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Abstract

The translation of biological glycosylation in humans to the clinical applications involves 

systematic studies using homogeneous samples of oligosaccharides and glycoconjugates, which 

could be accessed by chemical, enzymatic or other biological methods. However, the structural 

complexity and wide-range variations of glycans and their conjugates represent a major challenge 

in the synthesis of this class of biomolecules. To help navigate within many methods of 

oligosaccharide synthesis, this Perspective offers a critical assessment of the most promising 

synthetic strategies with an eye on the therapeutically relevant targets.

Graphical Abstract

INTRODUCTION

Oligosaccharides (or glycans) are the ubiquitous molecules of life. While nucleic acids 

(DNA and RNA) are the information molecules and templates for making proteins, glycans 

are used by Nature to modulate the properties of biomolecules and for the communications 

between proteins and cells. However, the role of glycosylation in life has not been well 

understood. Glycosylation is a complex process, which varies among different cells and 

tissues, and could be affected by the environment. In the past two decades, a great progress 

has been made in understanding the biology of glycosylation.1 These advances can be 

attributed in part to the recent developments in oligosaccharide synthesis, predominantly the 

synthesis of human-type sequences to assist biomedical research.2

Corresponding Author wong@scripps.edu, chwong@gate.sinica.edu.tw. 

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
J Am Chem Soc. Author manuscript; available in PMC 2020 March 06.

Published in final edited form as:
J Am Chem Soc. 2019 March 06; 141(9): 3735–3754. doi:10.1021/jacs.8b11005.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In human cells, glycans are often conjugated to lipids and proteins. As part of glycolipids, 

oligosaccharides participate in cell-cell recognition and signaling events. The discovery of 

tumor-associated carbohydrate antigens (TACAs) has been explored for the development of 

anticancer vaccines.2c-f When expressed on glycoproteins, N-glycans can affect protein 

structure, function and stability, thus making glycosylation a critical parameter in the 

optimization of therapeutic glycoproteins,2g whereas O-glycosylation can also influence 

protein folding and post-translational phosphorylation. In mucins, O-glycans provide 

lubrication and protection of epithelial surfaces against acid-exposure and pathogenic 

infection, and serve as an inspiration for the design of new biomaterials. The extracellular 

glycosaminoglycan (GAG)-containing proteins (or proteoglycans) modify the 

physicochemical properties of the environment and participate in many recognition 

processes. The physiological roles of GAGs have been translated into a plethora of 

pharmaceutical applications ranging from thrombosis and inflammation to design of new 

biomaterials for drug delivery, and tissue engineering.2h-j The glycosylphosphatidylinositol 

(GPI) oligosaccharides, which connect proteins to membrane lipids, were shown to affect 

protein conformations and organization of lipid rafts. Although fully-assembled GPI-

anchored proteins are still difficult to study, the GPI oligosaccharides have been pursued in 

the context of antiparasitic vaccines, as well as for the development of diagnostic glycan 

arrays.2k,l As such, the term “oligosaccharides” covers many types of glycans with 

compositions and linkages specific to each class (Figure 1). In addition, within each type, 

there is a high degree of heterogeneity as glycan biosynthesis depends not only on genetic 

parameters, but also environmental factors, which could influence the expression of enzymes 

involved in glycan biosynthesis, and affect the availability of glycosylation substrates. For 

this reason, isolation of homogeneous glycoforms is almost impossible. Instead, only 

chemical and in vitro enzymatic methods are suitable for the preparation of homogeneous 

samples except for glycoproteins with multiple glycosylation sites. The chemoenzymatic 

synthesis of these biomolecules is yet to become practical, therefore stimulating 

development of new methods. As the result, synthesis of complex oligosaccharides requires 

a multidisciplinary approach encompassing practical synthetic methods and effective tools 

of cellular and molecular biology, biochemistry and glycoproteomics. Remarkably, the 

complementary use of both chemical and biochemical methods for oligosaccharide synthesis 

could be traced back to the work of Emil Fischer and his systematic fermentation 

experiments of simple oligosaccharides.3

Historically, chemical synthesis has always been a method of exploratory research as this 

mature discipline can provide access to almost any structure. To meet the synthetic 

challenges associated with the preparation of homogeneous glycans, biochemical methods 

have been developed to complement chemical and cell-based methods. In particular, if the 

demand of a glycoconjugate is confirmed, then process optimization is often performed 

using an enzymatic or chemoenzymatic method. This cycle could be illustrated with the 

development of carbohydrate-based anticancer vaccines,2f,4 and heparin-based 

anticoagulants.5 In the case of therapeutic antibodies, protein glycoengineering by a 

combination of cell-based and chemoenzymatic methods has the potential to optimize both 

efficacy and safety of monoclonal antibodies (mAbs), reduce batch-to-batch variability and 

manufacturing cost by switching to non-mammalian expression systems.6
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In this Perspective, we review the key innovative methodologies of chemical and enzymatic 

synthesis, and highlight the application of these methods towards the development of 

glycotherapeutics, without going through a detailed process of development. To provide a 

better oulook of how the progress in oligosaccharide synthesis impacts the development of 

glycotherapeutics, we summarized some of the pharmaceutically relevant targets and 

products in Table S1 (SI). From commercialized drugs to candidates at early and late stages, 

one can note the increasing complexity of biomolecules that are being accessed by the 

evolving methods of oligosaccharide synthesis.

CHEMICAL VS. ENZYMATIC SYNTHESIS

Until the early 1980s, chemical synthesis was the only method that could deliver 

homogeneous samples of oligosaccharides. Although the retrosynthetic analysis is relatively 

more obvious for oligosaccharides than other natural products, the chemical synthesis of 

oligosaccharides has several challenges, including: (i) control of stereoselectivity in the 

glycosidic bond formation; (ii) glycosylation of substrates with high-density of functional 

groups; (iii) differentiation of multiple functional groups with orthogonal protection to 

control the regioselectivity of glycosylation and downstream modifications (e.g., sulfation); 

(iv) numerous protections and deprotections, which decrease overall efficiency of synthesis. 

These highlighted issues, which have to be resolved for at least 10 human-type 

monosaccharides, explain the absence of one general method for the assembly of glycans. 

Nevertheless, solutions to many of these problems have been reported (Table 1),7 and in its 

current state, given enough time and resources, chemical methods can deliver most glyco-

products of any complexity, as illustrated by the synthesis of mycobacterial 92-mer 

arabinogalactan,8 and certain glycoforms of EPO.9

Control of stereoselectivity at the anomeric center is the central topic of the chemical 

method. Depending on the mechanism,22 glycosylation can proceed with either trans- or cis-
selectivity between substituents at C-1 and C-2. Among many parameters (e.g., solvent, 

temperature, nucleophilicity of acceptor), the structure and reactivity of the donor affected 

by protecting groups (PGs) have the strongest impact on the stereochemistry of 

glycosylation. For example, acyl PG at C-2 can direct trans-configuration by forming the 

1,2-cis-fused five-membered cyclic intermediate permitting nucleophilic attack from the 

trans-face.10 On the other hand, the influence of non-assisting groups (e.g., N3, OBn), which 

could favor 1,2-cis-configuration due to the anomeric effect, is relatively weak leading to a 

mixture of isomers. Thus, historically, the synthesis of 1,2-cis-glycosides,13e,15b as well as 

glycosides lacking the hydroxyl group next to the anomeric position (i.e., 2-

deoxyglycosides,23 and sialosides with sterically hindered quaternary anomeric center), 

represented the hardest problem in chemical synthesis (Table 1, entry i).

