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Abstract

We present a Monte Carlo simulation model that reproduces U.S. invasive breast cancer incidence 

and mortality trends from 1975–2010 as a function of screening and adjuvant treatment. This 

model was developed for multiple purposes, including to quantify the impact of screening and 

adjuvant therapy on past and current trends, predicting future trends, and evaluate potential 

outcomes under hypothetical screening and treatment interventions. The model first generates the 

life histories of individual breast cancer patients by determining the patient’s age, tumor size, 

estrogen receptor (ER) status, human epidermal growth factor 2 (HER2) status, SEER 

(Surveillance Epidemiology and End Results) historic stage, detection mode at time of detection, 

preclinical tumor course, as well as death age and cause of death (breast cancer versus other 

causes). The model incorporates common inputs used by the Cancer Intervention and Surveillance 

Modeling Network (CISNET) including the dissemination patterns for screening mammography, 

breast cancer survival in the absence of adjuvant therapy, dissemination and efficacy of treatment 

by ER and HER2-status and death from causes other than breast cancer. In this manuscript, 

predicted mortality outcomes are compared assuming a proportional versus non-proportional 

hazards effects of treatment on breast cancer survival. We found that the proportional hazards 

treatment effects are sufficient for ER-negative disease. However, for ER-positive disease, the 

treatment effects appear to be higher during the early years following diagnosis and then diminish 

over time. Using non-proportional hazards effects for ER-positive cases, the predicted breast 

cancer mortality rates closely match the SEER mortality trends from 1975–2010, particularly after 

1995. Our work indicates that population level simulation modeling may have a broader role in 

assessing the time-dependence of treatment effects.
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INTRODUCTION

The impact of specific cancer control interventions, such as screening and adjuvant 

treatment, on cancer incidence and mortality are increasingly being quantified with the use 

of simulation-based models. We have developed and applied such a simulation-based model 

in order to estimate the separate and combined effects of screening and adjuvant therapy on 

the breast cancer incidence and mortality trends in the general population. In prior work, our 

model, often referred to as Model S or BCOS (Breast Cancer Outcomes Simulator), was one 

of seven Cancer Intervention and Surveillance Network (CISNET) models used to estimate 

the relative contributions of screening mammography and adjuvant therapy to the reduction 

in breast cancer mortality for the overall U.S. population from 1975 to 2000.1 Since its 

initial development, BCOS has been continually refined to incorporate the latest data on 

breast cancer control and surveillance in order to capture changes in incidence and mortality 

patterns due to usage of menopausal hormonal therapy (MHT) and the increased use of 

adjuvant treatments that are dependent on molecular subtype. In this manuscript, we will 

focus on one of the model changes that had the biggest impact on reproducing breast cancer 

mortality trends, namely changes in modeling treatment effectiveness.

When incorporating breast cancer treatment effectiveness into our model, we originally 

adopted the hazard ratios obtained from the literature.2–9 The treatment effects were 

summarized as a single value, for each age and ER-status group, computed as the hazard 

ratio using the Cox proportional hazards regression.10 Incorporating these effects directly 

into our simulation model implied that the hazard reduction of breast cancer death 

attributable to any treatment remained constant over the course of the individual’s lifetime 

following treatment. However, emerging evidences have suggested that the benefits of 

commonly used adjuvant treatment may change over time. For example, a methodology 

work on data from a trial in the National Surgical Adjuvant Breast and Bowel Project 

(NSABP) showed time-dependent treatment effects among ER-positive patients treated with 

adjuvant tamoxifen versus placebo;11 data from the Cancer and Leukemia Group B and US 

Breast Cancer Intergroup demonstrated that the reduction in risk of breast cancer recurrence 

and death with high-dose adjuvant cyclophosphamide, doxorubicin, and fluorouracil (CAF), 

compared with low-dose CAF, was 55% in the first year and 30% in the second year, with 

little benefit after three years, for ER-negative patients;12 an analysis based on five NSABP 

trials suggested that a large early chemotherapy benefit was followed by a consistently low 

recurrence hazard over an extended time period for ER-negative patients whereas the benefit 

appeared to concentrate primarily in earlier follow-up for ER-positive patients.13 More 

recently, a study systemically assessed the proportional hazards assumption for all 19 trials 

in NSABP and concluded that breast cancer adjuvant therapy could have statistically 

significant time-dependent effects.14 Therefore, we considered the impact of time-dependent 

treatment effects on our model.

