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Abstract

Metabolic alterations are established as a hallmark of cancer. Such hallmark changes in cancer 

metabolism are characterized by reprogramming of energy-producing pathways and increases in 

the generation of biosynthetic intermediates to meet the needs of rapidly proliferating tumor cells. 

Various metabolic phenotypes such as aerobic glycolysis, increased glutamine consumption, and 

lipolysis have also been associated with the process of metastasis. However, in addition to the 

energy and biosynthetic alterations, a number of secondary functions of enzymes and metabolites 

are emerging that specifically contribute to metastasis. Here, we describe atypical intracellular 

roles of metabolic enzymes, extracellular functions of metabolic enzymes, roles of metabolites as 

signaling molecules, and epigenetic regulation mediated by altered metabolism, all of which can 

affect metastatic progression. We highlight how some of these mechanisms are already being 

exploited for therapeutic purposes, and discuss how others show similar potential.
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Introduction

Despite recent exciting developments in cancer treatments, it is evident that metastatic 

disease is still a fundamental barrier to improved outcomes for the majority of patients. 

Indeed, metastatic disease is the main cause of cancer deaths. Metastatic progression is a 

multi-step process, that recent work suggest may actually begin early in cancer development, 

although this is still being investigated [1]. In order to establish metastatic colonies, cancer 

cells must alter themselves in a number of ways, including acquisition of a motile 

phenotype; transition from an epithelial to mesenchymal phenotype; acquisition of ability to 

enter, survive in, and exit the vasculature; and development of mechanisms to enable 

survival and ultimately outgrowth at distant sites. Cellular metabolism underlies many of 
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those alterations and dysregulation of energy metabolism has been well established as a 

hallmark of cancer biology [2]. For example, the Warburg-effect, or the observation that 

highly proliferative cells such as tumor cells are largely dependent on glycolysis to meet 

their energetic needs even in the presence of oxygen, is frequently associated with cancer 

development. Outside of the bioenergetic consequences of altered metabolism however, 

recent research has established non-canonical functions of metabolic enzymes and 

metabolites that contribute to cancer progression. Understanding these novel pathways could 

reveal innovative ways to specifically target the metastatic process. Here we describe 

evidence for novel mechanisms that link metabolic alterations in cancer and metastatic 

progression, and highlight some potential therapeutic strategies that can arise as a result.

Atypical Intracellular Roles of Metabolic Enzymes in Metastasis

Metabolic alterations observed in cancer are often accompanied by dysregulation of the 

expression of metabolic enzymes. Secondary functions of these metabolic enzymes have 

been shown to contribute to metastatic progression through altering the signaling and genetic 

landscape of cancer cells. Glycolysis is a basic process that links glucose uptake with the 

initial steps of energy production as well as biosynthesis. However, several glycolytic 

enzymes also have a number of effects outside of their classical enzymatic activity. For 

example, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) can form a complex with 

the transcription factor Sp1 that binds to the SNAIL minimal promoter to drive its 

expression [3]. The expression of SNAIL contributes to metastasis through induction of 

epithelial to mesenchymal transition (EMT) and a more stem-like phenotype. EMT is an 

important process in metastasis that can cause epithelial cells to lose E-cadherin mediated 

cell-cell adhesion and gain an invasive phenotype allowing them to move away from the 

primary tumor into surrounding stroma and potentially into the vasculature. Suppression of 

GAPDH resulted in loss of stem cell markers that was linked to decreased tumor-forming 

ability in a colorectal cancer model [3]. Another example is Pyruvate kinase M2 (PKM2), 

which is an isoform of the enzyme that catalyzes the conversion of phosphoenolpyruvate to 

pyruvate. This isoform is frequently upregulated in cancers and has many pro-tumorigenic 

roles [4]. One way that PKM2 can contribute to metastatic progression is through EMT. 

PKM2 is able to translocate to the nucleus and form complexes with TGIF2, a repressor of 

Transforming Growth Factor (TGF)-β signaling, and histone deacetylase 3 (HDAC3) [5]. 