Using the thioether auxiliaries, Boons and others have extended the neighboring group 

participation strategy to 1,2-cis-glycosylation through a decalintype intermediate and 

formation of a trans-configured sulfonium ion.11 Although the directing acyl groups at 

remote positions (C-3, C-4, and C-6) do not provide the same degree of stereoselectivity as 

those at C-2,12 the properly designed donors with remote acetyl groups can give high 

stereoselectivity in α-gluco- and α-galactosylations. This strategy is particularly suited for 
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the automated synthesis of oligosaccharides as common acyl groups do not require extra 

steps for installation and deprotection.21c Unlike acyl groups, which facilitate anti-addition 

of a nucleophile, the picoloyl (Pico) substituents at remote positions favor syn-additions. 

The hydrogen bond-mediated aglycon delivery (HAD) strategy developed by the 

Demchenko group has been applied to the synthesis of various glycosides with high 

anomeric selectivity.13j The Mong group also reported the synthesis of nonsymmetrical α
−1,1’-disaccharides using a Pico-protected trimethylsilyl acceptor and an α- or β-directing 

donor to achieve desired stereoselectivity.13k

In the intramolecular aglycon delivery (IAD) method, acceptor and donor are tethered 

together to increase the efficiency of coupling and to improve the facial selectivity of the 

acceptor. Initially developed for the synthesis of β-mannosides,14a-f the IAD strategy has 

been applied to a variety of targets14f-h. However, the most straightforward procedure for β-

mannosylation is based on the conformation-restraining 4,6-O-benzylidene acetal PG.15a A 

detailed discussion on the origin of β-selectivity in this transformation could be found in a 

recent review.15b Other examples of the conformation-restraining PGs include 4,6-O-di-tert-

butylsilylene for α-galactosylation,15c 2,6-lactone for β-mannosylation,15d 3,4-O-tetra-iso-

propyldisiloxane for α-glycoaslation from glycals,23c 2,3-oxazolidinone for α-glycosylation 

of GlcNAc,15e and equatorially selective glycosylation of pseudaminic acid donor with 

controlled side-chain conformation.15f To improve the reactivity and α-selectivity of the 

sialoside donor,15a,g the Wong group introduced the N-acetyloxazolidinone-protected 

sialoside with a dibutylphosphate leaving group (LG).15h,i

Among many LGs developed to date,24 1-thioglycosides24a,b and O-glycosyl imidates24c are 

the most popular donors for glycosylation. Typically, these donors provide the desired 

window of reactivity for the construction of common linkages; however, the use of acidic 

promoters could be detrimental in the case of acidsensitive substrates or stagnant 

glycosylations, which require long reaction times leading to decomposition of glycosyl 

intermediates. A general solution to this problem is the development of mild and neutral 

glycosylation conditions (Table 1, entry ii) by optimizing LGs,16a promoters16–17,25 and 

catalysts.16b,25e,f One prominent example is the gold-catalyzed glycosylation with alkynyl 

donors developed by Yu et al. that has been applied to the synthesis of a number of natural 

products.16b Examples of mild promotors include photochemical activation of thioglycoside 

donors25a,b and synthesis of 2-deoxyglycosides from glycals,25c electrochemical generation 

of glycosyl triflate intermediates from thioglycosides,25d and use of organocatalytic systems 

(e.g., chiral phosphoric acid) for glycosylation reactions.25e,f The Jacobsen group reported 

the use of macrocyclic bis-thioureas as catalysts for the stereoselective glycosylation with 

chloride donors.26 The reaction was shown to proceed through the inverted and cooperative 

mechanism in which both the electrophile and the nucleophile were activated to effect the 

stereoselectivity.

In certain cases, generation of highly reactive glycosyl donors in situ could improve the 

yield of stagnant glycosylations, as demonstrated in the coupling of ceramide acceptors with 

trimethylsilyl iodide donors generated in situ25g and α-selective glycosylation with 2-

deoxysugar donors via in situ generated bromide donors using cyclopropenone- (and 

cyclopropene-1-thione-)-derived promoters.17
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Methods for the selective protection of monosaccharide building blocks are based on the 

well-established differences in the intrinsic reactivities of the hydroxyl groups.27 While 

orthogonally protected sugars are still at the core of chemical synthesis,27b various 

methodologies for glycosylation of unprotected donors and acceptors have emerged. Many 

of these methods are either organocatalytic25f or organoboron-mediated glycosylations.
18a,25e,28 The more general boron-assisted methods rely on the propensity of boronic/borinic 

reagent to reversibly form a complex with 1,2- or 1,3-diol.18–19,29 Thus, cyclic boronates 

could serve as transient masking groups to differentiate the hydroxyls on the acceptor,29a or 

conceal the hydroxyl(s) of a donor as in the case of Bu2BOTf reagent, which provided 1,2-

trans-selectivity even in the presence of non-assisting groups at C-2, including free OH.29b 

However, the most valuable application of organoboron reagents is based on the ability of 

the tetracoordinated organoboron complex to activate the equatorial oxygen of 1,2-cis-diol 

towards reaction with electrophiles (Table 1, entry iii). Using this strategy, Taylor and 

colleagues developed a Ph2BOH-catalyzed monofunctionalization of diols and triols. When 

applied to the Koenigs-Knorr-type glycosylation of acceptors protected at C-1/C-6, the 

borinic acid catalyst afforded a high regio- and 1,2-trans-selectivity.18a Later, the same group 

reported an oxaboraanthracene-derived catalyst effective at low temperatures.18b,c

Taking the utility of boron reagents even further, Takahashi and Toshima developed a 

conceptually new method, where a boron reagent/catalyst not only differentiates the 

hydroxyls of acceptor but also acts as a Lewis acid activating the 1,2-anhydrosugar donor 

towards the 1,2-cis-selective attack by acceptor.19 While diarylborinic acids are suitable for 

the glycosylation of mono-deprotected acceptors, the aryl boronic acids can be used to 

differentiate the 1,3-diol at C-6 and C-4 offering excellent 1,4-regioselectivity for most of 

the substrates, with the exception of galactosyl acceptor, which favors 1,6-regioselectivity. 

Recently, a glycosylation of fully deprotected acceptors in the presence of water and 
p-NO2PhB(OH)2 as a catalyst has been reported.19b

Perhaps the most useful improvement for the preparative synthesis of oligosaccharides was 

the development of one-pot glycosylation procedures (Kahne, Fraser-Reid, Ley)30 to 

improve the overall efficiency of synthesis by minimizing the number of steps and 

eliminating the work-up and purification routines. Since the various strategies for the 

assembly of oligosaccharides and the expedite one-pot procedures for the protection of 

monosaccharide building blocks31 have been recently reviewed,21f,32 herein, we briefly 

discuss some popular methods and their limitations. Essentially, the one-pot procedures 

exploit the differences in reactivities of the acceptor hydroxyls and/or the LGs of the donors. 