MODEL OVERVIEW

Our current model’s basic formalism has not significantly changed compared to the original 

version.15 The main model modifications include: (1) updated the secular trend in breast 

cancer incidence to reflect the incidence rates in the absence of screening and MHT use; (2) 
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modified the preclinical tumor growth curves to account for MHT use; (3) ER- and HER2-

status assignment based on age, size, stage at clinical detection and tumor volume doubling 

time (TVDT); (4) incorporation of ER and HER2-specific baseline survival curves in 

absence of screening, treatment or MHT; (5) updated mammography detection thresholds 

according to MHT use and by ER-status; (6) updated dissemination and effectiveness of 

adjuvant therapies to be ER and HER2-specific, specifically, accommodated time-dependent 

treatment effects.

These changes are briefly described in the following sections. A flowchart of our updated 

simulation model is presented in Figure 1 and the corresponding pseudocode of the 

simulation algorithm is provided in Table 1 (the model was implemented using C++).

OVERVIEW OF MODEL COMPONENTS

The underlying components of our simulation model with the corresponding input(s) are 

shown in Figure 1 and in the following, we provide a more detailed explanation about each 

component.

Population Component

The population component specifies the U.S. birth cohort’s underlying survival. The model 

generates a sample of U.S. women born between 1890 to 1990 to reproduce the breast 

cancer associated outcomes among women aged 20–84 for each calendar year from 1975 to 

2010. To reduce the sampling variability of the Monte Carlo method, two million women are 

generated in each birth cohort. Each simulated woman is assigned a birth date as well as an 

age at death from causes other than breast cancer using the CISNET common input 

parameter.16, 17

Breast Cancer Incidence Component

The breast cancer incidence component determines whether an individual from a particular 

birth cohort would be clinically detected with invasive breast cancer in the absence of 

screening and MHT use. In this component, each simulated woman is assigned an age when 

her first primary invasive tumor clinically surfaces, meaning that it becomes 

symptomatically detected in the absence of screening. This component relies on an input 

referred to as the “secular trend in breast cancer incidence”. This input was originally 

derived from an age-period-cohort (APC) model18 formulated as described by Holford and 

others19. In the current model, we re-estimated the age, period and cohort effects by 

applying an iterative approach that simultaneously estimates underlying parameters of the 

natural history model (described below), the impact of MHT on breast cancer progression 

and mammography sensitivity fit to breast cancer incidence in the presence of screening and 

MHT use. We found this approach better addresses the non-identifiability issues with the 

APC model. Moreover, it provides estimates of the breast cancer trends in the absence of 

screening and MHT.20

Munoz et al. Page 3

Med Decis Making. Author manuscript; available in PMC 2019 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Natural History Component

In the natural history component, the size and stage (SEER historic stage) of each breast 

cancer patient’s first primary invasive breast tumor are reconstructed from the time the 

tumor is a small (2mm), localized, invasive mass to the time it clinically surfaces. We model 

the natural history of an individual tumor as a progressive disease that stochastically 

advances in stage as the tumor increases in size. We assume that the tumor grows 

exponentially in the screen detectable window, and the growth rate is a random variable 

drawn from a probability distribution dependent on the patient’s age and tumor size at 

clinical detection. A difference from our original model with regards to this component is 

that the growth rate (or equivalently, TVDT) and ER/HER2-status are jointly determined for 

each patient and MHT usage is assigned subsequently based on the ER status. The use of 

MHT also affects the tumor growth curve so that the age and stage at clinical detection need 

to be re-specified based on dynamic changes in MHT use and disuse. As mentioned above, 

these parameters are estimated jointly with the APC model.20 Note that we do not model the 

progression of ductal carcinoma in situ (DCIS) to invasive cancer due to issues related to 

non-identifiability with our existing data and estimation methods.

Screening Component

Once the natural history of a patient’s disease is constructed, we then superimpose onto it a 

screening schedule to determine if and when screening mammography affects tumor 

detection. For the mammography dissemination, we use the CISNET common input 

parameter based on national survey self-reported data to estimate the distribution of the time 

to first mammography and Breast Cancer Surveillance Consortium (BCSC) data to model 

repeat screening behavior.16 Additionally, each woman is assigned a screen detection 

threshold, conditioned on her ER status and age at the time of screening. If the woman is on 

MHT at the time of screening, then her detection threshold is inflated by a factor associated 

with MHT use. A tumor in the pre-clinical phase and with a size above the detection 

threshold at the time of screening could be screen-detected if screening occurs in this period.

