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Abstract

Background—Accurate estimation of nitrogen dioxide (NO2) and nitrogen oxide (NOx) 

concentrations at high spatiotemporal resolutions is crucial for improving evaluation of their health 

effects, particularly with respect to short-term exposures and acute health outcomes. For 

estimation over large regions like California, high spatial density field campaign measurements 

can be combined with more sparse routine monitoring network measurements to capture 

spatiotemporal variability of NO2 and NOx concentrations. However, monitors in spatially dense 

field sampling are often highly clustered and their uneven distribution creates a challenge for such 

combined use. Furthermore, heterogeneities due to seasonal patterns of meteorology and source 

mixtures between sub-regions (e.g. southern vs. northern California) need to be addressed.

Objectives—In this study, we aim to develop highly accurate and adaptive machine learning 

models to predict high-resolution NO2 and NOx concentrations over large geographic regions 

using measurements from different sources that contain samples with heterogeneous 

spatiotemporal distributions and clustering patterns.

Methods—We used a comprehensive Kruskal-K-means method to cluster the measurement 

samples from multiple heterogeneous sources. Spatiotemporal cluster-based bootstrap aggregating 

(bagging) of the base mixed-effects models was then applied, leveraging the clusters to obtain 
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balanced and less correlated training samples for less bias and improvement in generalization. 

Further, we used the machine learning technique of grid search to find the optimal interaction of 

temporal basis functions and the scale of spatial effects, which, together with spatiotemporal 

covariates, adequately captured spatiotemporal variability in NO2 and NOx at the state and local 

levels.

Results—We found an optimal combination of four temporal basis functions and 200 m scale 

spatial effects for the base mixed-effects models. With the cluster-based bagging of the base 

models, we obtained robust predictions with an ensemble cross validation R2 of 0.88 for both NO2 

and NOx [RMSE (RMSEIQR): 3.62 ppb (0.28) and 9.63 ppb (0.37) respectively]. In independent 

tests of random sampling, our models achieved similarly strong performance (R2 of 0.87–0.90; 

RMSE of 3.97–9.69 ppb; RMSEIQR of 0.21–0.27), illustrating minimal over-fitting.

Conclusions—Our approach has important implications for fusing data from highly clustered 

and heterogeneous measurement samples from multiple data sources to produce highly accurate 

concentration estimates of air pollutants such as NO2 and NOx at high resolution over a large 

region.

Keywords

air pollution; nitrogen oxides; spatiotemporal variability; generalization; machine learning; cluster 
methods

1. Introduction

Several studies have shown that nitrogen dioxide (NO2), a criteria air pollutant, has adverse 

acute and chronic effects on human health [1, 2]. Acute NO2 exposure has been shown to 

cause airway inflammation, and chronic exposure can decrease lung function and further 

increase response to allergens [3]. Furthermore, nitrogen oxides (NOx) emissions contribute 

to the formation of fine particles (PM) and ground-level ozone [4], both of which are 

associated with adverse health effects [5, 6]. By increasing accuracy of air pollution 

exposure estimation, health effect estimation bias will be reduced [7]. While state and local 

government agencies in the United States have operated routine NOx monitoring networks 

over the past four decades with relatively wide spatial coverage, the sparse distributions of 

such monitoring efforts limit highly resolved spatial and temporal exposure modeling efforts 

at the broad community to narrow neighborhood scale. Therefore, measurements from 

various field sampling campaigns are often used to supplement routine monitoring data in 

order to capture finer-scale spatial variability. However, field sampling locations are often 

highly clustered due to sampling convenience within narrow geographic regions, and 

limitations in funding, feasibility, temporality, and study goals of these field campaigns. 

Further, these field sampling campaign clusters may also differ substantially in size due to 

similar reasons. These factors result in potentially significant heterogeneity in the signals 

being captured between and within clusters, for example, emission sources, meteorological 

factors, concentration range and spatial and temporal variability of air pollutants. In 

addition, there could be a wide range of differences in the measurement methods (e.g. 

instruments, sampling time and duration) and intended sampling campaign objectives, 

leading to complex data harmonization that is needed for modeling. Disregarding sample 
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clustering, uneven distributions and inherent variability in measurement data sources when 

building exposure models could result in unbalanced model training and therefore introduce 

bias in exposure predictions and further health risk models that rely on such predictions.

Spatiotemporal exposure models that aim to model regional or broad geographic areas that 

encompass both rural and urban locations over hundreds to thousands of kilometers must be 

able to capture both complex local variability and larger spatial patterns in pollutant 

concentrations over time. Several standard statistical methods have been used to estimate 

NO2 concentrations and assess exposures within and across regions in health studies, 

ranging from nearest monitor or time period approaches and multiple linear regression, to 

non-linear methods such as generalized additive models and geospatial models such as 

kriging [8–11]. Most of these early approaches estimate long-term average concentrations 

(high spatial variability, limited temporal variability) with model R2 values ranging from 

0.44 to 0.87.

Traditional LUR models [12, 13], LUR models with meteorology [14, 15], LUR models 

with chemical transport model outputs [16], and spatiotemporal models with kriging [17–19] 

have been developed to estimate NO2 and NOx concentrations, but such models are subject 

to limited temporal resolution and overall performance [cross validation (CV) R2: 0.52–

0.84; few reported R2 of independent test]. More sophisticated methods such as hybrid 

models [20] merging land-use, satellite based and chemical transport models with 

monitoring data, partial least squares plus universal kriging [21], mixed effects models [22, 

23] with geographical weighted regression (GWR) [24], geographically and temporally 

weighted regression [25, 26], machine learning methods such as neural networks [27] and 

random forest [28] have been used to estimate concentrations of particulate matter less than 

2.5μm in aerodynamic diameter (PM2.5) at high spatial (100 m to 1000 m) and temporal 

(hourly, daily, biweekly or monthly) resolutions. However, for NO2 and NOx, there are a 

very limited number of studies employing sophisticated spatiotemporal models such as 

machine learning methods to estimate concentrations at high spatiotemporal resolution with 

robust prediction performance, which might be more important for these pollutants due to 

finer spatial heterogeneity compared to PM2.5. Our earlier work on NO2 and NOx resulted in 

model performance with cross-validation R2 up to 0.87 [29], but our model was specific to 

the southern California region with limited generalizability to broader regions. Differences 

in training data ranges and variances between the original modeling region and the new 

modeling region may alter the associations between covariates and true NOx concentrations. 