However, many practical strategies operate on the assembly from non-reducing end to 

reducing end, thus relying on the properties of donors. For example, the orthogonal one-pot 

protocol is based on the sequential chemoselective activation of different LGs under the 

orthogonal conditions.33 Despite the simplicity of the idea, the design of orthogonal one-pot 

synthesis requires a certain level of familiarity with oligosaccharide synthesis. To transform 

the highly specialized carbohydrate synthesis into a routine operation, a programmable one-

pot method has been developed by the Wong group (Table 1, entry iv).20a Inspired by the 

seminal work of Ley32c, the Wong group performed systematic measurements of the relative 

reactivity values (RRVs) of thioglycoside donors in the competition experiments against a 

peracetylated thiomannoside standard (RRV=1) and developed the OptiMer software to 
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search database for the optimal combination of coupling partners. 20a,b The next-generation 

software Auto-CHO based on the artificial intelligence can now identify suitable building 

blocks for the complex glycan synthesis from 150 monosaccharides and fragments with 

validated RRV and 50,000 virtual building blocks with predicted RRV.20c Over the years, the 

programmable one-pot method has been successfully used to synthesize various 

oligosaccharides, including heparin pentasaccharides, LacNAc oligomers, the cancer 

antigens Ley, sLex, fucosyl GM1, Globo H and SSEA-4, and the embryonic stem cell surface 

carbohydrates Lc4, and IV2Fuc-Lc4. 20,32 Using the thioglycoside donors and promoters 

(i.e., NIS, TMSOTf), the programmable one-pot method is probably the most general 

method applicable to the synthesis of linear and branched sequences commonly found in 

human. However, if the availability of thioglycoside building blocks is an issue, then a 

preactivation-based iterative onepot strategy could be considered,32,34 in which, a 

thioglycoside donor is activated with a promoter prior to the addition of acceptor. This 

method is independent of donor reactivity but requires a complete consumption of the initial 

reagents before adding the next set. As the result, glycosylation with low-reactivity 

substrates could be problematic and may require process optimization. Nevertheless, the 

preactivation one-pot method is particularly suited for the construction of repetitive 

oligosaccharide sequences.8

Another strategy for expediting the preparation of oligosaccharides is represented by the 

solid-phase synthesis, which eliminates the need for the purification of reaction 

intermediates and could be transformed into an automated process. The most advanced 

technology is the automated glycan assembly (AGA) developed by the Seeberger group.21a,b 

Following years of optimization of synthetic protocols and instrumentation, a fully 

automated glycan synthesizer, Glyconeer 2.1™, is now commercially available. In the AGA, 

the oligosaccharide sequence is constructed from the reducing end (i.e., resin-bound 

acceptor) by iteration of glycosylation-capping-deprotection cycles with monitoring of the 

coupling efficiency by UV-trace of dibenzofulvene, which is formed upon deprotection of 

the Fmoc-group.21d,e Since the solid-phase synthesis requires the use of donors in excess 

and often encounters low-yields for the traditionally difficult glycosylations (e.g., β-

mannosylation, α-sialylation),21e AGA gives best results for optimized sequences using 

“approved” building blocks. Nonetheless, the list of AGA-compatible substrates is 

expanding, and the versatility of method has been demonstrated with the synthesis of 

different classes of glycans, covering blood group determinants, oligosaccharides of 

glycolipids, GAGs, parasitic GPIs, glycopeptides, microbial and plant polysaccharides.21a-e 

Other notable examples of automated methods (e.g., one-pot solution-phase oligosaccharide 

synthesis by Quest-210 (Takahashi), the fluorous-tag-assisted synthesis based on the 

automated liquid handler and fluorous solid-phase extraction (FSPE) technique (Pohl), the 

HPLC-assisted oligosaccharide synthesis (Demchenko, Stine), and the automated 

electrochemical synthesis (Nokami)) have been covered in a recent review.21f

A more desirable technology, however, could combine the advantages of solidphase 

synthesis, enzymatic catalysis, and automation.20b,35 While the first prototype of automated 

glycosynthesizer employing immobilized glycosyltransferases and polymer-bound substrates 

was reported in the early 2000s by Nishimura,20b,35a,b the application of this technology has 

been stalled by the limited availability of compatible enzymes with the desired selectivities. 
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Recent examples of the preparative automated enzymatic synthesis of glycans include a 

process based on the FSPE technique (Chen),35c and a microwave peptide synthesizer 

(Wang)35d,e with oligosaccharides bound to the water soluble thermoresponsive PNPAM-

based polymer.36

Unlike the chemical synthesis of oligosaccharides, which had been practiced for more than 

100 years, the enzymatic synthesis has gained its momentum only in the 1980s, following 

the development of recombinant DNA methodology and polymerase chain reaction (PCR) 

that permitted engineering and overexpression of enzymes with optimized stability, 

activities, and specificities.37 The in vitro synthesis of oligosaccharides employs 

glycosyltransferases (GTs),38 glycosidases (or glycosyl hydrolases, (GH))38a,39 and 

phosphorylases.40 Some of the first procedures of the preparative enzymatic synthesis 

utilized GTs that require sugar nucleotides as donors. To eliminate the use of expensive 

sugar nucleotides and prevent the feedback inhibition caused by the nucleoside phosphate 

byproduct, a sugar nucleotide recycling system was developed in 1982 (Figure 2A).41 At 

present, the multienzymatic protocols for the regeneration of all nine nucleotide donors have 

been etsablished4a,42 and applied to the synthesis of sialyl Lewis X,42b hyaluronic acid,42c 

heparin oligosaccharides,42d disialyllacto-N-tetraose,42e glycolipids4a and other complex 

glycoconjugates, including the first example of homogeneous glycoprotein synthesis.42f In 

recent years, many efficient protocols have been further developed by the groups of Chen 

and Wang, who coined the term OPME (One-Pot Multi Enzyme) synthesis.42g

Glycosidases and phosphorylases cleave glycosidic bonds releasing free sugar or 

glycoside-1-phosphate respectively. The reversibility of these transformations makes 

glycosidases and phosphorylases applicable to the synthesis of glycans. However, the 

product yield usually does not exceed 20–30% due to competitive hydrolysis. In 1998, the 

Withers group reported the first glycosynthase, which was generated from glycosidase by 

mutating the nucleophilic residue at the active site to abolish the hydrolytic activity.43 

Selective site mutations and directed evolution techniques have been used to generate 

glycosynthases with relaxed substrate specificities.43d Glycosidases of endo-type, such as 

endo-β-N-acetylglucosaminidase (ENGase), became essential for the preparation of 

homogeneous glycoproteins (Figure 2C),39a,44 particularly therapeutic mAbs with well-

defined glycan structure for optimal efficacy.45

Although the enzymatic synthesis of oligosaccharides provides a high control of 

stereoselectivity in glycosylation without the use of PGs, optimization of reaction conditions 

and purification protocols are often required to obtain practical yields. One potential 

limitation of the enzymatic method is the availability of enzymes with specificities for the 

desired linkages. Nevertheless, the number of carbohydrate-modifying enzymes is 

expanding. As of September 2013, the CAZy (Carbohydrate-Active enZyme) database had 

listings of 1936 characterized GTs (139 with structure) and 9221 glycosidases (817 with 

structure).46 In addition, Moremen and Jarvis have reported an expression vector library 

encoding all known human glycoenzymes for the production in mammalian (HEK293) and 

baculovirus-infected insect cells.47 Overall, the drawbacks of both chemical and enzymatic 

methods could be compensated by a combined chemoenzymatic approach.
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LIPID-LINKED OLIGOSACCHARIDES

Mammalian glycolipids, or glycosphingolipids (GSLs), are oligosaccharides β-linked to 

ceramide, a sphingoid amine (i.e., sphingosine, sphinganine, phytosphingosine) acetylated 

with fatty acids (C14-C32).48 The heterogeneity of GSLs arises from the structures of lipid 

and oligosaccharide. Depending on the glycan composition, GSLs could be classified into 

cerebrosides (i.e., GlcCer and GalCer), sulfated, neutral and sialylated GSLs (or 

gangliosides). Generally, GSLs are derived from the simple Glc/GalCer, which are extended 

with Gal, GlcNAc, GalNAc and modified by GlcA, sulfation, phosphorylation, fucosylation 

and sialylation (Figure 1D), as in the Lewis histo-type antigens. Another level of 

heterogeneity stems from sialylation, which could be present in α2,3-, α2,6- or α2,8-

linkages covering modifications with Neu5Ac, Neu5Gc, ketodeoxynonulosonic acid (KDN) 

and their acetylated, sulfated and methylated derivatives.