The PKM2 nuclear complex was shown to bind to the CDH1 promoter and deacetylate it 

leading to repression of E-cadherin expression.

Although not strictly acting non-canonically, an atypical role of glycolysis important for 

invasive phenotypes relates to the finding of glycolytic enzymes in abundance in 

invadopodia [6]. Glycolysis appears to be the primary energetic pathway for cytoskeleton 

remodeling in several breast and prostate cancer models [7]. When glycolysis was inhibited 

through treatment with 2-deoxy-D-glucose, there was a decrease in focal adhesions and 

motility in PC3 prostate cancer cells. In contrast, inhibition of oxidative phosphorylation 

with oligomycin had no effect on the motility of prostate cancer cell lines. In addition, the 

association of glycolytic enzymes with the cytoskeleton is important for the viability of 

cancer cells [8–10]. Treatment of Lewis lung carcinoma, colon carcinoma, or breast cancer 

cells with clotrimazole, a calmodulin antagonist, resulted in decreased cell viability [9]. The 
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decrease in cell viability was preceded by dissociation of glycolytic enzymes from the 

cytoskeleton, resulting in a reduction of local adenosine triphosphate (ATP) supply to the 

cytoskeleton and subsequent altered morphology. Citric acid cycle enzymes are also 

associated with increased metastasis. Enhanced expression of ATP citrate lyase, which 

catalyzes the conversion of citrate to acetyl-CoA and oxaloacetate, is linked to increased 

lipogenesis. Normally, the majority of lipids used for cellular functions including lipid 

membranes are obtained from the diet or produced in the liver. The biosynthesis 

requirements of rapidly proliferating cancer cells can result in alternative mechanisms 

including generation of acetyl-CoA through the activity of ATP citrate lyase. The acetyl-

CoA is then a substrate for fatty acid synthase, ultimately leading to membrane lipid 

production. Inhibition of fatty acid synthase and ATP citrate lyase slowed tumor growth and 

inhibited metastasis in non-small cell lung cancer, cervical cancer, and prostate cancer [11–

13]. Concordantly, expression of microRNA 22 (miR-22), which inhibits ATP citrate lyase 

expression, is downregulated in a number of cancers [14,15]. The ectopic expression of 

miR-22 was shown to decrease de novo lipogenesis and metastatic ability in breast, lung, 

osteosarcoma, cervical, and prostate cancer [14]. ATP citrate lyase is a prospective 

therapeutic target and there are several novel inhibitors under investigation [12,16].

Dysregulation of succinate dehydrogenase activity, which normally catalyzes the conversion 

of succinate to fumarate, is associated with a number of cancers including 

pheochromocytoma, renal cell carcinoma, and paragangliomas [17–19]. Decreased succinate 

dehydrogenase activity leads to accumulation of succinate which inhibits prolyl-hydroxylase 

(PDH) [20]. This inhibition of PDH stabilizes hypoxia-inducible factor 1-alpha (HIF-1α), 

thus activating pro-angiogenic HIF-1α signaling. Additionally, succinate dehydrogenase 5 

(SDH5) has been shown to regulate glycogen synthase kinase (GSK)-3β signaling in lung 

cancer [21]. SDH5 forms complexes with GSK-3β, and PP2A, a phosphatase that regulates 

activity of GSK- 3β. Loss of SDH5 results in increased β-catenin signaling and subsequent 

EMT in lung cancer. Evidence also suggests that genetic ablation of succinate 

dehydrogenase subunit b (SDHB), increases TGF-β signaling and activates a complex of the 

transcription factors SNAIL and SMAD3/4 leading to a metastatic phenotype in colorectal 

cancer cell lines [22]. Indeed, lack of SDHB expression is associated with invasive and 

metastatic disease in colorectal patient samples.