Treatment Component

The use of adjuvant treatment and the corresponding survival benefit associated with 

adjuvant treatment are identified in the treatment component. As many new breast cancer 

treatments have been approved and disseminated, the original BCOS model, which assigned 

only poly-chemotherapy and tamoxifen to patients, has been updated to include more 

adjuvant treatment options (e.g. anthracyclines, taxanes, aromatase inhibitors, and 

trastuzumab). In the current BCOS model, treatments are assigned based on the patient’s 

age, tumor size, stage, year of diagnosis, as well as ER, HER2-status, and the corresponding 

treatment effectiveness is dependent on tumor stage and ER, HER2-status using the CISNET 

common input parameter.16

Survival Component

The purpose of the survival component is to specify a patient’s breast cancer survival time 

from the moment her first primary invasive tumor is detected. Each patient is assigned a 

breast cancer survival randomly sampled from a distribution dependent on her age, tumor 
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size, and stage at detection, as well as the use of adjuvant treatment and ER, HER2-status. 

The distribution is obtained by applying the adjuvant treatment effectiveness to the baseline 

survival curves (i.e. survival curves in the absence of screening and treatment), assuming a 

non-proportional hazards reduction in breast cancer mortality to incorporate time-dependent 

treatment effects (described below). The baseline survival curves in our original model are 

conditioned on age, tumor size, and stage at detection, which are now updated to be 

conditioned on ER, HER2-status as well. The ER and HER2-specific baseline survival 

curves are obtained through a back-calculation procedure.21 Mode of detection affects breast 

cancer survival through stage-shifting due to early detection from screening. Ultimately, 

each woman’s age and cause of death (breast cancer vs. other causes) are obtained by 

comparing her ages at breast cancer death and other-cause death.

MODEL CALIBRATION FOR TIME-DEPENENT TREATMENT EFFICACY

In prior work15, we modeled the efficacy of adjuvant treatment on underlying breast cancer 

survival assuming proportional hazards. As stated in the Introduction section, evidences 

suggest that the effects of adjuvant treatment may be time-dependent, and the time-

dependence may vary by molecular-subtypes.11–14 To explore the possibility of subtype-

specific, time-dependent treatment efficacy, we leveraged our ER-specific natural history 

model to infer the annual effect of treatment by first comparing SEER breast cancer survival 

curve estimates with those predicted from the model in the presence of screening only.

We define Hei
s  as the annual breast cancer death hazard for a tumor with ER-status e in year i 

after detection in the presence of screening alone (superscript s). Hei
s  is computed as an 

output of our BCOS model when run under the screening and no adjuvant treatment 
scenario. We then compute the annual hazard reduction in breast cancer death attributable to 

treatment, Hei
t , for a tumor with ER-status e in year i after detection, as the ratio of the breast 

cancer death hazards observed in SEER, which are observed in the presence of both 

screening and treatment, versus those from the BCOS model only in the presence of 

screening. In other words,

Hei
t = Sei/Hei

S

where Sei is the annual hazard of breast cancer-specific death in the presence of screening 

and treatment as computed from SEER. Note that Hei
t  is calculated as the percent reduction 

in deaths observed in each individual year i for each ER-status e.

To allow for the possibility of time-dependent treatment effects, we assumed that there exists 

a time-dependent and ER-specific hazard multiplier, Mei, that characterizes the time trend in 

hazard reduction observed with respect to an average effect μe, such that:

Mei = Hei
t /μe
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for any year i and ER-status e. We computed μe as the average hazard reduction observed 

after n years:

μe =
∑i = 1

n Hei
t

n

Note that it was not our intent to quantify separate hazard reductions for each individual 

treatment, but rather to identify the time-dependent effects that are attributable to composite 

treatments for patients with particular molecular subtype. In our analysis, Mei was estimated 

with survival data from breast cancer patients who were detected between calendar year 

1990–2010 and molecular subtype e. During this time period, multiagent chemotherapy and 

tamoxifen were the most common adjuvant therapies administered to the breast cancer 

patients on the basis of their ER-status. Note that the treatment efficacy was calibrated after 

accounting for the screening effect, therefore it relies on the estimation of the screening 

effect.