As in the synthesis of other glycoconjugates, the synthetic task could be broken down into 

syntheses of aglycon, oligosaccharide, and efficient conjugation of glycan to the lipid. Due 

to the relative structural simplicity and the strong link between abridged GSLs and 

tumorigenesis, the GLS glycans became some of the first targets of synthesis48b allowing 

investigation of these oligosaccharides as cancer biomarkers and antigens for the design of 

therapeutic vaccines.2e,f The most advanced vaccine candidate Globo H-KLH/QS21 (Phase 

III for metastatic breast cancer),2f has been further improved by the new generation Globo 

H-DT vaccine which is combined with an analog of α- galactosylceramide as adjuvant to 

enhance the antibody response to Globo H and the class switch from IgM to IgG.4b,c The 

induced antibodies showed specificity against Globo H, SSEA-3 and SSEA-4, which are 

overexpressed in breast cancer and its stem cells, as well as 15 other types of cancer cells. In 

another study, a Globo H vaccine candidate with 6N3-Fuc modification induced a stronger 

IgG response than the parent unmodified Globo H-DT conjugate.4d To assist the 

development of Globo H vaccine, an effective enzymatic process was developed by Wong 

for the gram-scale synthesis of Globo H and SSEA-4 oligosaccharides (Figure 2A).4a

The enzymatic synthesis could provide access to many GSL sequences,48a,49 including 

ganglio-, lacto-, neolacto-, globo-, isoglobo-,49a and muco-series,49b as well as histo-blood 

group antigens;49c,d whereas chemical and chemoenzymatic approaches are useful for the 

synthesis of oligosaccharides with unusual modifications and linkages, such as O-sulfated 

sLex,49e or echinoderm-type gangliosides with potent neuritogeneic activity.48b,c,49f A list of 

enzymes suitable for the synthesis of GSLs, including fucosylsynthase (BbAfcBD703S) for 

the α1,4-fucosylation of GlcNAc49g and the α2,3/8-sialyltransferase (CjCstII),49h could be 

found in a recent review.48a Sialyltransferases for the synthesis of human-type α2,3/6/8- and 

bacterial α2,9-sialosides have been surveyed elsewhere.49i

The functional studies of glycolipids require the full-length oligosaccharide attached to a 

lipid,48a and the most straightforward synthetic strategy is based on the adaptation of 

biosynthetic pathways to in vitro synthesis. Although, this appoach was successfully applied 

to synthesize a bacterial Lipid II,50 it is not suitable for the human-type GSLs yet. The 

chemical synthesis of GSLs involves conjugation of a monosaccharide to the sphingosine 

base, followed by acetylation and glycan extension. In a chemoenzymatic approach, an 
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oligosaccharide (prepared by enzymatic method) is protected by acetylation and transformed 

into an imidate donor, which is then coupled to a sphingosine azide.49j After azide reduction 

and total deprotection, the oligosaccharide substrate could be further elaborated with GTs.
49k To avoid solubility problems, installation of the fatty acid is carried out during the last 

step.

As an alternative approach, Withers and colleagues developed a glycosynthase-mediated 

synthesis of GSLs from unprotected glycosyl fluorides and sphingosine (Figure 2B) using 

the glycosynthase of endo-glycosylceramidase II (EGC II) from Rhodococcus strain 

M-777.43b,c The most active mutant EGC IIE351S had relaxed substrate specificities for the 

glycan donor (i.e., lyso-GM3, -GM1, -Gb3 and -Lac) accepting sphingosine and sphinganine 

substrates. Further mutagenesis experiments have led to the synthases with improved 

activities towards phytosphingosine.43d As in the case of chemoenzymatic approach, the 

late-stage acetylation with fatty acid gave fully elaborated GSLs.43c

Overall, the synthesis of GSL oligosaccharides with enzymes is well established and could 

be adjusted to other glycan sequences. The robustness of enzymatic protocols has been 

demonstrated with their adaptation to the automated synthesis.35c,d Chemical methods, 

however, are still used to create unusual linkages and modifications (e.g., site-specific 

labeling of GSLs probes with reporting tags).48a

PROTEIN-LINKED GLYCANS AND RELATED OLIGOSACCHARIDES

Synthesis of N-glycans.

Oligosaccharides are often linked to proteins either at the side-chain nitrogen of Asn (N-

glycans) or the hydroxyl group (O-glycans) of Ser, Thr, Tyr, etc. This section predominantly 

discusses proteins modified with N-glycans and mucin-type O-glycans with therapeutic 

significance. The biosynthesis of N-linked oligosaccahrides starts in ER51 and involves a 

step-wise synthesis of dolichol-linked Glc3Man9GlcNAc2, which is transferred by 

oligosaccharyltransferase (OST) to the N-X-S/T (X ≠ P) sequon of a growing polypeptide 

(Figure 1A). After going through the CLX/CRT cycle(s), a correctly folded protein is 

relocated to the Golgi apparatus, where a high-mannose structure is converted into hybrid-or 

complex-type glycans. The enzymatic diversification of N-glycans in Golgi is affected by 

many factors, including the interplay of glycosyltransferases,52 leading to heterogeneous 

mixtures of glycoforms representative of cell type and glycoprotein structure.

To address the great diversity of N-glycans, two main strategies for the generation of N-

glycan libraries have been explored: (1) enzymatic diversification of a common precursor 

(Figure 3A);53 and (2) modular glycan assembly (Figure 3B).54 In 2013, Takeda and Ito 

introduced a top-down chemoenzymatic synthesis of the high-mannose-type glycans to 

study the substrate specificities of the glycan-modifying enzymes in ER. Starting from the 

synthetic Man9GlcNAc2-derived oligosaccharide with different non-native glycosides at 

terminal ends, the glycan library was generated by selective deprotection of each arm 

followed by enzymatic trimming of the Man-α1,2-Man linkages.53a,b Boons and colleagues 

reported several strategies towards complex-type N-glycans including the Man3GlcNAc2 

precursor orthogonally protected at the O-2/4 and O-2/6 positions of terminal mannoses; 
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53c-g GlcNX4Man3GlcNAc2 precursor with ‘masking’ terminal GlcN3 and GlcNH2;53e and 

a GalGlcNAc4Man3GlcNAc2 oligosaccharide modified with non-native Gal-α1,4-GlcNAc 

and Man-β1,4-GlcNAc. When used as a substrate for the carefully devised enzymatic 

sequences, a structurally diverse library of N-glycans was generated.53f Wang and 

colleagues designed a Core Synthesis/Enzymatic Extension (CSEE) approach, which 

utilized bacterial GTs and simple glycan cores to generate N-glycan and O-mannosyl glycan 

libraries.53h-k Using a similar logic, DeLisa and colleagues reported the enzymatic 

elaboration of N-glycan cores obtained from microbial glycoproteins and glycolipids.53l