Further, atmospheric processes are complex and are influenced by multiple factors (e.g. 

meteorology, topography, co-pollutants) likely varying across regions. Therefore, some 

models that perform well in one region may not transfer effectively when applied in another 

region or larger regions.

The bootstrap machine learning approach uses re-sampling with replacement to obtain 

different samples and train different models or learners. Compared with the traditional 

approach of generating single models, the ensemble learning with bootstrap aggregation 

(bagging) can reduce sampling variance and obtain more stable solutions [30, 31]. However, 

despite a heterogeneous measurement error structure across sampling sources within a large 

geographic region, regular bagging uses random samples without consideration of sampling 
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source, which can limit the models’ ability to capture the true variability of air pollutant 

concentrations to be estimated, thus lowering the models prediction performance. Further, 

for highly clustered samples that are typical for NO2 and NOx monitoring data across large 

regions like California, with significant variance of concentrations between clusters, regular 

bagging does not consider the clustered nature of the data and may result in highly 

correlated individual models making the ensemble learning less efficient.

In this study, we demonstrate that enhanced machine learning techniques can overcome 

these challenges and improve results obtained in a constrained mixed-effects modeling 

framework with ensemble learning [29] to predict NO2 and NOx concentrations at high 

spatial and temporal resolution for the entire state of California (CA). We designed an 

approach of cluster-based bagging, where natural clusters within sampling locations and 

time were identified and extracted using an optimal clustering method to enhance the 

bootstrap phase. In this approach, we considered balance between clusters and heterogeneity 

within clusters for the samples from multiple sources to minimize the sampling bias and 

decrease the correlation among the ensemble models, thus potentially boosting the ensemble 

learning.

We demonstrate that, by using a grid search machine learning method, we can obtain an 

optimal combination of the number of temporal basis functions and scale of spatial effects 

for modeling, in addition to other spatiotemporal covariates, that produces fine temporal and 

spatial estimates of NO2 and NOx concentrations over a large region and for a long time 

period. As a case study, we estimated 22 years (1992–2013) of biweekly NO2 and NOx 

concentrations at high spatial resolution over the entire State of California. Finally, we 

conducted vigorous model validation using ensemble learning cross validation and site-

based, 10-fold CV, as well as independent tests using completely separate source of 

validation data.

2. Materials

2.1. Study domain

The study region that covers the entire state of California, including locations of the training 

and test sample data, is shown in Figure 1 [four locations (flagged as a, b, c and d) selected 

for presentation of the simulated time series in Figure 7].

2.2. NO2 and NOx measurements

Concentrations of NO2 and NOx were acquired from two sources (1513 sampling locations 

in total): (1) the U.S. Environmental Protection Agency Air Quality System (AQS), which 

provided long-term hourly measurements from 193 routine AQS monitoring stations 

operated by the California Air Resources Board (CARB) and other governmental agencies 

(1992–2013), and (2) special sampling campaigns where weekly or biweekly intensive field 

measurements were collected by the University of Southern California (1104 sampling 

locations in 12 southern California communities, 2005–2009), University of California, Los 

Angeles (184 sampling locations in Los Angeles County, 2006–2007), and University of 

California, Irvine (32 sampling locations in south Los Angeles County and Orange County, 
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2009), respectively. All AQS monitors used the Federal Reference Method (FRM), and the 

weekly and biweekly field measurements used passive diffusion-based Ogawa samplers to 

measure NO2 and NOx concentrations. The passive measurements were systematically 

adjusted to be consistent with the continuous FRM NOx and NO2 measurements. We then 

aggregated hourly and weekly concentrations to biweekly averages (average concentrations 

in a biweekly time series starting from 01/01/1992 and ending on 12/18/2013), as in our 

previous study [29]. To address the differences in timing of the weekly and bi-weekly field 

campaigns, we estimated the ratios of average concentrations during the sampling period 

and the target time period of estimation (e.g. biweekly) based on the nearest AQS routine 

monitoring station samples, that were in turn used to adjust the differences.

2.3. Spatiotemporal covariates, basis functions and Thiessen polygons

Temporal basis functions and Thiessen polygons capture temporal and spatial patterns, 

respectively. Temporal basis functions were extracted using iterative singular value 

decomposition [32] to the AQS NO2 and NOx data and were embedded into the modeling 

framework to characterize regional seasonal patterns, and Thiessen polygons were utilized to 

model spatial patterns not explained by the aforementioned spatial covariates [29]. In 

addition, we included spatially-and temporally- varying covariates, such as traffic, 

meteorology and geographic factors. Specifically, these covariates included: traffic-related 

NOx (ppb) modeled by CALINE4 dispersion model to capture local traffic emissions (on 

freeways and on non-freeways), traffic density in circular buffers from 300 m to 5000 m 

radius (distance-decayed average number of vehicles per day), distance to major roadways 

(m); gridded (4 km) minimum and maximum air temperature (°C), specific humidity (grams 

of vapor per kilogram of air), precipitation (millimeters of rain per square meter in 1 h), 

wind speed (m/second); gridded (1 km) elevation (m); and distance to the shoreline (m), and 

population density in a 300 m buffer (number of persons per square mile).

3. Modeling Approach

For statewide estimation of NO2 and NOx concentrations, we developed new models based 

on the three-stage modeling framework previously developed for southern CA [29]. This 

included single mixed-effects models to account for spatiotemporal variability of 

concentrations (Stage 1), ensemble machine learning to reduce the uncertainty in point 

estimates of location- and time- specific samples (Stage 2), and constrained optimization to 

simulate the long-term continuous time series estimates of concentrations (Stage 3). In the 

new modeling framework (Supplementary Figure S1), we include cluster-based bagging to 

enhance the ensemble machine learning stage (Section 3.1) where comprehensive clustering 

algorithms (Section 3.1.1) are used to extract natural spatiotemporal clusters that 

subsequently serve as stratifying and exclusion factors (Section 3.1.2) in bootstrap. This 

results in a more balanced spatiotemporal distribution of samples that decreases the bias in 

training samples. Further, a cluster-based exclusion method is used to de-correlate the 

predictions of ensemble models, consequently reducing the errors in predictions. The 

modeling framework also includes a grid search (Section 3.2), which facilitates finding the 

optimal combination of temporal basis functions (Section 3.2.1) and scale of spatial effects 

(Section 3.2.2) that characterizes temporal and spatial variability of NO2 and NOx regionally 
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across CA (Section 3.2.3). To evaluate the new approach, we conducted cross-validation 

(Section 3.3.1) and two independent tests with data not used in the modeling framework 

(Section 3.3.2).

