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Abstract

Background and Purpose: The genetic relationships between stroke risk, stroke severity, and 

early neurological changes are complex and not completely understood. Genetic studies have 

identified 32 all stroke risk loci. Polygenic Risk Scores (PRS) can be used to compare the genetic 

architecture of related traits. In this study, we compare the genetic architecture of stroke risk, 

stroke severity, and early neurological changes with that of two stroke risk factors: Type 2 

Diabetes Mellitus (T2DM) and Hypertension (HTN).

Methods: We assessed the degree of overlap in the genetic architecture of stroke risk, T2DM, 

HTN, and two acute stroke phenotypes based on the NIH Stroke Scale (NIHSS), which ranges 

from 0 for no stroke symptoms to 21–42 for a severe stroke: baseline (within 6h after onset) and 

change in NIHSS (ΔNIHSS=NIHSS at baseline minus NIHSS at 24h). This was done by: 1) SNP 

by SNP comparison, 2) weighted PRS with sentinel variants and 3) whole genome PRS using 

multiple p-values thresholds.

Results: We found evidence of genetic architecture overlap between stroke risk and T2DM 

(p=2.53×10−169), HTN (p=3.93×10−04) and baseline NIHSS (p=0.03). However, there was no 

evidence of overlap between ΔNIHSS and stroke risk, T2DM or HTN.
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Conclusions: The genetic architecture of stroke risk is correlated with that of T2DM, HTN and 

initial stroke severity (NIHSS within 6h of stroke onset). However, the genetic architecture of 

early neurological change after stroke (ΔNIHSS) is not correlated with that of ischemic stroke risk, 

T2DM or HTN. Thus, stroke risk and early neurological change after stroke have distinct genetic 

architectures.

Term list:

Stroke; Delta NIHSS; Genetic Overlap; Polygenic Risk Score; Ischemic Stroke; Genetics

INTRODUCTION

Hypertension (HTN) is the most common risk factor for stroke along with any form of 

diabetes.1 Type 2 Diabetes Mellitus (T2DM), is also related to the development of HTN2 

and unfavorable functional outcomes after stroke.3 Controlling both HTN and T2DM 

reduces the risk of stroke.4, 5 Stroke risk factors have been described using epidemiological 

studies, which are not designed to infer causality. Therefore, it is not clear if T2DM or HTN 

are part of the causal pathway for stroke or merely comorbid diseases.

Inherited susceptibility through genetic variants has long been postulated to underlie some of 

the classic risk factors for stroke as well as to potentially explain the missing risk.6 Studies 

have demonstrated that there is a genetic component to both HTN and T2DM.7 In addition, 

genetic studies have described a number of loci for stroke risk, some with overlap between 

stroke and its risk factors.8, 9

The hours after stroke onset are crucial for long term outcomes. There are currently no 

published GWAs studies for early neurological outcomes after ischemic stroke, or studies 

comparing the genetic architecture of stroke risk with that of early neurological outcomes. 

To our knowledge, the largest genetic study for early neurological outcomes is the Genetics 

of Early Neurological InStability after Ischemic Stroke (GENISIS). This study uses the 

difference between the baseline NIHSS (collected within six hours after stroke onset) and 

NIHSS at 24h after onset (ΔNIHSS), as an endophenotype to capture a variety of 

mechanisms related to ischemic brain injury and early recovery. To date, the study includes 

more than 2,300 stroke subjects from four countries. The epidemiological analyses showed 

that T2DM was associated with baseline and ΔNIHSS. HTN was not consistently collected 

across all sites, but systolic and diastolic blood pressure at the time of initial presentation 

were found associated with baseline NIHSS. Only systolic blood pressure was found 

associated with ΔNIHSS (Laura Heitsch, personal communication, 12/12/2018).