In the modular method developed by Wong, three types of glycan modules are prepared by 

chemoenzymatic synthesis and converted to the glycosyl fluoride for coupling to the 

Man3GlcNAc2/1 core, generating a large number of multiantennary N-glycans.54a-c In 

addition to the fluoride approach, the Fukase and Unverzagt groups demonstrated 

glycosylation with trifluoroimidate54d,e and trichloroimidate54f donors respectively. A 

general chemical sequence for the synthesis of multi-branched N-glycan cores (Unverzagt) 

included a successive installation of the α1,3-arm, α1,6-arm, and the final insertion of the 

bisecting β1,4-GlcNAc.54f The optimized procedure for the chemical fucosylation of the 

α1,6-core has been also developed. As a general strategy, the modular method is applicable 

to all types of N-glycans, including unusual hybrid-type glycans, which have been identified 

in an array format as preferred epitopes of broadly neutralizing antibodies (bNAbs) against 

HIV-1,54c as well as non-native N-glycan cores modified with both bisecting GlcNAc and 

core fucose.54f This method is suitable for the synthesis of N-glycan substrates for the 

glycan remodeling of glycoproteins.45f,g,55

A major bottleneck in the syntheses of N-glycans is the availability of core oligosaccharides. 

The recent breakthroughs in the expression and purification of Alg1 and Alg2 allowed 

replication of the lipid-linked Man3GlcNAc2 biosynthesis in vitro (Figure 1A).56 However, 

the Alg2-catalyzed reaction was found to be effective only for the C20-C25-long isoprenyl 

lipids56b making this process unsuitable for the synthesis of the core. Currently, apart from 

the chemical synthesis, the core oligosaccharides can be obtained from natural sources (e.g., 

sialylglycopeptide (SGP) from egg yolk53i or recombinant bovine fetuin53j) albeit the 

purification process is laborious.

Synthesis of mucin-type O-glycans and human milk oligosaccharides.

The biosynthesis of mucin-type O-glycans involves installation of GalNAc sites by a cohort 

of polypeptide N-α-acetylgalactosaminyltransferases (ppGalNAcTs),57 and further 

modifications of the GalNAc residue by GTs (Figure 1B).57b Overall, the enzymatic 

synthesis of mucin-type oligosaccharides is not a significant challenge, as many GTs of the 

pathway have been reported,38a,39b,47 whereas the chemical synthesis of mucin-type O-

glycans (e.g., Tn, sTn, T and sT antigens) has also been used for the exploration of 

therapeutic vaccines against cancer.2e,58

The human milk oligosaccharides (HMOs) have been investigated for their beneficial 

properties to the health of breastfed infants,59 and shown to regulate intestinal microbiome, 

modulate epithelial and immune cell responses, and provide nutrients (i.e., sialic acid) to the 

brain. As in the case of O-glycans, the “haphazard” biosynthesis leads to a high degree of 
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heterogeneity among HMOs, where a lactose core could be extended by type 2 structures 

(linear i-or β3/6-branched I-antigens), and terminated with type 1, Lewis-or blood-type 

antigens (Figure 1C). Over the years, methods for the chemical, enzymatic and 

chemoenzymatic syntheses of relatively short HMOs have been reported.59a In 2017, an 

enzymatic synthesis of the asymmetric multi-antennary HMOs was established by Boons 

(Figure 3C).59d The preparative enzymatic synthesis of HMOs could be performed with 

inexpensive bacterial enzymes coupled with sugar-nucleotide regeneration.59a-c

HOMOGENEOUS GLYCOPROTEINS

The glycosylation effect.

Although the effect of glycosylation has to be considered in the context of a specific protein, 

the production of therapeutic glycoproteins in nonhuman cells should avoid immunogenic 

epitopes, such as non-human α-Gal (i.e., terminal Gal-α1,3-Gal), Neu5Gc, insect-type α1,3-

fucosylation of the core, or yeast-type mannans. In addition, receptor-specific glycans could 

affect the distribution of the protein. For example, the ability of mannose-6-phosphate 

receptors (M6PRs) to transfer Man-6P-conjugated proteins to lysosome could help optimize 

the enzyme replacement therapies for the treatment of lysosomal storage disorders.2g 

Overall, the extended N- and O-glycans protect the underlying peptide sequence from 

proteolysis. Sialylation prevents protein aggregation and prolongs half-life by shielding the 

Gal residue, a ligand of the hepatic asialoglycoprotein receptor, which removes Gal-

associated proteins from the bloodstream. Moreover, the pharmacokinetic properties of 

therapeutic proteins could be improved by protein modification with polysialic acid (PSA).60 

The effect of glycosylation has been also investigated in the context of glycoprotein 

stabilization.2g For example, the complex-type glycoforms of Fc region were found to be 

thermodynamically more stable, than the hybrid type, high-mannose or mono-GlcNAc 

glycoforms.61

Numerous experiments have been designed to understand the intrinsic effect of O-62 and N-

glycosylation62f,g,63 on the stabilization and folding kinetics of glycoproteins. Several 

reports showed that the first sugar has the most influence on the conformational preferences 

of the glycopeptide. For example, the O-β-GlcNAc on an RNA polymerase II model was 

shown to promote type II β-turn structure and facilitate protein folding.62a The effect of α-

GalNAc glycans on the local peptide conformation of MUC1 has been investigated in the 

context of the anticancer vaccine design.62d Overall, the O-glycosylation prompts 

“stiffening” and favors the extended conformation of the peptide backbone of MUC1. On the 

other hand, peptides modified with the β-GalNAc linkage exhibit the conformational 

behavior similar to the naked peptide, which is dynamic and relatively unrestrained. To 

explain why anti-MUC1 antibodies recognize Tn-Thr and have low affinities to the Tn-Ser 

moiety, the conformational differences between these antigens have been examined. 