When implementing this effect into our model, we assumed that all the treatment 

effectiveness estimates obtained from clinical trial literature2−9 are averaged annual hazard 

reductions of the form of μe, that can be adjusted by Mei to obtain time-dependent annual 

hazard reductions. In other words, the time-dependent reduction in the hazard of breast 

cancer death attributable to any molecular-subtype-specific treatment combination T was 

computed as:

Hei
T = Mei * μe

T

for i years after detection and ER-status e. The multiplier was only applied for breast cancer 

cases after 1995 because the ER-status was underreported in SEER prior to 1995.

MODEL RESULTS AND VALIDATION

Hazard Ratio for Proportional vs. Non-proportional Assumptions

Figure 2 shows the annual hazard ratio (HR) in breast cancer death attributable to treatment 

by ER-status and age at diagnosis (<50 and >−50), under both the proportional and non-

proportional assumptions. By calibrating to ER-specific breast cancer survival, we find that 

the effects of treatment show a time-dependency that varies by ER-status. Compared to the 

proportional hazards assumption, the treatment effects under the non-proportional hazards 

assumption for ER-positive disease appear stronger in the first 7 years and diminish 

gradually. However, for ER-negative cases, the treatment effects under the two assumptions 

are consistent except for a small initial difference. With these findings and considering the 

evidence from literature11–14, we adopted the non-proportional hazards assumption (i.e. 

time-dependent treatment effects) for ER-positive disease only and retain the proportional 

hazards assumption for ER-negative disease.
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Breast Cancer Survival Curves and Annual Hazards

Figure 3(A) shows the comparison between proportional and non-proportional treatment 

effects for ER-positive disease on predicted survival curves and annual hazards of breast 

cancer death. We also compare these curves to SEER data for the same calendar years. For 

ER-positive disease, we reproduce SEER curves under the non-proportional hazards 

assumption, while the proportional hazards assumption cannot capture either the low initial 

hazards nor the persistent later hazards. On the other hand, ER-negative disease shows a 

high hazard peak followed by a rapid and consistent decrease, which is adequately captured 

by the proportional hazards assumption. Because the registry data is in the presence of both 

screening and treatment, the predicted curves are under the scenario with screening and 

treatment, which also serves as a form of validation.

Based on the non-proportional hazards assumption for ER-positive disease, Figure 3(B) 

shows our model-derived estimates for ER-specific survival curves and annual hazards for 

women detected at age 50 or above between 1990–2010 under four different screening and 

treatment scenarios: (i) no screening and no treatment (NoSCR+NoTX), (ii) screening and 

no treatment (SCR+NoTX), (iii) no screening and treatment (NoSCR+TX), and (iv) 

screening and treatment (SCR+TX). The survival curves indicate that treatment have slightly 

greater benefit than screening for ER-positive disease, whereas treatment has less benefit 

than screening for ER-negative disease (blue vs. orange curves). The annual hazards further 

show that the screening effect (orange vs. red curves) diminishes over time for both ER-

subtypes and the treatment effects (green vs. orange curves) decrease over time for ER-

positive disease but remain stable for ER-negative disease.

Overall and ER-specific Breast Cancer Incidence and Mortality Trends

Our simulation model was evaluated by comparing the predicted incidence and mortality 

rates from the model with the observed rates from SEER, overall and by ER status. Since ER 

status started to be collected in SEER in 1990, ER-specific SEER incidence and mortality 

rates were calculated with imputations for unknown cases, assuming the same proportions of 

ER-positive records as those among the known cases by calendar year. To avoid a large 

fraction of unknown cases, the ER-specific rates were compared from year 1995 onward. 

Figure 4(A) and (B) show that the general shape of the observed breast cancer incidence and 

mortality curves were captured by the corresponding predicted curves, both for the overall 

population and ER-specific subpopulations. Note that Figure 4(B) was based on non-

proportional treatment effects for ER-positive disease, which is the default assumption. If we 

had applied proportional treatment effects instead, the resulting mortality curves are shown 

in Figure 4(C). The predicted mortality curve for the overall population in Figure 4(C) 

deviates from the observed curve from 1995 onward, demonstrating that the simple 

proportional hazards assumption for ER-positive cases is not sufficient in our simulation 

model.