Polygenic Risk Scores (PRS) have been successfully used to collapse the effects of common 

variants in order to calculate the overall risk of an individual or to identify individuals at 

risk.10 Even though, the predictive power and accuracy of PRS are still insufficient to be 

applied in a clinical setting, they are becoming more informative.10–14 PRS can also be 

employed as a measure to identify the extent of overlap between the genetic architecture of 

co-morbid complex traits.15, 16 In this manuscript we explore the relationships between the 

genetic architecture of stroke risk, stroke severity, and early neurological changes (ΔNIHSS) 

with that of two stroke risk factors: T2DM and HTN.
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MATERIALS AND METHODS

Summary statistics of the GENISIS dataset used for this analyses are available upon request. 

Individual data for the full GENISIS dataset will be uploaded to dbGAP in the near future 

under the name: “Genetics of Early Neurological Instability After Ischemic Stroke 
(GENISIS)”.

Study Design

The aim of this study is to identify the potential overlap in the genetic architecture of stroke-

related phenotypes. First, we wanted to examine if early neurological outcomes after 

ischemic stroke share common genetic risk factors with stroke risk. Two early stroke 

phenotypes (ΔNIHSS and baseline NIHSS) were available from the GENISIS cohort to 

perform the comparison with the MEGASTROKE (stroke risk) cohort. Secondly, we wanted 

to investigate phenotypes relevant to both stroke and ΔNIHSS. During the clinical 

characterization of the GENISIS population, T2DM and HTN but not the other known 

stroke risk factors such as lipid levels or smoking were found to be associated with ΔNIHSS. 

For this reason, we decided to investigate the potential overlap between the genetic 

architecture of early neurological changes and T2DM and HTN.

After bibliographic revision, no summary statistics for trans-ethnic (TE) meta-analyses were 

available for T2DM and HTN. In consequence, we focused on the Non-Hispanic Whites 

(NHW). We used the summary statistics from the Diagram consortia for T2DM and the ones 

from CHARGE consortia for HTN. All the comparisons were performed by matching the 

studies ethnically (Figure 1).

Datasets

Early Neurological Changes: GENESIS—The GENISIS population was composed of 

five sub-cohorts (Table 1). For a more detailed description of the populations and the 

distribution of Delta NIHSS and Baseline NIHSS see supplementary materials.

Stroke Risk: MEGASTROKE—The MEGASTROKE study9 is a meta-analysis of 

numerous GWAs studies on stroke risk. The GENISIS study is not part of the 

MEGASTROKE meta-analyses. However, there is an overlap of 200 individuals from the 

NINDS-Stroke Genetics Network (SiGN) that are part of both studies. In the 

MEGASTROKE study 32 loci were associated with stroke risk. In this study we have 

focused only in the 20 loci that were associated with ischemic stroke. We restricted our 

analyses to the ischemic stroke loci because the GENESIS cohort only includes ischemic 

strokes. We did not test the stroke subtypes separately due to the limited power of the 

GENISIS population.

All participants from the different studies included in the MEGASTROKE meta-analysis 

provided written informed consent. All individual studies were reviewed and approved by 

the corresponding ethics committees.

Stroke Risk Factors: T2DM (Diagram) and HTN (CHARGE)—We explored the 

possible genetic overlap between the GENISIS phenotypes and GWAs for T2DM and HTN. 
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We used the GWAs catalog (https://www.ebi.ac.uk/gwas/ - Accessed April 3rd 2018) to 

select GWAs studies related to HTN and T2DM. We reviewed all the original manuscripts 

from the GWAs catalog to confirm the effect size, and reference alleles. We selected one 

GWAs study for each trait based on publicly available summary statistics and ethnicity. We 

gave preference the studies that had the greatest sample size. We utilized data from the 

Diagram consortia to map the genetic architecture of T2DM7, 18, and the Cohorts for Heart 

and Aging Research in Genomic Epidemiology (CHARGE) consortia to map the HTN 

genetic architecture (accession number:pha004258). T2DM cases were defined as having 

fasting glucose ≥ 126 mg/dl or random blood sugar ≥ 200 mg/dl. HTN cases were defined as 

any individual with one or more of the following characteristic: systolic blood pressure ≥ 

140 mmHg; diastolic blood pressure ≥ 90 mmHg and/or currently taking antihypertensive or 

blood pressure-lowering medication.