Glutamine addiction is another emerging metabolic hallmark of cancer cells [23]. The 

glutamine hydrolyzing enzyme, glutaminase has multiple isoforms that have differing effects 

on disease progression in cancer [Figure 1]. Increased expression of glutaminase 1 in triple- 

negative breast cancer is associated with poor disease-free survival, and decreased tumor 

infiltrating leukocytes [24]. The enhanced uptake and utilization of glutamine by the tumor 

cells results in decreased availability of this carbon source in the tumor microenvironment. 

The lack of environmental glutamine, which is important for lymphocyte function [25,26], 

may explain the decrease of tumor infiltrating lymphocytes and poor prognosis associated 

with glutaminase expression in triple negative breast cancer. Glutaminase 2, the liver 

isoform of glutaminase, appears to have an opposing role to glutaminase 1, as it is able to 

inhibit metastasis through protein binding instead of its classical catalytic functions. 

Glutaminase 2 was shown to bind the small GTPase Rac1, a pleiotropic regulator of multiple 

cellular processes [27]. The binding of Rac1 by glutaminase 2 blocks interactions with 
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guanine exchange factors resulting in Rac1 inhibition. Glutaminase 2 is also known to 

stabilize Dicer, which results in the maturation of miR- 34a [28]. MiR-34a can repress the 

EMT transcription factor SNAIL and inhibit metastasis in hepatocellular carcinoma.

Enzymes associated with nucleotide metabolism are also able to affect metastatic 

progression. Guanosine 5’-monophosphate synthase (GMPS) was shown to regulate p53 

function through altering deubiquitylation complex [29]. GMPS is an enzyme normally 

involved in de novo purine biosynthesis, and is usually sequestered in the cytosol by 

TRIM21. A complex between USP7, MDM2, and p53 is formed in the nucleus that results 

in the ubiquitylation and degradation of p53. However, upon genotoxic stress GMPS is 

imported into the nucleus. When in the nucleus GMPS replaces MDM2 in the complex, and 

induces USP7 mediated deubiquitylation and stabilization of p53, resulting in increased 

transcription of p53 target genes. Loss of normal p53 function has been associated with 

metastasis [30]. Understanding how to target enzymes such as TRIM21 to promote this 

secondary function of GMPS and thus induce p53 activity has potential as a therapy for 

metastasis.

Extracellular Roles of Metabolic Enzymes in Metastasis

A number of metabolic enzymes can actually be secreted and drive cancer progression 

through alternative roles as signaling molecules. The most studied example of a secreted 

metabolic enzyme acting as a signaling molecule is phosphohexose isomerase (PHI), also 

known as autocrine motility factor (AMF), neuroleukin, or maturation factor. The canonical 

role of PHI is early in glycolysis where it catalyzes the conversion of glucose-5-phosphate to 

fructose-6-phosphate. The expression of PHI is under the control of HIF-1α, and 

phosphoinositide 3-kinase (PI3K) [31,32]. When secreted from cells, PHI exhibits functions 

outside of its normal enzymatic role by binding and signaling through its cognate receptor 

gp78 [33] [Figure 2]. PHI expression enhances metastasis in pancreatic and colorectal 

cancer [34,35]. One of the ways that PHI contributes to metastasis is through induction of 

EMT. Ectopic expression of PHI is sufficient to drive EMT in a number of cancers including 

breast cancer [36] and endometrial cancer via mitogen-activated protein kinase (MAPK) 

signaling [37]. PHI can also signal through NF-κB resulting in increased expression of the 

mesenchymal transcription factors ZEB1, and ZEB2 in addition to decreasing expression of 

miR-200, a microRNA that represses expression of ZEB1 and ZEB2 [38].

Expression of PHI was shown to increase motility of cancer cells by regulating expression of 

microtubule associated proteins such as kinesin-like protein KIF3A [39]. PHI also plays a 

role in cytoskeletal dynamics by modulating expression of Rho GTPases and Rac1 [40]. 