3.1. Cluster-based Bagging

3.1.1 Clustering method for the samples—With inherent heterogeneity and 

multiplicity in the distribution of the samples from different NO2 and NOx monitoring 

sources, we apply a clustering approach that combines the Kruskal algorithm and K-means 

to obtain optimal spatiotemporal clusters for the training samples.

The classic K-means algorithm intends to partition samples into a pre-selected number of 

clusters, K, in which each sample belongs to the cluster with the nearest mean. 

Supplementary Section 1.1 provides more details on the K-means algorithm. Given the 

number of monitoring sites and their complex spatiotemporal distribution, it is impractical to 

set a reasonable number of clusters a priori. Thus, we introduce the Kruskal algorithm, 

which is a single-linkage density-based algorithm that detects naturally-shaped clusters 

according to the shortest intercluster distance [34]. Compared with K-means, this algorithm 

has several advantages: no need for pre-selected numbers of clusters, high computing 

efficiency, and no distributional assumptions. The input parameter for the Kruskal algorithm 

is the minimum intercluster distance to consider points to form a cluster. This distance can 

be first determined and then adjusted by inspection upon the possible distance between 

potential clustered sampling locations. For more details about the Kruskal algorithm, please 

refer to Supplementary Section 1.2.

Kruskal is a variant of single linkage agglomerative clustering with sub-optimal solution for 

the single-link samples [33], while K-Means can deal well with the clusters of single-link 

samples if such samples exist. Thus, we combine both methods to compensate their 

respective shortcoming (pre-selected number of clusters and single-link samples) to obtain 

optimal clusters. In the comprehensive Kruskal-K-Mean method, we used Kruskal to find 

the potential clusters and then used K-means to solve single-link samples (see 

Supplementary Section 1.3 for details).

To perform spatiotemporal clustering of NO2 and NOx samples, we applied the Kruskal-K-

Mean method to conduct spatial clustering at first and then temporal clustering within each 

resultant spatial cluster (see Supplementary Section 1.4 for details). With the sequential 

spatial to temporal clustering (Figure 2-a), we do not need to define a complex 

spatiotemporal distance and corresponding threshold. Temporal clustering of the samples 

was mostly due to the limited number of sampling periods from the field campaigns (for 

each field campaign, sampling concentrated in several periods). Most routine monitoring 

stations had no temporal clusters due to continuous sampling over time. This approach of 

moving from spatial to temporal clustering can be used for most practical applications.

3.1.2 Cluster-based bagging—With optimal spatiotemporal clusters obtained, we 

leveraged cluster-based stratification and exclusion bootstrap to reduce bias and error in 

ensemble predictions based on the training samples.
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Bagging proceeded whereby all samples within a selected cluster were removed and 

stratified bootstrap was conducted on the samples of the remaining K-1 clusters to get the 

training samples for one mixed-effects base model. Assume that the total number of samples 

is n with K-1 clusters (one cluster excluded), then about 63.2% of the samples within each 

remaining cluster are drawn within each bootstrap. Therefore, we obtain about 63.2% of n-
nk (nk: number of samples within the excluded kth cluster) samples for each base model. 

Excluding the samples within a cluster is to minimize the similarity between the testing and 

training data in space and time, and reduce the correlation between individual models to 

boost the ensemble predictions. The mathematical explanation for lower expected square 

errors for less related models in ensemble learning was provided in Supplementary Section 

2. By excluding the samples from the selected cluster for each base model, the predictions 

by the base models may become less correlated to boost generalization in ensemble 

prediction.

Further, we employed the clusters and sampling sources (routine monitoring source versus 

field measurement campaigns) as stratifying factors in bootstrap to obtain balanced samples 

(evenly distributed across the selected clusters) to reduce bias in the training samples. Figure 

3 shows the sampling framework of cluster-based bagging and we can generalize this as the 

n-K-m framework using three digits (n samples, K clusters, and m base models).

3.2. Grid search for optimal solutions

In our modeling framework (Supplementary Figure S1), a base model is a mixed-effects 

spatiotemporal model that contains temporal basis functions to capture regional temporal 

variability of NO2 and NOx, spatial effects based on Thiessen polygons to capture spatial 

autocorrelation, and aforementioned spatial and temporal covariates. Together these model 

components accounted for a considerable amount of local spatial and spatiotemporal 

variability in NO2 and NOx concentrations, as demonstrated in our previous southern 

California models [29]. When this framework is extended to large regions, it is necessary to 

extend the temporal basis functions to better represent temporal variability of concentrations 

over whole region, and re-define the spatial scale of spatial effects to capture spatial 

variability within and across sub-regions of the larger domain. Above all, the interaction 

between temporal and spatial effects is also important in order to obtain an optimal solution 

for the base models.

3.2.1 Temporal basis functions to represent regional patterns of temporal 
variability—As variants of principal components, temporal basis functions were used to 

characterize temporal processes for each target region and temporally varying target variable 

(e.g. meteorological parameters and NO2 or NOx concentrations that have seasonal patterns) 

[17]. It has been found that the first two basis functions [29] sufficiently capture the major 

temporal variability of NO2 and NOx for a region like southern California. However, this 

does not sufficiently capture heterogeneity in seasonal patterns due to interregional 

differences in temporal variability across all of California in this study. To address this, we 

included additional temporal basis functions to characterize multi-regional temporal 

patterns. We also compared the temporal basis functions for different regions (urban vs. rural 
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region; southern vs. northern California) and pollutants (NO2 vs. NOx) to inform 

interregional difference in temporal patterns.