Statistical Analyses

Analysis of variance—To test if the early neurological changes phenotype (ΔNIHSS) 

from the GENESIS study had a genetic component, we used the software genome-wide 

complex traits analysis (GCTA).19 Briefly, GCTA estimates the amount of phenotypic 

variance explained by all the SNPs in the genome for a complex trait fitting the effects of all 

SNPs as random effects in a linear mixed model. We were unable to evaluate baseline 

NIHSS using this approach as it did not follow a normal distribution.

Single Variant Analyses—The associations between the sentinel SNPs from the studies 

used to model the PRS and the two phenotypes from the GENISIS cohort were tested using 

an additive linear model with PLINK 1.9.20 The model included age, sex and the two first 

principle components (PCs) as covariates. In the case of ΔNIHSS, baseline NIHSS is used to 

calculate ΔNIHSS, but does not predict it, thus it was also included in the model to adjust for 

initial stroke severity.21 We performed the analyses of the Non-Hispanic Whites (NHW), 

Non-Hispanic Non-Finnish Whites (NHFW) and African Ancestry populations separately. 

The results were meta-analyzed using METAL22 and MANTRA.23

Polygenic Risk Score using sentinel SNPs—We modeled a PRS using the sentinel 

SNPs from the original studies (MEGASTROKE, Diagram and CHARGE), using the 

method described by the Psychiatric Consortium10 and tested it on the phenotypes from the 

GENISIS population (ΔNIHSS and baseline NIHSS). Our group has successfully used this 

method previously.16, 24 Briefly, only the genetic variants corresponding to each GWAs hit 

(sentinel SNP) reported in the different studies that were available in the GENISIS dataset 

with an overall call rate >85% were included in the PRS calculation (Supplementary Table 

I). If available, proxies with R2>0.90 were used for the variants that were not present in the 

GENISIS dataset. The weighted PRS was computed using the binary logarithm 

transformation of the reported ORs. The PRS values were computed using PLINK 1.9.20

The effect and statistical significance of the PRS was tested using general linear models (R) 

adjusting by age, sex and population structure (first and second PCs) and baseline NIHSS 

when ΔNIHSS was being used as phenotype.21 To adjust for multiple testing, we applied a 
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Bonferroni correction. We also corrected each PRS by the three tested phenotypes. Only p 

values < 0.017 were considered significant.

Genome-wide Polygenic Risk Score (PRSice)—We used the PRSice software to 

calculate the genome-wide PRS using multiple p-value thresholds.25 We tested the possible 

association between the three PRSs (Stroke Risk, Type 2 Diabetes Mellitus and 

Hypertension) with the two phenotypes of the GENISIS cohort (ΔNIHSS and baseline 

NIHSS) using a linear regression adjusting by age, sex and population structure (first two 

PCs). In the case of ΔNIHSS, baseline NIHSS was also included in the model to correct for 

initial severity.21 Briefly, SNPs present in only one dataset, ambiguous SNPs (A/T or C/G) 

and all SNPs in linkage disequilibrium (LD) were removed prior to PRS calculation. The 

PRS is calculated as the sum of risk alleles weighted by the effect size estimates.

Using PRSice, we also tested the possible association between the PRS of stroke risk with 

T2DM and HTN. We used the sumsum option implemented in PRSice that uses summary 

statistics from both datasets to evaluate if there is any evidence of shared genetic architecture 

between the target and base phenotypes.

Additionally to PRSice, we performed the same comparisons using the genetic covariance 

analyzer, GNOVA.26 Instead of PRS, GNOVA is an annotation-stratified analysis that 

provides more power to detect moderate genetic correlations.

RESULTS

Analysis of variance (GCTA)

We used GCTA to compute the amount of phenotypic variance explained by common SNPs 

in the NHW and NHFW populations in the GENISIS study. Since GCTA exploits linkage 

disequilibrium (LD) patterns to calculate the explained variance, it is not advisable to mix 

ethnicities. Therefore, we did not test the overall trans-ethnic population, but restricted our 

analysis to NHW and NHFW. The common genetic variants explained between 7–9% of 

ΔNIHSS (Supplementary Table II), suggesting that there is a genetic component for early 

stroke outcome phenotypes.