Expression of PHI in melanoma cells leads to the formation of stress fibers that are 

importance for cell migration. Additionally, PHI can increase the invasiveness of hepatoma 

cells by increasing expression of integrin β1, which is important for cellular adhesion to 

extracellular matrix, and secretion of MMP2, which plays a role in degrading the 

surrounding extracellular matrix and allowing tumor cells to invade [41]. In all these cases, 

PHI is thought to act in an autocrine manner, binding to the same cells from which it is 

secreted. Outside of intrinsic cancer cell signaling PHI has also demonstrated paracrine 

activity. Expression of the PHI receptor, gp78, was reporting in normal endothelial cells 
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[42]. PHI secreted by tumor cells signaled in an autocrine manner to increase expression of 

vascular endothelial growth factor (VEGF) in cancer cells. Simultaneously, PHI acted in a 

paracrine manner on endothelial cells in order to increase expression of VEGF receptor 

FLT-1 and endothelial cell motility. Together these events increased the permeability of 

endothelial vessels and contributed to formation of ascites in a mouse mode l[43].

A number of other metabolic enzymes may contribute to cancer progression upon their 

secretion. Secreted phospholipase A2 (sPLA2) has been shown to have differing roles 

dependent on its localization. When expressed intracellularly, sPLA2 can inhibit Wnt 

signaling through activation of Yap in intestinal tissue [44]. Upon inflammation however 

sPLA2 is secreted into the lumen where it increases Wnt signaling, and prostaglandin E2 

synthesis via the sPLA2 receptor Plar2r1 which is associated with increased susceptibility to 

colon cancer [44]. Increased Wnt signaling is also associated with metastasis, and EMT in 

cancer [45]. In addition, sPLA2 has been shown to confer protection against lipotoxic stress, 

and nutrient deprivation in breast cancer cell lines [46]. Peroxredoxin 4 (PRDX4), the only 

secreted member of a family of peroxidase enzymes, was shown to induce 

osteoclastogenesis in a RANKL independent manner [47]. The secretion of PRDX4 led to 

increased ERK, and calcium/NFATc1 signaling which is mediated by the IgG like receptors 

OSCAR and TREM-2. Genetic ablation of PRDX4 expression led to decreased 

oseteoclastogenesis in vitro, and decreased osteolytic lesions in mice in the setting of breast-

prostate-to-bone metastasis. Changes in metabolism commonly observed in cancer often 

result in the accumulation of metabolites. These metabolites can act as intracellular or 

extracellular signaling molecules that have multiple effects, which are sometimes contrary to 

each other. For example, incubation of metastatic prostate cancer cell lines with citrate has 

been shown to enhance motility and invasion, as well as inhibit cell adhesion [11]. 

Moreover, in lung adenocarcinoma and squamous cell lung cancer, expression of SLC25A1, 

a transporter responsible for transporting citrate out of the mitochondria into the cytosol, 

could drive cancer cells to a stem-cell like phenotype, and increase colony formation [48]. In 

contrast, there is some evidence that treatment with citrate can slow tumor growth in a 

number of tumor models including breast, lung and pancreatic cancer [49]. The treatment 

with citrate was shown to inhibit glycolysis, and insulin-like growth factor 1 receptor 

phosphorylation. This corresponds with evidence of decreased citrate levels being a 

biomarkers in prostate cancer[50].

Glutamine is imported into cells through various transporters, including ASCT2 (also known 

as SLC1A5) [51] [Figure 3]. Blocking glutamine uptake by ablation of ASCT2 expression 

causes decreased proliferation, and activation of mTORC1 signaling in prostate cancer cells 

[52], as well as decreased migration in osteosarcoma, and triple-negative breast cancer [53]. 

Pharmacological blockade of ASCT2 mediated glutamine uptake by GPNA and 

benzylserine was shown to have anti-tumor effects in endometrial carcinoma [54]. A novel 

class of 2-amino-4-bis(aryloxybenzyl)amino butanoic acid (AABA) derived drugs designed 

to target ASCT2, such as V-9302, have been demonstrated to decrease proliferation, and 

increase cell death, and oxidative stress [55]. Recent evidence however, suggests that V-9302 

may instead block glutamine uptake mediated by redundant glutamine transporters that show 

increased expression in some cancers such as SNAT2 [56]. In melanoma cells, glutamine can 
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inhibit platelet-activating factor-induced MAPK signaling [57], resulting in decreased 

metastasis and angiogenesis downstream of platelet-activating factor signaling.