3.2.2 Scale of spatial effect by Thiessen polygons—Spatial effects were modeled 

based on Thiessen polygons constructed around the sampling locations. The method based 

on Thiessen polygons are derived from the triangular irregular networks modeling idea in 

the community of spatial data analysis [35, 36]. Because the nodes (similar to the 

monitoring stations, sampling locations, or centroid location of one cluster in our case study) 

in the network can be placed irregularly over a surface, triangular irregular networks can 

have a higher resolution in areas where a surface is highly variable or where more detail is 

desired (like urban areas where emission sources and dispersion processes can be complex) 

and a lower resolution in areas that are less variable (like rural areas where the variability in 

sources and concentrations might be lower). As an extreme case, each sampling location is 

covered by its own polygon; however, this would result in longer training time and potential 

over-fitting. Thus, an optimal set of Thiessen polygons was constructed based on an 

aggregate distance that simultaneously captured small-scale spatial variability while 

reducing potential over-fitting. In our earlier work [29], we used K-means to a pre-selected 

number of clusters to generate the central nodes to derive Thiessen polygons by Voronoi 

decomposition [37]. In this study, we use the aggregate distance between clusters from the 

Kruskal-K-means method (Section 3.1.1) to initialize the spatial scale of Thiessen polygons, 

which further informs spatial random effects in the models.

3.2.3 Grid search for optimal interaction of temporal basis functions and 
spatial effect—Grid search is a machine learning technique used to find the optimal 

solution through exhaustive search of a manually specified subset in the space of a model’s 

hyperparameters [38, 39]. A hyperparameter is a parameter whose value needs to be set 

before learning and different values may have a different influence on the results. Model 

performance metrics such as cross validation (CV) RMSE or R2 can be used to guide the 

grid search and obtain an optimal solution. Different from the search for an optimal solution 

of a single parameter, grid search can test the effect of interactions (combinations) of 

different hyperparameters on model performance when the combination of respective 

optimal solutions of hyperparameters does not relate to the global optimal solution. Using 

empirical knowledge to constrain the ranges of the hyperparameters, we can shrink the grid 

spaces to improve efficiency of the search.

For this study, grid search was used to find the optimal interaction between the number of 

temporal basis functions and the scale of spatial effects (aggregating distance for generation 

of Thiessen polygons). The grid table consisted of different combinations of two 

superparameters [temporal basis functions (1 to 10) and aggregate distances (from 100 m to 

800 m by steps of 100 m)]. Thus, the size of our search space is 8×10=80. The R2 and 

RMSE of the ensemble predictions were used as the performance metric in the grid search.

3.3. Model Validation

3.3.1. Cross validation—To evaluate location- and time- specific point estimates from 

the cluster-based ensemble predictions, we used performance metrics including CV R2, 
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RMSE, and normalized RMSE by the inter-quartile (IQR) (RMSEIQR) of the observed 

values [RMSEIQR=RMSE/IQR(y)]. RMSE is scale-dependent and cannot be compared 

across the datasets with different concentration scales. RMSEIQR is a relatively objective 

metric to compare the models across different concentration scales and is less sensitive to 

extreme values (outliers) than RMSE [40]. We evaluated these metrics (R2, RMSE and 

RMSEIQR) for the entire state of CA, southern versus northern CA, and routine versus field 

NO2 and NOx measurements. We also examined residual plots for potential over- or under-

estimation, normality and heteroscedasticity.

A site-based 10-fold cross validation (CV) was conducted to evaluate model performance. 

For this CV, all samples from 10% of the sampling sites were removed from the training 

dataset. Samples from the remaining 90% of the sampling sites were employed to train the 

model which in turn was used to predict the values for the 10% of sampling sites removed. 

This procedure was iterated until the samples for all the monitoring sites from AQS and field 

campaigns were predicted. Then, the performance metrics were evaluated for all the point 

estimates. R2 in the site-based 10-fold CV was used in the grid search to find the optimal 

solution.

On average, a sample is selected 63.2% of the time when using stratified bootstrap 

aggregation. The trained model was used to make predictions for the samples not selected in 

each bootstrap set. Then the averages of these predictions were calculated to obtain the 

ensemble predictions. The result of the ensemble predictions represents 36.8% cross 

validation (called ensemble cross validation), close to 3 fold CV. The same performance 

metrics are evaluated using the performance-metric (the reciprocal of RMSE) weighted 

averages based on the outputs from multiple ensemble learning models.

Constrained optimization [29] was used to simulate the time series of biweekly NO2 and 

NOx concentrations based on the temporal basis functions and ensemble point estimates. We 

also evaluated the Pearson’s correlation coefficient between the simulated series of biweekly 

averages of NO2 and NOx by constrained optimization, and the observed values at each AQS 

monitoring station in California. Correlations from all AQS monitoring sites were then 

summarized to have a comprehensive evaluation of the model performance in simulation of 

time series.

3.3.2. Independent test of model performance—Given the possibility of obtaining 

overly optimistic CV R2 when using random test and training data selection techniques in 

the cross-validation [41], we also conducted two independent tests of model performance.

For the first test, we randomly selected about 10% of the sampling locations stratified by the 

cluster id and source [AQS vs. each field campaign data (USC, UCI and UCLA)] as an 

independent test dataset. Thus, we named this as independent tests of random sampling. 

Figure 1 shows spatial locations of these test samples (shown as black cross). Models were 

developed excluding the independent testing samples entirely. Specifically, in the samples of 

independent test, we obtained 126 sampling locations [5 AQS locations in northern 

California, and 121 locations (4 from AQS, 105 from USC, 1 from UCI and 11 from UCLA) 

in southern California] from 1,511 sampling locations. We calculated R2, RMSE and 
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normalized RMSE of NO2 and NOx for each cluster and the population respectively. The 

scatter plots of observed vs. predicted concentrations and residuals were also examined.

For the second test, we removed all 49 UCI samples from the field campaigns to conduct 

model evaluation (and kept the UCLA and USC samples in model training). This test aims 

to examine the generalization of the models to the independent UCI samples not from the 

population of the training samples.