Single Variants

Prior to the constructing any PRS, we determined if any of the sentinel SNPs from stroke 

risk, T2DM and HTN GWAs were associated with any early neurological change 

phenotypes (Supplementary Table III). See supplemental results for details.

Polygenic Risk Score

After checking single variants, we aimed to test the possible overlap between the genetic 

architecture of T2DM and HTN, acute stroke phenotypes and stroke risk. We constructed 

PRS based on the genome-wide loci for each MEGASTROKE, Diagram and CHARGE and 

tested against the GENISIS population (Supplementary Table IV). We found no evidence of 

association between the T2DM or HTN PRS with any of the acute stroke phenotypes. The 
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stroke risk PRS was not associated with baseline NIHSS, or ΔNIHSS in the TE (trans-

ethnic) or NHW populations.

The lack of association of the sentinel-PRS with the different acute stroke phenotypes could 

be because the sentinel SNPs may lack the power to detect a modest overlap between the 

genetic architecture of these complex traits. To address this issue, we constructed a PRS 

using the whole genome summary statistics from each of the three meta-analyses using 

PRSice. In summary, several PRSs were modeled, each including a different number of 

independent locus depending on different p-value thresholds. Then, all the PRSs were tested 

to identify the best fit (Table 2 and Supplementary Figure III). Only the best fit is presented 

in Table 2. Full results can be found in Supplementary Table V.

Both T2DM and HTN PRSs were highly associated with ischemic stroke risk in the NHW 

population. The T2DM PRS explained 1.4% of the variance stroke risk (p=2.53×10−169; 

SNPs=102,455) (Figure 2–Panel A), which is in line with other studies comparing complex 

traits.13 We also found that the genetic architecture of HTN and stroke risk showed a 

significant overlap (p=3.93×10−04) (Figure 2–Panel B). It is important to highlight that the 

genetic architecture of T2DM overlaps that of HTN (p=2.2×10−16) when using the same 

approach.

T2DM PRS was nominally associated with ΔNIHSS in both NHW (pDelta=0.007; r2=0.3%) 

(Supplementary Figure IV-Panel G) and NHFW populations (pDelta=0.024; r2=0.3%) 

(Supplementary Figure IV-Panel I) (Table 2). However, when using the trans-ethnic GWAs 

summary statistics18 the results were not significant (data not shown), probably due to 

differences in the ethnicities included in the different analyses. Finally, the HTN PRS was 

found to be nominally associated with baseline NIHSS in the NHW population (p=0.027; 

r2=0.2%) (Supplementary Figure IV-Panel L and Table 2). None of those associations passed 

the multiple test correction.

The risk for ischemic stroke PRS modeled with the MEGASTROKE results from the NHW 

were nominally associated with baseline NIHSS in the NHW and NHFW GENISIS 

populations (pNHW=0.006; r2=0.3% and pNHFW=0.030; r2=0.3%) (Supplementary Figure IV 

Panels D and F and Table 2) when including 136,023 SNPs. This PRS was also nominally 

associated with ΔNIHSS (p=0.014; r2=0.3%) in the NHFW population (Supplementary 

Figure IV-Panel E and Table 2).

Similar results were found when using GNOVA (Supplementary Table VI), supporting the 

findings from PRSice in the European populations. We did not test the TE populations since 

GNOVA is based on linkage disequilibrium structure, and the TE population was 

confounded by the effects of multiple ethnicities in the trans-ethnic population.

DISCUSSION

Long-term outcome after stroke is influenced by initial stroke severity as well as early 

neurological changes within the first 24h — a period of great instability.27–30 Moreover, it is 

known that the underlying stroke etiology can influence initial stroke severity.31, 32 

However, little is known about the relationship between ischemic stroke risk, acute stroke 
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severity, and early neurological changes. To our knowledge, this is the first study 

investigating the possible overlap between the genetic architecture of stroke risk and acute 

stroke-related phenotypes.