Compared to GalNAc-α-Ser, the glycosidic linkage of GalNAc-α-Thr is rather rigid in 

solution occupying the eclipsed conformation caused by the interactions between the 

endocyclic oxygen and the methyl group of Thr. The recent study by Corzana et al 
demonstrated that the eclipsed conformation of Tn-Thr offers the space for a water pocket 

(Figure 4A), which was observed in solution, as well as in a protein-bound state.62e
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Although O-glycosylation does not have a designated glycosylation sequon, studies aimed at 

identification of the preferred peptide acceptors of ppGalNAcTs have been performed. For 

example, using the GlycoSCORE technique, which combines in vitro screening of GTs and 

a library of synthetic peptides on self-assembled monolayers for matrix-assisted desorption/

ionization mass spectrometry analysis, the preferred peptide sequences of N-

acetylglucosamine transferase (OGT) have been determined.64

In general, the N-glycosylation of folded proteins (in contrast to glycopeptides) does not 

affect the average backbone fold; but provides a long-range stabilization of the tertiary or 

quaternary fold of glycoprotein.63h-k For example, the presence of GlcNAc-β1,4-GlcNAc-β 
at different sites of bacterial immunity protein Im7 was shown to have the most prominent 

stabilizing effect in the compact turn motifs between segments of ordered structure, where 

glycosylation promotes folding and enhances the overall stability of the native protein.63k 

This result may explain why glycosylation is commonly present at the transition between 

different types of secondary structures, where it may shield the disordered sequences from 

proteolysis.63i

Similar to O-glycosylation, the first couple of monosaccharides of N-glycan have been 

shown to affect protein stability most significantly.63h Using the cell adhesion and signaling 

molecule hCD2ad, Kelly and Wong determined that a total of ~3 kcal/mol of stabilization 

could be attributed to the ManGlcNAc2 core trisaccharide, where the first GlcNAc (from the 

reducing end) contributes 2/3 and the core Man-β1,4-GlcNAc disaccharide provides 1/3 of 

the energy. The peripheral sugars have an insignificant effect on stabilization (Figure 4B).63a 

Further analysis revealed that aromatic residues, Aro (i.e., Phe, Tyr, His, or Trp), at the [i-2] 

position to GlcNAc-Asn [i] offer an additional stabilization.63b-d The stabilizing enhanced-

aromatic sequon (EAS)/reverse-turn pairings include the Phe-Asn-Xxx-Thr sequon for 

simple type I β-turns, Phe-Yyy-Asn-Xxx-Thr sequon for type I β-bulge turns, and the Phe-

Yyy-Zzz-Asn-Xxx-Thr sequon for type II six-residue loop.63c To better understand the 

nature of interactions between the first sugar and the aromatic residue in EAS, the 

systematic studies of Pin WW domain with variable Aro63d and monosaccharides63e have 

been performed.

The apparent stabilizing interactions of EAS coincide with an increased probability of 

aromatic residues at positions [i-1] and [i-2].63i Later, it was shown that the EAS increased 

the glycosylation efficiency of OST and decreased the N-glycan heterogeneity by 

suppressing glycan processing in the Golgi complex.63f To further investigate the impact of 

peptide sequence on the efficiency of N-glycosylation, a systematic screening of the amino 

acids of the five-residue EAS of hCD2ad has been carried out (Figure 4B).63g In summary, 

the preferred sequon for N-glycosylation included aromatic (especially Thr) and sulfur-

containing residues at the [i-2] position; aliphatic, hydroxyl and thiol-containing 

(particularly Cys) residues at [i-1]; and small residues at [i+1]. Incorporation of the EAS 

sequons into therapeutic glycoproteins is expected to lower the equilibrium concentration of 

the misfolded or unfolded proteins and improve the in vivo glycosylation of proteins.

Krasnova and Wong Page 12

J Am Chem Soc. Author manuscript; available in PMC 2020 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Glycan remodeling with ENGases and synthesis of homogeneous mAbs.

In the past decade, ENGase catalysis has emerged as a powerful tool for the synthesis of 

homogeneous glycoproteins, including therapeutic mAbs. Since the synthetic applications of 

ENGases have been recently reviewed,39,44c we briefly outline the basic principles of 

transglycosylation for the site-specific glycan modification focusing on the most recent 

examples. As a subclass of endo-hexosaminidases, ENGases cleave the GlcNAc-β1,4-

GlcNAc linkage in N-glycans releasing the GlcNAc-β-protein. The active site of ENGases 

contains two catalytic residues: a general acid/base residue E and an assisting residue D 

(GH18 family), or N (GH85 family) (Figure 2C). Hydrolysis takes place with retention of 

configuration at the anomeric position through a substrate-assisted mechanism, where 

residues D/N do not directly trap the glycosyl intermediate but aid oxazolinium ion 

formation in the first step and its reaction with a water molecule in the second step. The 

investigation of the synthetic utility of ENGases began with the realization of the Man-β1,4-

GlcNAc-oxazoline donor in 2001 by Shoda and colleagues,44e and development of the first 

glycosynthase mutant of Endo MN175A by Wang and Yamamoto in 2008 (Figure 2C).44a In 

general, glycosynthases are generated by mutating residues D/N, hence minimizing 

oxazoline towards hydrolysis. ENGases from many species with varied specificities to cover 

a wide spectrum of substrates have been identified.39a The list of acceptors includes 

GlcNAc-β-protein/peptide, GlcNAc-OpNP, as well as Glu and Man primers, and the scope 

of N-glycan substrates comprises of truncated, high mannose, hybrid, and mult-antennary 

complex-type N-glycans with sialylation and core-fucosylation.

The overall process of glycosylation remodeling consists of two steps: (a) trimming of 

heterogeneous glycans to a single GlcNAc-glycoform; and (b) en bloc transfer of a synthetic 

glycan onto the GlcNAc-site using either glycosidase-deffecient ENGase with a reactive 

oxazoline donor or wild-type ENGase with a stable N-glycan donor (Figure 5A). Until 

recently, the direct glycosylation of peptides was possible only with Glc by N-

glucosyltransferase (NGT). However, in 2017, Wang, Cheng, and co-workers reported an 

engineered NGT (ApNGTQ469A from Actinobacillus pleuropneumoniae) with flexible 

acceptor and donor specificity, capable of transferring GlcN from UDP-GlcN onto N-X-S/T. 

Subsequent acetylation of GlcN with a glucosamine N-acetyltransferase from Clostridium 
acetobutylicum (GlmA) produced GlcNAc-modified peptides suitable for further 

transglycosylation with ENGases (Figure 5A).65 The preferred glycosylation sequences for 

NGT have been identified using the GlycoSCORES technique.64

Despite apparent utility of the approach, the chemoenzymatic glycan remodeling has several 

limitations: (1) the use of glycosidase-deficient ENGases requires a large excess of 

oxazoline donor, which could lead to non-specific modifications of nucleophilic amino 

acids;45i (2) the high affinity of ENGase to glycoprotein may complicate the purification 

step leaving behind traces of enzyme, which could hydrolyze the glycoprotein sample with 

time; (3) the relatively high cost of chemoenzymatic method; (4) the specificity of ENGases 

for glycan structures at different glycosites can be affected by protein substrate. To 

overcome these drawbacks, alternative donors and new ENGases have been pursued. Among 

recent examples are the discovery of Endo E with low affinity for IgG substrate;45g Endo S 

double mutants (D233Q/E350Q and D233Q/D405A) with improved transglycosylation 
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efficiency;45j cost-efficient yeast expression and glycan rxemodeling with a stable SGP 

donor;45g,j transglycosylation with immobilized enzymes to simplify the prurification 

step44d,45k and site-selective glycoengineering of a therapeutic antibody using the 

differences in substrate specificity of Endo-S, Endo-S2 and Endo-F3.45d The major 

limitation of the method is the inability to selectively modify one GlcNAc-primed site in the 

presence of another. Although a recent report from the Wang group demonstrated that Endo 

F3D165A can modify two out of three glycosylation sites in EPO,44f the difference in 

reactivity was attributed to the steric hindrance at N24, and may not be generalized to other 

substrates. Overall, currently, the ENGase catalysis is limited mainly to glycoproteins with 

single glycosylation site, such as therapeutic antibodies.