The first step in the catabolism of glutamine is the conversion from glutamine to glutamate. 

Glutamate can also play an important role in regulating the metastasis of cancer by acting as 

a signaling molecule [Figure 3]. Disruption of the glutamate-cysteine antiporter xCT (also 

known as SLC7A11) leading to the retention of cellular glutamate and reduction of cysteine 

consumption, results in decreased proliferation, and decreased invasion in non-small cell 

lung cancer [58]. In addition, inhibition of xCT leads to decreased viability in glucose 

deprived states [59]. When xCT is functional and glutamate is exported, glutamate can 

signal through multiple types of receptors. The first class of glutamate receptors are 

metabotropic glutamate receptors [60]. G protein-coupled receptors that are able to activate 

multiple pro-tumorigenic signaling pathways such as MAPK and AKT signaling. Genetic 

manipulation of metabotropic glutamate receptor 1 (GRM1) to reduce its expression led to 

decreased proliferation of ER positive breast cancer cells [61]. Treatment of the oral cancer 

cell line B88-SDF-1 with an antagonist of metabotropic glutamate receptor 5 resulted in 

decreased metastasis and invasion in vivo and in vitro, respectively. Another class of 

glutamate receptor is the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) receptors, which are ionotropic receptors that act as ion channels. Activation of 

AMPA receptor was shown to drive invasion in pancreatic cancer cells via MAPK signaling 

[62]. Knockdown of the glutamate receptor AMPA4 reduced expression of genes associated 

with adhesion, and invasion [63].

Another important metabolic fate of glutamate is its conversion to gamma-aminobutyric acid 

(GABA) by glutamate decarboxylase. Expression of glutamate decarboxylase 1 increased 

the ability of breast cancer metastases to utilize glutamine [64]. GABAergic signaling in 

breast cancer was also found to increase migration and invasion in breast cancer [65]. The 

increase in migration, and invasion was mediated through ERK1/2 signaling. GABA 

receptor activation also affected the survival of the chondrosarcoma cell line OUMS-27 [66]. 

When the cells were exposed to the GABA antagonist CGP, the activities of apoptotic 

proteins caspase 3 and caspase 9 were elevated.

Along with alterations in cancer cell metabolism, perturbations in the metabolism of tumor 

stroma are emerging as a key driver of metastatic progression. The interactions between 

cancer-associated fibroblasts, and tumor cells is described as a ‘reverse Warburg effect’ 

where cancer cells induce metabolic reprogramming of fibroblasts leading to increased 

aerobic glycolysis [67], as well as increased expression of monocarboxylate transporter-4 

(MCT4) [68] resulting in release of lactate into the tumor microenvironment. This is 

correlated with upregulated expression of monocarboxylate transporter-1 (MCT1) mediated 

lactate uptake in cancer cells which has been shown to contribute to survival and growth 

[68], as well as tumor migration [69]. The role of secreted lactate in disrupting innate and 

adaptive immune responses has been comprehensively reviewed elsewhere [70]. Novel roles 

of lactate in modulating immune response are also constantly emerging such as its ability to 

activate NF-κB in CD4+ T-cells and drive their polarization to the immunosuppressive Treg 

subtype driving prostate carcinoma progression [71]. Metabolic symbiosis has been shown 

to work both ways with fibroblasts reprogramming cancer cell metabolism to increase 
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glycolytic metabolism and secretion of lactate to support metastasis [72] as well drive 

secretion of hepatocyte growth factor (HGF) from fibroblasts inducing resistance to tyrosine 

kinase inhibitor therapy [73].