The involvement of T2DM and HTN genetics in stroke risk genetics has been largely 

suspected, even though both of them are considered modifiable risk factors.4, 5 The 

MEGASTROKE study was the first, to our knowledge to give evidence of the genetic 

correlation between these two stroke risk factors and stroke risk. Statistically, they 

performed weighted genetic risk scores and LD-score regression analyses using the cohorts 

Diagram and CHARGE (the same used in the present study). When using weighted genetic 

risk scores, they reported that both T2DM and HTN were associated to the risk of suffering 

ischemic stroke (p=1×10−10 for both). When using LD-scores, only T2DM was reported to 

be associated with stroke risk (p=1×10−5).9 Another study used a third statistical approach. 

They used Mendelian Randomization to test the implication of T2DM in cerebral small 

vessel disease (p=7×10−3).33 In this study, by using PRS, we also found that the genetic 

architecture of T2DM and HTN overlap with the genetic architecture of the ischemic stroke 

risk (p=2.53×10−169 and p=3.93×10−4; respectively). Taken together, this suggests that the 

PRS approach is the most powerful. All the results implicate the genetic architecture of 

T2DM and HTN in stroke risk. Furthermore, our results suggest that T2DM is also linked 

genetically to HTN, suggesting that there is a deleterious feedback loop between stroke risk 

factors and actual stroke risk. T2DM and HTN may be controllable stroke risk factors, but 

they may also be implicated genetically in the causality, thus being partly-modifiable factors.

In this study, we also determined the overlap of early neurological changes after ischemic 

stroke (ΔNIHSS) with T2DM and HTN, but failed to find any strong associations. At face 

value, these results suggest that early neurological changes after ischemic stroke (ΔNIHSS) 

are not influenced by stroke risk factors.

We found that the genetic architecture of stroke risk overlaps with that of stoke severity as 

measured by baseline NIHSS in both NHW (p=0.006) and NHFW cohorts (p=0.030). This 

association might suggest that the genetic load of stroke risk alleles could be additive, as has 

been suggested for other diseases34, 35 and may influence the initial stroke severity. 

However, additional analyses are needed to demonstrate this. The amount of explained 

variance is small, but it is similar to that of other studies.12, 25 These results, also suggest 

that the GENESIS study provides enough power to identify the genetic overlap between 

stroke outcomes, T2DM and HTN. Since all traits are different and not all the genetic 

studies have the same power, this might not be true for other complex traits.

Additionally, the lack of association of ΔNIHSS with T2DM and HTN might also be 

explained by other limitations. First, the sample size for the ΔNIHSS (GENISIS) is not as 

large as those for T2DM and HTN, and therefore has less power to capture the entire genetic 

architecture of this complex phenotype. Second, even though the GWAs studies for stroke 

risk, stroke recovery, T2DM and HTN, include very large samples sizes, they may not 

capture all the genetic variants associated with those phenotypes due to the complexity of 

the traits. Third, the lack of association can also be caused by the stringent p values 

threshold set in the GWAs studies (p=5×10−08); thus we may not be capturing the full 
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complexity of the genetic architecture of stroke risk. In addition, the risk of stroke T2DM 

and HTN is highest in the African American population, which were not represented in 

sufficient numbers in these studies. Future studies with greater numbers of African 

American participants may increase our understanding of the genetic architecture of stroke 

risk. Finally, we also have to take into account that GWAs studies capture a sentinel SNP as 

a proxy of the causal variant. Each population has its own unique LD structure, and will 

therefore have different sentinel SNPs. A PRS constructed with the causal variants would 

have a clearer biological basis.

We attempted to solve the above limitations by creating PRSs using a whole genome 

approach. However, the results indicate that early neurological change after stroke 

(ΔNIHSS) does not seem to share a genetic architecture with stroke risk. A trend towards 

association was observed in the NHFW (p=0.014) but not in the NHW population. It should 

be noted that the NHW population from MEGASTROKE includes only 1% of subjects from 

Finland, whereas in the GENISIS population, 18.4% of the NHW population are from 

Finland. When the Finnish cohort is removed from GENISIS, the populations become more 

homogeneous, and the power to detect the genetic overlap seems to increase. This 

association should be further tested in larger populations.