4. Results

4.1. Summary of measured concentrations and covariates

In total, we examined 56,961 biweekly NO2 and NOx concentrations obtained from 1,511 

monitoring sites in California, among which 78 AQS sites were from northern California, 

113 AQS sites were from southern California, and 1,320 were from the special field 

campaigns (Table 1 and Figure 1). Over the study period (1992–2013), California had a 

mean NO2 concentration of 16.0 ppb (IQR: 12.8 ppb) and NOx concentration of 28.8 ppb 

(IQR: 26.0 ppb). On average, southern California concentrations were almost double those 

of northern California [NO2: 23.4 ppb (IQR: 16.2 ppb) vs. 13.4 ppb (IQR: 8.7 ppb); NOx: 

45.4 ppb (IQR: 31.1 ppb) vs. 23.5 ppb (IQR: 18.9 ppb), respectively]. The distribution of 

covariates demonstrated different mean levels by region (Supplementary Figure S2): 

northern California had lower CALINE4 NOx, traffic density, air temperature, annual mean 

concentrations, and population density, but higher wind speed [42].

For the independent test, we removed 2,523 biweekly samples of 126 sampling locations: 

258 from 117 field campaign sites and 2265 from 9 AQS routine monitoring stations), 

leaving 54,438 samples to train the models. The independent test sample had mean NO2 

(NOx) of 15.19 (33.11) ppb with standard deviation of 12.31 (27.08) ppb, respectively.

4.2. Distribution and statistics of spatial and temporal clusters

For spatial clustering, we set up the initial minimum intercluster distances as 6 km according 

to visual inspection on the possible distance for the highly clustered samples 

(Supplementary Figure S3). Sensitivity analysis, changing the minimum distance ±2 km 

around 6 km, showed no changes in the clusters. For temporal clustering, we examined the 

temporal separation between the samples from the field campaigns and set up the minimum 

intercluster distance as 5 biweeks. In total, 131 spatial clusters (partially shown in 

Supplementary Figure S4) were identified with a total intra-cluster variance equal to 732 

km. Among these clusters, 2 had a sample size >200, 1 of 191, 7 between 50 and 100, 10 

between 10 and 50, and 121 smaller than 10. There are 83 clusters with just one sampling 

location (mostly from routine AQS monitoring stations in suburban and rural areas). Based 

on the results of spatial clustering, temporal clustering was in turn conducted (mainly for the 

samples from the field campaigns, concentrated in two periods for UCI and UCLA, and in 

three periods for USC). In total, we extracted 157 spatiotemporal clusters (Figure 2-b and c 

for statistics). Since the samples within each spatiotemporal cluster needed to be excluded at 

least once from the training dataset of a base model in our framework, we needed at least 
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157 base models to be trained given 157 clusters extracted. We selected 157 as the number 

of base models based on sensitivity test that showed little improvement for more models.

4.3 Grid search results for temporal basis functions and aggregate distance of Thiessen 
polygons

4.3.1. Overall results—By grid search we obtained an optimal solution, which included 

an interaction of 4–6 temporal basis functions with a spatial effect at an aggregate distance 

of 200 m [Figure 4 summarizing model performance as a function of the input 

superparameters (number of temporal basis functions vs. choice of aggregation distance in 

constructing spatial effects)]. For computing efficiency and to minimize overfitting, we used 

4 temporal basis functions in the final models. For this optimal solution, the ensemble cross 

validation resulted in an CV R2 of 0.88 for both NO2 and NOx with RMSE (RMSEIQR) of 

3.62 ppb (0.28) for NO2 and 9.63 ppb (0.37) for NOx (Table 2; Figure 5), which is better 

than our previous southern CA only models. The site-based 10-fold cross validation (Table 

3) resulted in a total R2 of 0.82 for NO2 and 0.84 for NOx with a total RMSE (RMSEIQR) 

of 4.39 ppb (0.34) for NO2 and 11.05 ppb (0.43) for NOx for CA. Table 3 also presents the 

results for northern (R2: 0.78 for NO2, 0.80 for NOx) vs. southern (R2: 0.82 for NO2, 0.84 

for NOx) CA and the AQS (R2: 0.82 for NO2, 0.84 for NOx) vs. non AQS field sampling 

locations(R2: 0.78 for NO2, 0.81 for NOx) (See Supplementary Figure S5 for residual plots). 

The statistics (Supplementary Table S1) and histograms (Supplementary Figure S6) of the 

ensemble prediction residuals show a normal distribution with a mean close to 0 and 

absolute skewness <1. Based on residuals plots (Supplementary Figure S7), we found less 

than 0.1% samples with extreme values (outliers) of underestimation (for high observed 

values) or overestimation (for low observed values).

When comparing northern and southern California, the latter had higher variance of 

concentrations (Table 1) and a higher proportion of the training samples. This was beneficial 

for learning the parameters since more samples from higher variable regions like southern 

California could help train the models to better capture such variability. Further, our results 

showed better predictions for southern California (R2: 0.88, RMSEIQR: 0.25–0.35) than 

northern California (R2: 0.84, RMSEIQR: 0.29–0.38) even though northern California had 

lower absolute RMSE (2.56–7.11 ppb vs. 4.10–10.81 ppb). In addition, the small difference 

(0.04 for R2 and 0.03–0.04 for RMSEIQR) in ensemble cross validation between northern 

and southern California demonstrated that our models worked similarly well in both regions.

4.3.2. Temporal basis functions—Temporal basis functions were compared 

separately for urban vs. rural sites (Supplementary Figure S8: a–d), southern vs. northern 

CA (Supplementary Figure S9 and S10), and southern and northern CA vs. the whole CA 

(Supplementary Figure S8: e–h). The first four temporal basis function patterns were 

compared in Supplementary Figure S11. For the first temporal basis function, the rural and 

urban sites showed similar patterns with small differences. The second basis function for the 

rural sites appeared more irregular, potentially due to random fluctuations caused by the 

smaller sample size in rural areas. Similarly, the patterns captured by the first temporal basis 

function were similar between northern and southern California, but the second basis 

function was quite different. Likewise, the third basis functions showed similar seasonal 
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patterns across regions, while the fourth basis function is more erratic and different across 

regions.

