of tools 

for writing code both individually or as a team. Rolling back to an earlier code version is 

straightforward and git is scalable to large teams all writing code together.

When co-developing software, it is important that the team uses the same libraries on their 

different development machines. The python programming language, for example, provides 

tools to list all software dependencies installed. New users can use such lists to re-generate 

the same precise development environment across different computers and operating 

systems. Package managers for languages such as python and R provide a simple means of 

identifying and installing all the required libraries for analysis. Examples of such lists are the 

requirements.txt files generated by the pip (Pip Installs Python) package manager. All one 

has to do to make their code portable to other users is to generate a requirements.txt file and 

include it with the packaged code. When a user downloads the code repository, pip can read 

the file and set up a “virtual” environment that houses all of the correct versions of required 

libraries. Similarly, the conda python distribution also can manage python packages and 

generate virtual environment description files to accomplish the same purpose.

Running the same software in different machines under different operating systems can be 

challenging, making multi-platform development cumbersome. Even when using the same 

operating system, different installed versions of computational libraries can lead to 

incompatibilities that render software unreliable. A first abstraction to deal with such issue 

was the use of the virtual machine: a guest operating system that runs within the host 

operating system in virtualized hardware. This model has recently been extended with the 

concept of operating system virtualization, also called containerization. Each container holds 

a stripped-down version of the operating system that encapsulates only the libraries required 

to run specific code. Containers have the advantage of being relatively lightweight, can be 

created as needed and replicated on-demand to run processes in parallel. Today, the most 

popular containerization software is Docker (www.docker.com, accessed on 13.03.2019). 

Docker containers can be run locally using standard Linux tools and can be configured run 

at scheduled times using cron. This approach is appropriate for cases when there is only one 

server processing the data. Importantly, Docker is available for Linux, Windows, and 

MacOS, meaning that once a container is made, it can be run anywhere and on any machine.
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Containers are now widely in use for development and web services and are finding new life 

in the burgeoning area of data science. In a scientific research environment, the allure of 

containers is clear: a program and all the software libraries necessary for its execution can 

simply be placed in a container and distributed. This ensures that the program will run 

consistently across all computers and servers in the laboratory, whether it is on a student’s 

Windows laptop or a departmental Linux server. This can be ideal for research 

environments, as it becomes simple to distribute both data and its associated analysis as 

readily traceable and easily documented bundles. This approach is immediately attractive for 

translational research, where bench-side routines need to be transformed into analyses that 

can be run by clinical collaborators. Distributing containers can ease this process and ensure 

that the code and environment running on a clinical computer system matches the needs of 

the project. Containers are also a potential means by which scientists can address some 

concerns regarding data and analysis repeatability. Analysis routines written in one lab can 

be easily transferred to another and be guaranteed to work out-of-the box. When used along 

with proper data storage approaches and version control, containerization can be a powerful 

way to ensure standardized analysis.

5. Parallelizing the effort: running the code automatically in several 

computers simultaneously

Let’s imagine we have already collected the data, generated manual annotations, trained 

artificial intelligence models, generated a Docker infrastructure to guarantee that our code 

runs in any computer, and that we acquire 60Gb of data from a day of experiments. How do 

we process that data to generate actionable information? In our laboratory we process the 

data using the Linux utility called cron (https://linux.org/docs/man8/crond), that runs a 

background process at a given time. Every evening at a fixed time, a script inspects the 

directory structure for unprocessed data, and in the case that it exists, triggers the image 

processing pipeline on it. This works well for normal, routine data collection in the 

laboratory, as the size of any new data is amenable for analysis within a few hours. In some 

cases, when the data processing is slow or the amount of new data is large, overnight 

processing in a single device might not be enough. In these cases, the pipeline is run for 

several days until complete. In some scenarios, however, this approach may result in days or 

weeks of analysis time, making parallel data analysis methods preferred.

Running the code on several computers is a complex topic covered by the field of clustering 

and cluster orchestration. In our case, clustering operations are simple, since each image is 

independent of the others. This situation, often called ‘embarrassingly easily parallelizable’, 

only requires of infrastructure of a master node that allocates individual image analyses to 

the processing nodes according to their capacities. The parallelization will bring benefits to 

computation time when the image processing time is large in comparison with the image 

loading time.

While several cluster management and orchestration methods exist, we advocate for the use 

of Kubernetes (https://kubernetes.io, accessed on 13.03.2019), an open-source platform, due 

to its availability and tight bounds with Docker. This enables the use of heterogeneous 
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nodes, as might be the case in small-scale laboratories. Kubernetes requires a Kubernetes 

cluster. A computer is assigned the role of master node, to which the rest of the computers 

are registered. The master node dispatches pods (running processes) to the nodes according 

to their capacities. A job is the set of pods that are created to perform a set of operations on 

independent data (Figure 5).

Following with the example of Fig. 5, a pod processes a field of view to extract cells, and for 

each of them find their contour and count the number of bound PNPs to it. The job would be 

to process all fields of view. Each pod will be dispatched among the available servers 

according to their capacities. Several pods can be placed at the same time in the same node. 

In our laboratory, using 3 nodes, we have reduced the average processing time for each field 

of view from 1 minute to 12 seconds. This 5x improvement comes from the parallelization 

between the nodes and within the nodes.

We run the jobs in the Kubernetes cluster every night, using a script triggered by the Linux 

cron utility. Such scripts inspect the data structure, finds unprocessed images and generates a 

Kubernetes pod description file for such image. Then the master node generates and 

orchestrates all pods, that will be consequently executed.