False positive errors due to a smaller sample size and statistical power reduction is also 

possible. Here, we are able to detect overlap between baseline NIHSS and stroke risk 

suggesting that the power of this study is sufficient to detect overlap of at least 0.3%, which 

may be insufficient for ΔNIHSS and stroke risk. There may be other known or unknown 

variables that may be affecting ΔNIHSS or baseline NIHSS, but are not captured in this 

study.

ΔNIHSS is a complex phenotype that captures early neurological deterioration or 

improvement after acute ischemic stroke. It is a quantitative phenotype where larger values 

(either positive or negative) may be more clinically meaningful than smaller values. While 

small changes in scores across different domains (e.g. language vs. motor) may result from 

different mechanisms, large changes may reflect common mechanisms regardless of 

domains affected. Indeed, a recent analysis of a GENISIS sub-cohort reveals that extreme 

improvement (positive 2–3*SD) is highly associated with recanalization, while extreme 

deterioration (negative 2–3*SD) is associated with hemorrhagic transformation. In addition, 

ΔNIHSS must be considered in the context of its baseline NIHSS (e.g. a 4-point 

improvement in a patient with a baseline score of 4, may be very different from a 4-point 

improvement in a patient with a baseline score of 24). Thus, we have included baseline 

NIHSS in our model to account for this difference in context.

SUMMARY

Our data suggests that the genetic architecture of T2DM and HTN overlaps with that of 

ischemic stroke risk. Moreover, the genetic architecture of ischemic stroke risk overlaps that 

of initial stroke severity. This suggests that the presence of certain risk alleles for stroke risk 

may have additive effects on stroke severity. We found no genetic overlap between stroke 

risk and early neurological changes after stroke, suggesting that the mechanisms 
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contributing to stroke risk are distinct from those that influence early neurological changes 

after stroke. Therefore, GWAs of early neurological changes will likely reveal a distinct set 

of variants from that of stroke risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design scheme
The study design scheme shows the different datasets with the phenotypes extracted from 

each of them (HTN – Hypertension, T2DM – Type 2 Diabetes Mellitus). The last row shows 

all the available populations depending on the study (TE – Trans-Ethnic, NHW – Non-

Hispanic Whites and NHFW – Non-Hispanic, Non-Finnish Withes).
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Figure 2. PRSice sumsum Bar Plots for the Type 2 Diabetes Mellitus (T2DM) and Hypertension 
(HTN) and risk of ischemic stroke, Nagelkerke’s fit
A - Nagelkerke’s fit for the model: T2DM PRS ~ Ischemic Stroke Risk using the option 

sumsum from PRSice.

B - - Nagelkerke’s fit for the model: HTN PRS ~Ischemic Stroke Risk using the option 

sumsum from PRSice.
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Table 2.

PRSice best fit for Stroke risk, HTN and T2DM for the two GENISIS phenotypes (ΔNIHSS and baseline 

NIHSS) in each subpopulation (Trans-ethnic, Non-Hispanic White and Non-Hispanic Non-Finnish White)

Population Phenotype
P-Value Variance SNPs

Stroke Risk (MEGASTROKE)

Trans-Ethnic
Delta 0.154 <0.001 7,907

Baseline 0.238 <0.001 27,378

Non-Hispanic White
Delta 0.055 <0.001 1,003

Baseline 0.006 0.003 136,023

Non-Hispanic Non-Finnish White
Delta 0.014 0.003 1,003

Baseline 0.030 0.003 136,023

Type 2 Diabetes Mellitus (Diagram)

Non-Hispanic White
Delta 0.007 0.003 4,618

Baseline 0.447 <0.001 268

Non-Hispanic Non-Finnish White
Delta 0.024 0.003 4,618

Baseline 0.530 <0.001 268

Hypertension (CHARGE)

Non-Hispanic White
Delta 0.066 0.001 1,257

Baseline 0.027 0.002 6

Non-Hispanic Non-Finnish White
Delta 0.057 0.002 205

Baseline 0.103 0.001 205

Nominally significant p-values are in bold
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