4.3.3 Thiessen polygons for spatial effects—As an indicator for the spatial 

resolution of Thiessen polygons and the scale of spatial effects, the aggregate distance (100 

m to 800 m) showed little impact on the routine AQS monitoring locations since most of 

these locations were sparsely distributed (Supplementary Figure S12). For the purpose of 

illustration, Figure 6 displays the enlarged Thiessen polygons for two typical aggregate 

distances: one for the optimal solution: 200 meters; the other for a coarse resolution: 500 

meters. An aggregate distance of 200 m generated smaller polygons on the dense non-AQS 

field sampling locations, which were highly clustered, compared to an aggregate distance of 

500 m (Figure 6 c vs. d; Supplementary Figures S3 and S12). The differences at the local 

scale were apparent in zoomed maps of the Thiessen polygons for the aggregate distances of 

500 m vs. 200 (Figure 6 e vs. f). The increase in the number of Thiessen polygons had the 

most influence on the sub-regions where the dense field sampling campaigns were located. 

The total configuration of the polygons was relatively stable with micro-scale changes in 

highly clustered regions (Figure 6). Our results also illustrate this, with larger R2 for highly 

clustered field samples while the total R2 almost did not change. We also found that the 

extreme case of one Thiessen polygon per sampling point (roughly an aggregate distance of 

50 m) resulted in over-fitting, lowering the model performance for the field locations in the 

ensemble cross validation by 3–4% in R2.

4.4. Simulation of time series by constrained optimization

We applied the location- and time- specific point estimates of ensemble predictions with 

constrained optimization [29] to derive complete time series for a target location. The 

validation and independent test results of the AQS monitoring locations showed that the 

simulated series captured the temporal trends of the concentrations well: the mean (0.92 for 

NO2; 0.95 for NOx) and median (0.93 for NO2; 0.96 for NOx). Pearson’s correlations 

between the estimated and simulated concentrations (Supplementary Figure S13) were high. 

Figure 7 represents the simulated time series of NO2 and NOx for the four representative 

routine AQS monitoring locations (flagged as a-d in Figure 1). For the purpose of 

comparison, Supplementary Figure S14 shows the simulated time series of NO2 and NOx for 

two other AQS locations with lower correlations of simulated to observed values. The 

comparison with the observed values showed that the simulated concentrations captured the 

seasonal and long-term time trends of NO2 and NOx well. For the field sample locations, the 

total correlations ranged from 0.70 to 0.95 (NO2) and 0.88 to 0.97 (NOx) with means of 0.90 

(NO2) and 0.95 (NOx).

4.5. Independent tests

Our models achieved an R2 of 0.90 (NO2) and 0.87 (NOx), and RMSE (RMSEIQR) of 3.97 

ppb (0.21) for NO2 and 9.69 ppb (0.27) for NOx in the independent test of random sampling. 

The scatters of the observed vs. predicted and residual concentrations are shown in Figure 8. 

These results are more accurate (R2) than our previously published independent test results. 

We also computed R2 and RMSE for the samples of each spatial cluster in the independent 

test (Supplementary Figure S15). The results showed that at some locations there was low 
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R2 but most of their RMSEs were not high. There is a slight difference in R2 between the 

ensemble training (R2: 0.88) and independent test results (R2: 0.87–0.90), also illustrating no 

or very slight over-fitting of our models in prediction.

The independent test of the UCI samples showed our models were able to capture the 

observed NO2 (correlation: 0.85; RMSE: 4.8 ppb; RMSEIQR: 0.36) and NOx (correlation: 

0.83; RMSE 13.15 ppb; RMSEIQR: 0.41) even with the test samples not from the 

population of the training samples.

5. Discussion

For accurate estimation of NO2 and NOx concentrations at high resolution in large 

geographic regions, fusing samples from multiple sources can generate broader spatial and 

temporal coverage of samples, but highly clustered samples from multiple field campaigns 

and their inherent heterogeneity creates a challenge for their combined use. In this study, we 

developed a clustering-enhanced ensemble machine learning approach to obtain high-

resolution predictions of NO2 and NOx concentration over a large region such as California. 

The results show that we can achieve state-of-the-art accuracy (CV R2: 0.88; independent 

test R2: 0.87–0.90). To deal with the challenge of fusing sparsely distributed routine samples 

and highly spatiotemporal clustered field samples from multiple sources within a single 

model, cluster-based bagging decreased the correlation between different training models as 

well as the overall expected squared errors in ensemble predictions. Furthermore, grid search 

enabled us to find the optimal combination of temporal basis functions and scale of spatial 

effects, together with other spatial and spatiotemporal covariates. This improved the 

generalizability of the mixed-effects models by capturing spatiotemporal variability of 

concentrations at both the regional and local scales. In independent tests of random sampling 

we obtained similar results as with the ensemble CV, illustrating minimal over-fitting and 

bias in our models and highlighting the advantages of our method over other methods of 

NO2 and NOx prediction.

Although our approach achieved R2 of 0.87–0.90 in ensemble cross validation and 

independent test of random sampling, we did observe slight over-estimation of low values 

and under- estimation of high values (as shown in Figure 5-c and d), even though the 

proportion of such errors is very small. A further check showed abnormally low or high 

values in some covariates for these samples (e.g. low traffic density for high observed NO2 

and NOx concentrations and vice versa) , which inhibited the models from estimating 

concentrations well in these scenarios. Despite our attempt to use high quality covariate 

data, these covariate datasets are subject to different level of uncertainties, which result in 

uncertainties in model estimates, especially for extreme values. The machine learning 

regression models like ours aim to predict expected values rather than precisely observed 

values, which may fluctuate substantially from short-term perturbation of local meteorology 

and emission sources that cannot be captured by available data. Thus there are always 

differences between observed and expected values, and such differences are particularly 

evident at very low and very high observed values, due to a common limitation of statistical 

models that rely on the covariates values averaged over two week or even longer time period 

(e.g. traffic) therefore unable to capture short-term extreme values well. In our study, a small 
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number of outliers with over-estimation of low values and under-estimation of high values 

have little impact on the overall model performance [43, 44].

While ensemble machine learning like bootstrap aggregating has been used to reduce the 

errors in individual models, simple random sampling does not deal appropriately with highly 

clustered samples without biasing training samples and may result in correlated base models. 

The n-K-m cluster-based bagging approach developed in this study is an example of how 

unbiased clustered samples can improve the training by stratification and exclusion, boost 

the power of regression models and reduce potential for over-fitting [30, 31]. Less correlated 

base models can reduce the squared error of the ensemble predictions. This approach is easy 

to implement and effective. Sensitivity analysis shows an improvement of about 5% in R2 

over regular bagging.