Metabolism and Epigenetic Regulation in Metastasis

An emerging area of research in cancer is alterations in epigenetic activity that are controlled 

by metabolic changes [74,75]. A striking example is the association of epigenomic 

reprogramming and metabolism with distance metastases in pancreatic cancer [76]. The 

development of distant metastases was associated with global epigenetic changes including 

increases in histone acetylation, and decreased histone methylation. Metastatic lesions with 

these epigenetic changes frequently exhibited increased oxidative pentose phosphate 

pathway activity driven by overexpression of 6-phosphogluconate dehydrogenase (PGD). 

Inhibition of PGD in distant metastases reversed the epigenetic changes, indicating that 

increased oxidative pentose phosphate pathway activity is essential for disease progression 

in pancreatic cancer. Further work from the same authors showed that the metastatic capable 

cells evolved a pentose conversion pathway to provide substrate for PGD thus maintaining 

its hyperactivity [77]. This conversion pathway is distinct from the rate-limiting pentose 

phosphate pathway and is evidence of a novel metabolic program that appears to especially 

promote the metastatic phenotype via regulating the epigenome.

Altered metabolism can contribute to changes in the epigenomic state of cancer cells by 

providing cells with substrates for epigenetic enzymes [Figure 4]. ATP citrate-lyase (ACLY), 

which catalyzes the conversion of citrate to acetyl-CoA has been identified as an important 

enzyme for producing the nuclear pools of acetyl-CoA used by enzymes that control histone 

acetylation such as histone acetyltransferases [78]. Such as pathways has been suggested as 

necessary for polarization of macrophages to an ‘M2’ or alternatively activated tumor-

promoting phenotype [79], although there is some question as to whether this is relevant in 

human macrophages [80]. Alternatively, activated macrophages are clearly associated with 

tumor progression and metastasis [81,82], however it is not yet clear if those dependent on 

ACLY activity are a true metastasis-promoting subtype [83]. In hepatocellular carcinoma, 

acetyl-CoA increases and associated histone acetylation were demonstrated to be 

downstream of Acyl-CoA thioesterase 12 (ACOT12) activity [84]. This increased histone 

acetylation was shown to drive expression of the transcription factor Twist2 which induced 

EMT.

Metabolites may also act as competitive inhibitors of epigenetic enzyme activity. 

Dysregulation of the citric acid cycle in cancer has been associated with accumulation of a 

number of metabolites that can affect methylation of the epigenome, such as the 

oncometabolite 2-hydroxyglutarate. During normal metabolism, isocitrate is converted to α-

ketoglutarate by the enzyme isocitrate dehydrogenase (IDH). Mutations in IDH are common 

in acute myeloid leukemia where they may play a role in pathogenesis, and in gliomas 

[85,86]. IDH R132, IDH2 r140, and IDH2 R172 mutations result in increased production of 

2-hydroxyglutarate, via the action of the mutated enzymes on α-ketoglutarate [87]. 2-

hydroxyglutarate can inhibit the function of α-ketoglutarate dependent dioxygenases, such 

as the demethylase KDM4C [88], and dysregulate the methylation status of cancer cells 
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[89]. Mutant IDH was also shown to lower expression of ATM and interfere with DNA 

repair in acute myeloid leukemia [90]. IDH mutations that produce 2-hydroxyglutarate can 

cause EMT in colorectal cancer cells through driving the expression of the transcription 

factor ZEB1 [89,91]. Conversely, IDH mutant gliomas can have better prognosis due to 

promotion of methylation and thereby suppression of invasion-promoting genes such as 

G0S2 [92].

Deficiency and inhibition of succinate dehydrogenase causes hypermethylation in ovarian 

cancer, pheochromocytomas, and paragangliomas [93,94]. Fumarate has also been 

associated with progression in a number of cancers including renal cell carcinomas, 

paragangliomas, and nasopharyngeal cancers [95,96]. Loss of fumarate hydratase expression 

stabilized HIF-1α and HIF-2α, leading to EMT and upregulation of an anti-oxidant response 

in renal cancer [97,98]. In addition, fumarate can inhibit TET demethylases and cause a 

hypermethylation phenotype in renal cancer [99]. Finally, fumarate may cause senescence 

through oxidative stress [100].