This use of Kubernetes demonstrates that these analysis pipelines can be parallelized and 

accelerated. A future challenge, especially if these types of analysis move out of the 

laboratory and into diagnostic settings, will be the need for far faster computing for on-

demand or even real-time analysis. This so-called “edge computing” challenge may be well 

addressed by the emergence of specially designed neural network processors designed to 

efficiently carry out machine learning tasks. While the training of neural network models 

largely requires GPU-powered workstations, the actual step of calculating inference can be 

carried out on these special purpose chips, very much like how machine learning currently 

augments the cameras in many smartphones. These chips are being combined with system-

on-a-chip devices (SoCs) in a new wave of single-board computers, such as the Google 

Coral. The low cost (~$150) and small form factor of these edge computing devices may 

enable the construction of data analysis systems composed to dozens of boards capable of 

providing efficient and fast parallel computation for the pipeline approach described here.

6. Conclusions and outlook

The analysis of large image datasets is an everyday research task for biomedical engineers. 

A concise data policy and automated image processing can help the everyday work of 

laboratories. Deep convolutional neural network methods show high level of performance 

and can automate daunting tasks. Recent computer science techniques developed for cloud 

computing, data sharing, operating-system virtualization, and cluster orchestration provide 

abstractions of data and computation management applicable to biomedical engineering and 

translational research. While these technologies take some time to set up, from our 

experience, they can pay off greatly for medium to large research studies.

When dealing with medium-to-large datasets, we propose the following recommendations: 

a) centralize the data, b) establish a data storage policy, c) establish a data processing 
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pipeline, d) process overnight automatically, e) use the same code for prototyping and 

processing, f) compartmentalize using container software, g) deploy using clustering 

management software if needed and h) perform quality control images of the results. Such 

recommendations have been adopted in our laboratory for the last 3 years and have enabled 

us to deal with multi-terabyte research projects.

While the tools described here are applied to imaging data, they are not unique to images 

and can certainly be applied to other types of data, such as mass spectral data and DNA 

sequences.

We are now in the process of expanding the discussed analysis approaches into all current 

and future studies to eliminate analysis bottlenecks and accelerate the pace of translation. To 

provide those interested in further examples, a code repository has been set up via the Evans 

Laboratory Github page (https://github.com/evansgroup/BioEssays2018, accessed on 

13.03.2019).
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Figure 1. 
Flow of data for an experiment. The data is acquired with an acquisition system and is 

archived in a data storage system. A processing cluster, with one or more nodes, retrieves the 

acquired data and process it through an analysis pipeline generating processed data and 

intermediate quality control images. Internally, the processing cluster can split tasks among 

their nodes using cluster orchestration software. Finally, the processed data and quality 

control images are inspected by the researcher to draw the conclusions of the experiment.
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Figure 2. 
Example of data flow in an image processing pipeline. From left to right: the raw image of 

the field of view is loaded and pre-processed. Cells are extracted from such field of view and 

are then analyzed to find the number specific features within. A quality control image is 

generated to inspect if the cells are properly located and if the bright locations are properly 

identified. All cell counts within the fields of view of the experiment are aggregated into a 

CSV file and plotted in a histogram.
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Figure 3. 
Deep learning networks. A) Network used to find cells in a field of view and an example of 

its performance. Red boxes in the fov stand for the reference standard. Green boxes stand for 

the detected cells. Please note the variable background. B) network used to find the contour 

of cells and examples of the contour on processed cells (with detected bound PNPs). Please 

note how the method is robust to background artifacts. In the network images, blue boxes 

correspond to convolution operations, red boxes to batch normalization, orange to max-

pooling, dark green to upsampling operations, concat stands for concatenate, NMS for non-

maxima-suppression and the yellow box stands for a convolution with a sigmoid activation 

function. Each layer has its associated parameters on the box.
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Figure 4. 
Quality control interface. The interface, based on web-technologies, allow to easily inspect 

an experiment, consisting on approximately 150 cells and select which ones to exclude from 

further analysis from a maximum intensity projection of the cell with the bound PNPs (left 

image). Clicking on any cell allows for a display of each of the z-layers of the cell (right 

image).
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Figure 5. 
Abstract layers of software development using python as an example. The python 

environment configuration is specified through the use of a requirements.txt file. The 

operating system where the python code runs is specified through the use of a Dockerfile. 

Such OS is encapsulated within a container and the container within a Kubernetes pod. The 

cluster manager generates the set of pods that consist a job (for example, running cell 

extraction routine of the pipeline of Fig. 2 on all acquired images). The job is then executed 

on the processing cluster.
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Table 1.

Comparison of data storage and computing alternatives, advantages and disadvantages. Prices estimated on 

March 2019.

Data Storage

Brand Type Capacity Price Pros Cons

QNAP NAS 50Tb 4,000$.
80$/Tb

Transmission speed.
Data availability.
Unlimited users.

Local setup and management.
Limited capacity.

Dropbox Cloud sync ∞ 180$/user year - min of 
540$

Wide adoption. Manual selection of files to sync.

Box Cloud sync ∞ 162$/user year – min of 
486$

Data available locally 
through a cache 
system.

If many files are accessed at the 
same time, speed on the internet 
connection.

Amazon S3 Cloud storage ∞ 264$/Tb year ∞ Pricing. Access through key-
value pairs.

Google Cloud storage ∞ 240$/Tb year ∞ Pricing. Access through key-
value pairs.

Computing

Server Local 1 GPU, 
4CPU, 32Gb 
RAM

3200$ Always available.
Multi-purpose.

Local Management.

Amazon Cloud 4600$/year $0.75/hour Pay per hour.
Scalability.

Data needs to be in the cloud in 
key/value.

Google Cloud 4294$/year $0.49/hour Pay per hour.
Scalability.

Data needs to be in the cloud in 
key/value.
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