Furthermore, heterogeneity in the samples between different sub-regions might create the 

difficulty of generalizing sub-regional models over a diverse domain due to changes in the 

application assumptions inherent in the models trained. Two national PM2.5 models [27, 28] 

also demonstrated the difference in accuracy between at national and sub-regional levels. 

Adjustment for existing covariates or addition of new covariates that reflect regional 

characteristics may be useful to account for variability of NO2 and NOx at large regional 

levels. For our case study in California, extracting more temporal basis functions better 

accounted for temporal variability in concentrations at the state level, and incorporating 

small-scale spatial effects in the distribution of Thiessen polygons improved the 

performance for sub-regions. For the purpose of illustrating improvement in the models’ 

performance, we compared the performance of our new statewide models with the southern 

California models [29] using the site-based 10-fold cross validation (Supplementary Table 

S2) even though the 2017 models were developed for southern California and a direct 

comparison may not be appropriate. Performance was in general higher (with about 5% 

increase in R2 for both NO2 and NOx) for our statewide models than for the southern 

California models (R2 0.82–0.84 vs. 0.77–0.79). In site-based cross validation for southern 

California, our statewide models showed notable improvements of about 16% for NO2 and 

10% for NOx compared with the southern California only models (0.82–0.84 vs. 0.66–0.74 

in R2). For other regions such as northern California and field locations, our method 

performed either similarly or better than the southern California models. This comparison 

demonstrates the importance of combining sufficient regional temporal variability with 

finer-scale spatial effects to generalize spatiotemporal mixed-effects models for large 

regions, as well as other spatiotemporal covariates and cluster-based bagging. Subsequently, 

with the high-accuracy point estimates of NO2 and NOx available, the time series simulated 

by constrained optimization presented strong correlation (mean range: 0.92–0.96) with the 

observed series in validation and independent test. Constrained optimization has the 

advantage of capturing the whole temporal profile within a target location even without a 

complete set of covariates at all the time slices. But due to the use of temporal smoothing 

regression by temporal basis function [29], constrained optimization may not capture very 

high or very low concentrations well (Figure 7). Compared with the constrained 

optimization simulated values, ensemble point estimates had much less under-prediction.
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We employed the machine learning technique of grid search to obtain an optimal solution for 

the interaction of temporal basis functions and the scale of spatial effects. The optimal 

solution was successful in preserving and improving model performance not only in the total 

region but also in the sub-regions. Although grid search showed limited improvement in 

model performance with fine-scale spatial effects and more temporal basis function 

respectively, their combined impact boosted R2 by about 5% (10–16% in site-based 10 fold 

cross validation of the sub-region, southern California). The interaction of temporal and 

spatial variability factors helped our statewide models to better capture spatiotemporal 

variability of NO2 and NOx concentration for both the whole region and for sub regions. As 

a way of hyperparameter optimization, grid search is an exhaustive searching with high time 

complexity in comparison with local optimization methods such as random search and 

gradient descent, and global optimization methods such as Bayesian optimization and 

evolutionary algorithms [45]. Local optimization methods may obtain sub-optimal solutions 

with lower time complexity and the Bayesian method may need a priori knowledge to feed 

its probability models. In our case study, given limited search space (80 combinations in 

Figure 4) and a priori knowledge, grid search is a practical method to find a global optimal 

solution.

As a semi-parametric approach, temporal basis functions are widely used to describe the 

leading modes of variability of air pollutants in the space-time process for a region where 

the samples are obtained at representative sites [17]. In our study, the first temporal basis 

function seemed quite similar with small difference between urban vs. rural samples, or 

southern vs. northern California, or for NO2 vs. NOx. This is illustrated by the common 

dominant seasonal trends for different regions or related pollutants. But the second temporal 

basis function varied between rural vs. urban locations, and between southern vs. northern 

California or for NO2 and NOx. This component indicates regional or pollutant emission 

differences. The urban vs. rural source difference may be reflected in the second temporal 

function. The second temporal basis function seemed quite similar for southern and northern 

California, and for NO2 and NOx with a small shift. This might indicate a temporal lag 

effect in season transitions or other factors from one region to the other region (southern vs. 

northern California) such as the atmospheric chemistry. The third temporal basis function, 

somehow similar to the first one but probably driven by different factors, was similar for 

NO2 vs. NOx, and southern vs. northern California. The fourth and higher level temporal 

basis functions displayed more random fluctuation. Our analysis showed that the first four to 

six temporal basis functions mostly contributed to the model performance while inclusion of 

more than six temporal basis functions did not enhance model performance. In other 

applications, more temporal basis functions may need to be considered if there are sufficient 

representative measurement samples available and the study region is larger [17].

In terms of implementation, the new approach proposed in this paper involves extra 

computing mainly for spatiotemporal clustering, cluster-based bagging and grid search. We 

believe these are significant improvements over our earlier work since they establish a more 

objective, machine learning based framework to guide the selection of model inputs and 

parameters (compared to relying on somewhat subjective decisions we often have to make in 

exposure modeling). Spatiotemporal clustering has the added time complexity of K-Means 

and Kruskal [33]. Since sampling locations for air pollutant monitoring are generally 
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limited, such complexity is easy to accomplish (less than one hour for the 1511 sampling 

locations of our case study). Compared with our original approach [29], the clustering-based 

bagging doubles the time of ensemble learning. The grid search of 80 different combinations 

for the optimal solution is the most demanding, requiring 80 times longer than the original 

ensemble learning time. However, with modern techniques of parallel computing [46, 47], 

the time increase is not an issue. With the computing configuration of Intel (R) Xeon(R) 16 

CPUs (E5530, 2.4G) and 64G memory, it took less than two months for us to finish grid 

search and cluster-based bagging. High performance computing could further reduce the 

computing time.

This study has the following limitations. First, there is a big difference in the size of the 

samples based on biweekly averages between routine AQS data and field campaign data. 