Implications and Future Directions

Altered metabolism is well established as a hallmark of cancer biology [2] and associated 

with multiple aspects of cancer progression including metastasis [101,102]. The clear tumor-

promoting roles of dysregulated metabolic pathways have led to a development of a number 

of therapies [103]. However, these therapies present particular challenges in their utilization 

in the clinic. Most critically, many of the metabolic pathways that may be dysregulated in 

cancer cells are still used by other cell types, thus identifying a reasonable therapeutic index 

has proven difficult. For example, inhibition of the key cancer associated metabolic 

phenotype aerobic glycolysis, using 2-deoxy-D-glucose (2DG) results in toxic effects 

similar to hypoglycemia [104]. However, understanding and targeting non-canonical 

functions of enzymes related to aerobic glycolysis, such as PHI, may present promising 

therapeutic strategies that lack the unintended toxicity of targeting ubiquitous metabolic 

pathways [Table 1]. On the other hand, there are a number of therapies in development for 

mutant IDH isoforms, which have the advantage of being distinct from the normal enzyme 

[105].

The opposing roles of GLS1 and GLS2 in metastasis [24,27,28] highlight the importance of 

understanding and targeting the isoform specific effects of metabolic enzymes. While 

pharmacologic inhibition, and genetic ablation of GLS1 slows cancer growth [106] the 

expression of GLS2 attenuates metastasis. These opposing roles might suggest that 

specificity of glutaminase inhibitors is critically important. However, the fact that the 

metastasis-promoting effects of glutaminase 1 are dependent on its catalytic activity while 

the metastasis-suppressing effects of glutaminase 2 are catalysis-independent enables 

possible methods of differential modulation.

The significance of changes in metabolism is not just limited to cancer cells, but also 

extends to the tumor stroma. As illustrated by interactions between cancer-associated 

fibroblasts and tumor cells, altered metabolism in the stroma can directly support metastatic 

progression by supplying tumors with high energy metabolites such as lactate [68,69]. In 
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addition, lactate has been shown to affect the signaling of immune cells and produce an 

immunosuppressive tumor microenvironment [71]. Changes in cancer cell metabolism can 

also contribute to changes in signaling in the stroma that enhance metastasis, such as PHI 

paracrine signaling promoting angiogenesis [42]. These changes emphasize the importance 

of understanding changes in metabolism in the context of the tumor microenvironment and 

not just considering the cancer cells.

Finally changes in metabolism can sensitize cancer cells to other forms of therapy. Mutant 

IDH has been shown to sensitize glioma cells to inhibition of glutaminase [107]. Inhibited 

glutaminolysis results in decreased accumulation of α-ketoglutarate, the substrate of mutant 

IDH and a resultant slowed growth phenotype. In addition, gliomas with mutant IDH have 

been shown to be especially sensitive to treatment with inhibitors of DNA 

methyltransferases [108] since altered methylation is a key effect of mutant IDH. These 

examples depict novel targets induced by altered tumor metabolism that can be exploited for 

treatment.

Conclusion

Dysregulation of metabolism is a hallmark of cancer is commonly associated with 

metastasis. The increased consumption of carbon sources such as glucose, glutamine, and 

fatty acids commonly occur in multiple types of cancer leading to enhanced metabolic 

pathway activation. However, non-canonical functions of these metabolic pathways can 

influence metastatic progression in ways that diverge from their usual roles in regulating 

bioenergetics and biosynthesis. Here, we have particularly highlighted the ability of 

metabolic enzymes such as PHI to alter cancer cell signaling independent of their normal 

enzymatic functions, as well as the ability of metabolites to act as signaling molecules or 

change the epigenome of cancer cells. The challenge is to convert this knowledge of novel 

capabilities to new therapeutic approaches for patients with metastatic disease.
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Figure 1. Isoforms of glutaminase have opposing roles in cancer metastasis.
Glutaminase 1 increases tumor cell survival via its canonical catalytic activity. Opposingly 

glutaminase 2 inhibits tumor metastasis and EMT via its secondary functions as a binding 

protein (Details in text). EMT (Epithelial-Mesenchymal Transition); Rac1 (Ras-related C3 

botulinum toxin substrate 1)
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Figure 2. Secreted PHI has autocrine and paracrine signaling roles.
PHI drives pro-tumorigenic MAPK signaling, EMT, and secretion of angiogenic factors. 