Antibodies consist of the Fragment antibody binding (Fab) and Fragment crystallizable (Fc) 

domains responsible for antigen targeting and effector functions respectively. The Fc 

glycosylation site N297 is located in between heavy chains and near the antibody hinge, 

where it can influence antibody-receptor interactions by affecting the structure of the hinge 

or directly binding to the receptor. As such, glycosylation could influence IgG interactions 

with classical Fc receptors (i.e., FcγRI, FcγRIIa-c, FcγRIIIa-b), complement proteins (C1q 

and mannose-binding lectin) and C-type lectin receptors (DC-SIGN). Different 

combinations of antibody-receptor interactions correspond to distinct immune cell 

responses, or antibody effector functions, such as antibody-dependent cellular phagocytosis 

(ADCP), antibody-dependent cellular cytotoxicity (ADCC), complementdependent 

cytotoxicity (CDC), and the anti-inflammatory activity.6,66 Thus, optimization of N297 

glycan provides means to tune the effector functions of mAb for the desired therapeutic 

application.6 For example, it has been established that agalactosylation accompanies chronic 

inflammation, whereas α2,6-sialylation is associated with anti-inflammatory activity. 

Presence of core fucosylation is linked to the reduced ADCC, and galactosylated glycoform 

improves CDC. Despite the observed correlations between antibody glycosylation and 

immune response, the exact mechanisms of immune activation are difficult to decipher due 

to the heterogeneity of antibody glycoforms produced by the current cell-culture and 

fermentation methods. To address this challenge, a substantial effort has been directed 

towards the preparation of homogeneous antibodies for structural and functional studies67. 

Along this effort, a universal glycan was identified to optimize the anti-cancer, anti-infective 

and anti-inflammatory activities of IgG.45f

Figure 5B illustrates some of the notable achievements in the synthesis of IgG glycoforms, 

including the discovery of the Fc-specific Endo S,45a,b and Endo S2,45c,d as well as 

development of new enzymes (e.g., Endo S mutants D233A, D233Q,45e and D233N;45f an 

efficient fucosidase (BfFucH) for the removal of core fucose;55a and Endo F3D165A for 

glycosylation with tri-antennary substrate68). Taking advantage of the relaxed substrate 

specificity of Endo S2, the Wong group generated a series of Endo S2 mutants, which were 

tested for the transglycosylation activity using a diverse array of oxazoline donors.54a The 

study identified three Endo S2 mutants (D226Q, D182Q and T138Q) with substrate 

specificities ranging from high-mannose to hybrid, and sialylated complex bi- and tri-

antennary structures (Figure 5C).55b Other improvements to the ENGase method include the 

discovery of Endo E and A7283, which can accept tri-and tetra-antennary N-glycans;45g 

development of Endo S2D184M with enhanced transglycosylation activity;45m one-pot 
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enzymatic remodeling with Endo S based on the reduced affinity of enzyme towards high-

mannose and hybrid-type N-glycans;45l the one-pot system comprised of Endo MN175Q (to 

generate reactive intermediate from SGP/SG-Asn donors) and Endo SD233Q (to modify 

GlcNAc-primed IgG);45j and the discovery of α1,6-fucosyntase AlfCE274A for the core 

fucosylation of intact N-glycoproteins with α-fucosyl fluoride donor.45n

Synthesis of homogeneous glycoproteins and glycopeptides with multiple glycosylation 
sites.

Currently, the only way to obtain a homogeneous protein with variable glycans at different 

sites is to chemoselectively couple glycopeptide fragments.69 Among many methods 

developed for the ligation of peptides, the native chemical ligation (NCL) is the most general 

technique.69f The scope and limitations of NCL are defined by the methodological 

developments in the area of peptide synthesis,70 which is beyond the scope of this review.
69a-c Herein, we focus on the applications of NCL and expressed protein ligation (EPL)69e to 

synthesize homogeneous glycoproteins.69c,d,71

In the NCL, peptides with N-to-D substitution are prepared by the solid phase peptide 

synthesis (SPPS), followed by installation of the desired glycan via Lansbury 

aspartylation70a or aminolysis of the activated thioester (Figure 6A).70b The installation of 

the pseudoproline motif by protecting Ser/Thr at [n+2] was found to facilitate glycosylation 

and prevent intramolecular aspartimide formation.70c,d The so-called convergent approach is 

optimal for the installation of large oligosaccharides, such as N-glycans. In the alternative 

“cassette” strategy, GlcNAc-Asn or Ser/Thr modified with short oligosaccharides are 

introduced directly into SPPS sequence. Next, deprotected peptides with GlcNAc/GalNAc-

sites could be extended by enzymatic synthesis.

The key step of the NCL is a coupling of the activated thioester at the C-terminal with Cys 

(or thiol-modified amino acid) at the N-terminal, followed by S->N acyl transfer and 

subsequent desulfurization, if required (Figure 6B). The use of thiol auxiliaries at the N-

terminal could improve the efficiency of ligation and eliminate the need for desulfurization.
70e In the sugar-assisted ligation (SAL), the thiol auxiliary is placed at the amide/ester of 

GlcNAc/GalNAc, which is distant from the junction site.70f-l In general, the auxiliary-

mediated ligations give the best results for the junctions containing unhindered Gly or Ala. 

The introduction of mild and aqueous-phase compatible desulfurization conditions70m by 

Danishefsky stimulated the development of NCL strategies using thiol-modified amino 

acids.69a

As an extension of NCL, the EPL permits incorporation of activated thioesters and cysteines 

into the expressed protein fragments by engineering protein constructs fused with intein or 

protease-specific peptide tag.69e,72 The C-terminal thioester component is usually obtained 

from intein extrusion,72a whereas the N-terminal cysteine peptide fragment could be 

released by factor Xa,72b tobacco etch virus (TEV) protease,72c,d SUMO protease72e or 

DnaB-intein extrusion (Figure 6B).72e To simplify the isolation and purification of the 

expressed fragments, the affinity-specific tags (e.g., His6, or chitin-binding domain) are 

usually introduced next to the cleavable fragments of protein constructs. Some of the 

glycoprotein targets of pharmaceutical interest9,71,72e,73 synthesized by NCL and EPL 

Krasnova and Wong Page 15

J Am Chem Soc. Author manuscript; available in PMC 2020 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



include EPO9, α-hGPH,71b hFSH,71c hLH,71d hCG,71d hTSH,71e GM-CSF,71f G-CSF3,71g 

hINF-β−1a,73b monoglycosylated GM2-activator protein,73a IL-6,72e and IL-8.73c In the 

case of the GPI-anchored proteins,74 the ligation of the protein C-terminal to the N-terminal 

linked to the GPI-anchor has been carried out using NCL,74a,b EPL74c and Sortase A-

mediated ligation. The last method, however, requires a non-native LPXTG peptide tag.74d,e 

Despite the advances, synthesis of full-length and functional glycoproteins with well-defined 

glycans at multiple sites remains a major challenge.

While indispensable for the study of glycosylation, the chemoenzymatic method cannot 

compete with the cell-based method yet, which involves the use of glycosylation pathway 

engineering to produce certain enriched human-like glycoforms. In addition, the emergence 

of technologies for the precise gene editing is opening up new possibilities for producing 

homogeneous glycoproteins.75 Some recent examples include the GlycoDelete technology 

to give recombinant glycoproteins with simplified glycosylation;75f genetic manipulation of 

N-glycosylation in CHO cells using ZFN;75c and development of the SimpleCell technology 

to yield glycoproteins with simplified O-GalNAc-type75d,e and O-Mantype75b 

glycosylations; as well as application of the CRISPR/Cas9 technology to optimize N-

glycosylation in insect cells75g,h and to edit the human glycosyltransferase genome using 

gRNA library.75i With the emergence of new tools of genetic engineering, we could expect 

more studies aimed at designing the glycosylation pathways tailored to the glycoform of 

interest.