The dominant routine AQS monitoring samples may have a negative influence on the 

models’ performance on the much less frequent non-AQS field samples. However, 

incorporation of fine-scale spatial effects in the models limited this influence as shown in 

our site-based cross validation and the independent test (small difference in R2 for the field 

campaign samples). Second, we are aware that the NO2/NOx monitoring network has an 

urban focus due to its use for the U.S. National Ambient Air Quality Standards compliance 

assessment and this network underrepresents the large rural areas in the domain. The limited 

accuracy of model estimates in rural areas could be improved in future work by 

incorporating satellite data and chemical transport model output like CMAQ that provide 

concentration estimates across the large rural areas. Third, coordinates were used as the 

input factors for clustering at geographical scale. Geographical heterogeneity in many 

factors is closely associated with geographical coordinates that can reflect their difference at 

geographical scale. In the future, we may consider incorporating other factors including 

population and meteorology that may also affect heterogeneity of the clustered samples. 

Fourth, the uneven distribution of sampling locations might make spatial effects work better 

for locations with a higher density of sample locations. However, our results suggested little 

influence of uneven spatial effect on total model performance. With more field or routine 

samples becoming available, spatial effects can be updated at a spatially more even scale and 

this might further improve the models. Fifth, this case study is confined to California and the 

calendar years 1992–2013, but our approach can be also generalized to other air pollutants 

and large regions.

6. Conclusion

In this paper, we developed a machine learning approach for cluster-based bagging of 

constrained mixed-effects models to accurately estimate NO2 and NOx concentrations over a 

large region at high spatiotemporal resolution. Given the inherent heterogeneity in the data 

samples from different sources, an optimal clustering method was designed to extract 

spatiotemporal clusters used to stratify the samples to reduce sampling bias and boost 

bagging to improve generalization in predictions. In single base mixed-effects models, 

spatial variability was captured by spatiotemporal covariates and spatial effects of Thiessen 

polygons, and regional temporal variability was captured by temporal basis functions. For 

the superparameters of the number of temporal basis functions and the scale (aggregate 

distance) of spatial effects, grid search was employed to find the optimal interaction for 
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both. In the case study of NO2 and NOx spatiotemporal estimation of 22 years in California, 

our approach achieved state-of-the-art accuracy in cross validation (R2: 0.88; RMSE: 3.62–

9.63 ppb) and independent tests of random sampling (R2: 0.87–0.90; RMSE: 3.97–9.69 

ppb). The small difference between cross validation and independent tests demonstrates 

robust generalization of our approach for estimation of NO2 and NOx at high spatiotemporal 

resolutions. Our study has important implication for improvement in accurate exposure 

estimation of NO2 and NOx and consequently evaluation of their health effects, particularly 

with respect with short-term or acute outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Challenge of fusing multi-source and heterogeneous data for NOx estimation 

in large regions.

• Cluster-based bagging to reduce bias in training samples and errors in 

prediction.

• Grid search to find optimal combination of parameters with best model 

performance.

• High spatiotemporal resolution NO2 and NOx estimation with high accuracy.

• Robust model generalization based on independent tests.
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Figure 1. 
Study region with training and independent test sample locations [four routine AQS 

monitoring locations, a (468 Manzanita Av., Chico, CA), b (3377 Tahoe Blvd., South Lake 

Tahoe, CA), c (II-1270 Natividad Rd., Salinas, CA) and d (6078 Adobe Rd., Twentynine 

Palms, CA) selected for the long-term time series plots of the observed, predicted and 

simulated concentrations in Figure 7]
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Figure 2. 
Spatiotemporal clustering (spatial→temporal) (a), frequency bar plot (b) and pie chart (c) 

for the number of sampling locations for a cluster
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Figure 3. 
n-K-m sampling framework of spatiotemporal cluster-based bagging
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Figure 4. 
Variation of the models’ performance (R2: a and c; RMSE: b and d) in grid search with 

different combinations of the number of temporal basis functions (used to capture regional 

temporal variability) and aggregate distance for spatial effect modeling (to capture spatial 

variability at regional level).
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Figure 5. 
Plots of the observed vs. predicted NO2 (a) and NOx (b) as well as the residual plots of NO2 

(c) and NOx (d) by the ensemble validation
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Figure 6. 
Thiessen polygons by aggregate distances of 500 m (a, e) vs. 200 m (b, f), and histograms of 

the distances between the AQS (c) and non AQS (d) locations for California
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Figure 7. 
Plots of the observed, predicted and simulated concentrations for the four AQS monitoring 

stations in California (for specific locations, see Figure 1)
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Figure 8. 
Plots of the observed vs. predicted (a and c) and residual (b and d) NO2 and NOx for the 

independent tests
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Table 2.

Stratified ensemble cross validation statistics

Region Pollutant Sample size CV
a
 R2 CV RMSE CV RMSEIQR

California NO2 56,961 0.88 3.62 ppb 0.28

NOx 56,961 0.88 9.63 ppb 0.37

Northern California AQS
b NO2 21,037 0.84 2.56 ppb 0.29

NOx 21,037 0.84 7.11 ppb 0.38

Southern California AQS NO2 33,800 0.88 4.10 ppb 0.25

NOx 33,800 0.88 10.81 ppb 0.35

AQS NO2 54,837 0.88 3.59 ppb 0.28

NOx 54,837 0.88 9.56 ppb 0.37

Non AQS NO2 2,124 0.77 4.42 ppb 0.29

NOx 2,124 0.81 10.06 ppb 0.36

Note:

a.
CV: cross validation;

b.
AQS: EPA’s Air Quality System archive of quality-assured routinely collected measurement data.
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Table 3.

Site- and region- based 10-fold cross validation statistics

Region Pollutant Sample size CV
a
 R2 CV RMSE CV RMSEIQR

California NO2 56,961 0.82 4.39 ppb 0.34

NOx 56,961 0.84 11.05 ppb 0.43

Northern California AQS
b NO2 21,037 0.78 3.08 ppb 0.36

NOx 21,037 0.80 8.01 ppb 0.42

Southern California AQS NO2 33,800 0.82 5.04 ppb 0.31

NOx 33,800 0.84 12.62 ppb 0.40

AQS NO2 54,837 0.82 3.39 ppb 0.27

NOx 54,837 0.84 11. 09 ppb 0.43

Non AQS NO2 2,124 0.78 4.31 ppb 0.28

NOx 2,124 0.81 10.34 ppb 0.37

Note:

a.
CV: cross validation;

b.
AQS: EPA’s Air Quality System archive of quality-assured routinely collected measurement data.
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