CONCLUSION

Our simulation model reproduces U.S. breast cancer incidence and mortality rates from 

1975 to 2010 and ER-specific trends from 1995 onward. The model also specifically models 
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natural history based on a biological model of tumor doubling times, making it well suited to 

address questions about survival by molecular subtypes that vary in terms of tumor 

progression. However, BCOS does not include DCIS due to issues of model parameter non-

identifiability. Hence BCOS is limited in its inferences about the impact of screening on 

over-diagnosis and over-treatment, particularly related to DCIS. However, the natural history 

model of invasive cancer underlying BCOS can be adapted to new research directions 

including incorporating deeper molecular profiling of invasive disease for assessing risk 

stratified screening guidelines and evaluating the effect of new treatments of primary 

invasive disease and distant recurrence.

The modularity of the BCOS model enables us to isolate effects of differing modeling 

assumptions. Here we demonstrated the impact of assuming proportional versus non-

proportional treatment-related hazards on breast cancer survival and mortality. We found 

non-proportional treatment effects for ER-positive disease, but not for ER-negative disease. 

For ER-positive disease, we found that the treatment effects are stronger in the early years 

after diagnosis, then diminish over time. By assuming time-dependent treatment effects to 

better reproduce ER-positive breast cancer survival curves, BCOS more closely reproduced 

breast cancer mortality rates over time.

The time-dependent treatment effects for breast cancer patients with ER-positive disease 

may be related to the amount of time women are prescribed tamoxifen. In the 1990s, some 

women were prescribed tamoxifen for 2 years, then the recommended treatment duration 

was increased to 5 years. More recently, the American Society of Clinical Oncology 

recommended tamoxifen for 10 years, suggesting greater benefits of extending beyond 5 

years.22 Others have also suggested a time-dependent effect of tamoxifen, as indicated in the 

Introduction section.11 The results of our analysis are consistent with these studies. That 

said, our results have some limitations. They are dependent on treatment dissemination 

patterns and the estimated effect of screening. Moreover, we did not quantify separate time-

dependent hazard reduction for each individual treatment. Nevertheless, with the fact that 

our findings of time-dependent treatment effects for ER-positive patients are consistent with 

other studies and we are able to better reproduce mortality, our work suggests that 

population level simulation modeling may have a broader role in assessing the time-

dependence of treatment effects.
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Figure 1. 
Flowchart of the updated Monte Carlo algorithm per simulated individual. Orange 

parallelograms indicate inputs that have been modified. ER, estrogen receptor; HER2, 

human epidermal growth factor 2; MHT, menopausal hormonal therapy; TVDT, tumor 

volume doubling time.
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Figure 2. 
Annual contribution of treatment to reducing the hazard of death from breast cancer for 

cases detected between 1990 and 2010 by estrogen receptor (ER) status and age (<50, >50). 

The black curves are the estimates assuming proportional hazards, and the colored curves 

are the hazard estimates using our nonproportional hazard assumption (blue for ER-positive 

cases and red for ER-negative cases). HR, hazard ratio; TX, treatment.
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Figure 3. 
Comparison of estimated and Surveillance, Epidemiology, and End Results (SEER) survival 

curves (first column) and annual hazards (second column) by estrogen receptor (ER) status 

for cases detected at age 50 years or older between 1990 and 2010: (A) breast cancer 

survival under proportional v. nonproportional treatment effects and (B) breast cancer 

survival for alternative treatment and screening scenarios assuming nonproportional hazards 

for ER-positive disease and proportional hazards for ER-negative disease.
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Figure 4. 
Age-adjusted (to the 2000 US standard population) rates (per 100,000) for women aged 30 

to 79 years at diagnosis (incidence) or at death (mortality) from 1975 to 2010 (overall) or 

from 1995 to 2010 (ER specific), SEER (solid curves) v. simulation model (dashed curves): 

(A) breast cancer incidence, (B) breast cancer mortality under nonproportional hazards 

assumption (for ER-positive cases), and (C) breast cancer mortality under proportional 

hazards assumption. ER, estrogen receptor; NoSCR + NoTX, no screening and no treatment; 

NoSCR + TX, no screening and treatment; SCR + NoTX, screening and no treatment; SCR 

+ TX, screening and treatment; SEER, Surveillance, Epidemiology, and End Results.
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