PHI sensitizes endothelial cells to angiogenic signaling by increasing expression of VEGF 

receptors. PHI (Phosphohexose Isomerase); MAPK (Mitogen-activated protein kinase); 

EMT (Epithelial-Mesenchymal Transition); AMFR (Autocrine motility factor receptor); 

VEGF (Vascular Endothelial Growth Factor)
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Figure 3. Glutamate is a pro-metastatic signaling molecule.
Glutamate produced by the hydrolyzation of glutamine is able to be exported from tumor 

cells via transporters like xCT. This secreted glutamate is able to drive pro-tumorigenic 

signaling by binding to ionotropic and metabotropic glutamate receptors AMPAR, and 

GRM. GRM (Metabotropic Glutamate Receptor); AMPAR (α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptor); GLN (Glutamine); GLU (Glutamate); MAPK 

(Mitogen-activated protein kinase); AKT (Protein kinase B)
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Figure 4. Altered metabolism impacts regulation of cancer epigenome via production of 
substrates and allosteric regulators of epigenetic enzymes.
IDH mutations can produce 2-hydroxyglutarate which alter the function of demethylase 

enzymes. In addition, altered metabolism has been linked to changes in production of 

Acetyl-CoA the substrate of histone acetyltransferases. HAT (Histone Acetyltransferase); 

HDAC (Histone Deacetylase); mIDH (mutant IDH); Ac (Acetylation)
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Table 1.

Current and potential therapeutic targets based on non-canonical metabolic roles.

Target Agent Mechanism to Target References

Glutaminase 1 CB-839 NCT02071927

NCT02071888

NCT02071862

GRM1 Riluzole Pro-tumorigenic glutamate signaling. NCT00903214

NCT01018836

NCT01303341

NCT00866840

HDAC Belinostat Catalytic activity resulting in hypoacetylation. NCT00993642

Panobinostat NCT01075308

Vorinostat NCT02635061

SB939 NCT01528501

ACY-241 NCT00274651

mIDH AG-221 Production of on co metabolite 2-hydroxyglutarate. NCT01915498

AG-120 NCT02073994

AG-881 NCT02492737

IDH305 NCT02987010

Methyltransferase 5-azacytidine, 5-aza-2’-deoxycytidine Catalytic activity resulting in hypermethylation. NCT03019003

NCT03182894

NCT02159820

NCT00084981

ACLY 2,2-difluorocitrate Sulfoximine Catalytic activity producing Acetyl-CoA which induces 
hyperacetylation.

[109,110]

AMF ERI4P
G6P

Pro-metastatic, autocrine and paracrine signaling via gp78. [111]

SLC1A5 (ASCT2) AABA
Benzylserine

Benzylcysteine
GPNA

Import of glutamine, which is an important carbon source for 
a number of pro-metastatic processes.

[112,55,56,54]

SLC7A11 (xCT) Sulfasalazine
Erastin

Sorafenib

Release of glutamate which can act as a pro-metastatic 
signaling molecule.

[113–115]

AMPAR GYKI-52466
CFM-2

Glutamate signaling which can drive metastasis. [116]

HAT C646
PU139
PU141

Increased activity resulting in hyperacetylation. [117,118]

SPLA2 Varespladib
PLIs

Secretion and binding to receptors that drive Wnt signaling. [119,120]

GAPDH (Potential) N/A GAPDH binding to EMT transcription factor sp1

PKM2 (Potential) N/A PKM2 binding to HDAC3 and TGIF2.

PRDX4 (Potential) N/A Secretion and function as an osteoclastogenic signaling 
factor.
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