SYNTHESIS OF GLYCOSAMINOGLYCANS

The term GAGs covers several classes of linear polysaccharides (i.e., HA, CS, DS, HS, and 

HP), which could be conjugated to the membrane-bound and GPI-anchored proteins, or 

secreted into the extracellular matrix, where GAGs interact with a variety of plasma 

proteins. Depending on the nature of proteoglycans and the expression conditions, 

proteoglycans can be modified with one or more GAG chains.76 Due to the complexity of 

GAGs and the presence of negatively charged groups, the synthesis of proteoglycans and 

glycopeptides is less established as compared to the synthesis of N-glycosylated proteins. 

Instead, the major effort is focused on deciphering the sulfation code of GAGs with the help 

of analytical methods and homogeneous samples of GAG oligosaccharides.77

The least complex HA with GlcA-β1,3-GlcNAc-β1,4- repeating disaccharide is the only 

modification-free, unbound GAG (Figure 1E). KSs consist of LacNAc repeats with possible 

sulfation at O-6 and α1,3-fucosylation of the internal GlcNAc. The LacNAc part could 

extend from the protein-bound N-glycans, mucin-type and mannosyl O-glycans. The 

remaining GAGs are expressed on proteoglycans attached through a Xyl-β-linkage to Ser. 

Although poorly understood, the S-G-X-G (X ≠ P) sequon for xylosylation has been 

proposed.78 Both CS and DS contain the GlcA-β1,3-GalNAc-β1,4- repeats with possible 

GlcA2S/3S and GalNAc4S/6S modifications; however in DS, a small portion of GlcA-β1,3- 

is epimerized into IdoA-α1,3-. HP and HS contain GlcA-β1,4-GlcNAc-α1,4- and IdoA-

α1,4-GlcNAc- α1,4- units with deacetylated GlcN, sulfated GlcNS, and possible sulfation of 

GlcNS3S/6S and GlcA2S/IdoA2S. Compared to HS, HP contains a higher number of IdoA, 

sulfate groups and a smaller amount of unmodified GlcNAc. As such, the heterogeneity of 
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GAGs arises from the composition of glycan chain, sulfation pattern and the degree of 

polymerization. The polyanionic character of GAGs promotes interactions with positively 

charged proteins (e.g., cytokines, growth hormone receptors, protease inhibitors, proteases, 

chemokines, and morphogens), and the associated therapeutic applications, many of which 

are pending the availability of homogeneous samples.2h-j Although chemical synthesis is 

currently the only method that could provide samples with desired sulfation pattern and 

backbone composition, the development of enzymatic synthesis of GAGs has been in a 

steady progress.79 Since the chemical methods have been recently reviewed,79a,b herein, we 

highlight examples of the chemoenzymatic synthesis of well-defined GAG sequences and 

low-dispersity polysaccharides.79c,d

In general, the chemoenzymatic synthesis could be performed either by a stepwise 

elongation of GAG chain using GTs or polymerization of disaccharide oxazoline donor by 

hyaluronidase (Figure 7A). The latter approach developed by Ohmae, Kobayashi, and co-

workers, has been applied for the polymerization of HA, chondroitin, CS-A, and 

oligomerization of KS.79c,80 However, the GT-mediated synthesis is the most flexible 

method, which could be used to make polymers and oligosaccharides of defined structure.
5,42c,81 For example, a highly efficient HA synthase from Pasteurella multocida (PmHAS) 

containing two GT domains for UDP-GlcA and UDP-GlcNAc was shown to produce HA 

polymers with dispersity index ~1–1.3.81a A stepwise polymerization of HA using 

monofunctional mutants of PmHAS provided a better control of the degree of 

polymerization.81b In addition, the GT-mediated synthesis of HA is compatible with sugar-

nucleotide regeneration.42c The oligosaccharides of CS have been obtained by the step-wise 

synthesis using bifunctional GT from Escherichia coli K4 (KfoC), followed by sulfation 

(Figure 7B).81c

Among the GAGs, HP is the most complex and the most studied polysaccharide due to its 

potent anticoagulant activity and the corresponding clinical application (Table 1).2h-j Using 

chemical synthesis, a pentasaccharide sequence required for the binding of antithrombin has 

been established leading to the development of Fondaparinux for the outpatient treatment of 

thrombotic disorders. Although the commercial drug is still produced by the chemical 

synthesis, the original process entails >50 steps with an overall yield of 0.1%. On the 

contrary, the chemoenzymatic synthesis of the active pentasaccharide developed by the Liu 

group involved only 12 steps with 37% overall yield (Figure 7C),5a The process started with 

N-deacetylation and N-sulfation of GlcNAc, followed by epimerization of the nearby GlcA 

to IdoA and sequential sulfations by 2-O-sulfotransferase (2-OST), 6-OST and 3-OST.79d 

Since only the NST domain of bifunctional N-deacetylase/N-sulfotransferase could be 

efficiently expressed in E. coli, the N-deacetylation was performed chemically by 

introducing the trifluroacetyl (TFA) protection. Thus, the bacterial heparan synthases KfiA 

(with UDP-GlcNTFA donor) and pmHS2 (with UDP-GlcA donor) were used to assemble 

heparosan backbone. Removal of the TFA group and N-sulfation with NST installed a 

recognition motif (i.e., GlcNS at the preceding [−1] position) for C5-epi. To ensure the 

irreversibility of C5-epi-catalysis, the N-acetylated GlcNTFA at the succeeding [+3] position 

was introduced. Fixation of IdoA is also achieved by sulfation at O-2. A similar strategy has 

been applied to the synthesis of 8–12mer LMWHs with pNP at the reducing end.5b In the 

mouse model, the 10–12mer oligosaccharides were metabolized in the liver, suggesting that 
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these LMWHs are safe for the treatment of renal-impaired patients. In addition, protamine 

antidote was shown to neutralize the oligosaccharides larger than decasaccharide. 

Particularly, the 12mer LMWH with an extra GlcNS3S6S had the highest sensitivity to 

neutralization by protamine. Later, the gram-scale synthesis of the 12mer HP 

oligosaccharide was achieved by optimizing the enzyme and co-factor production.5c 

Linhardt et al have extended this strategy to produce a library of HS and HP 

oligosaccharides, which included the structures containing rare GlcA2S and IdoA.77a Other 

improvements to the enzymatic synthesis of HP include OPME synthesis,81d and processes 

based on the enzyme and substrate engineering to improve reaction efficiencies and 

selectivities.81e-g For example, a structural study of 6-OST has helped identify an optimized 

substrate for the efficient sulfation of all O-6 positions and revealed the potential amino acid 

mutations that could switch the substrate specificity of the enzyme.81e Characterization of 3-

OST-3 demonstrated that unlike the 3-OST-1 isoform, 3-OST-3 preferentially sulfates 

substrates that do not carry 6-O-sulfation.81f In another study, protection of GlcA from 

epimerization by C5-epi has been achieved by masking GlcNS at the succeeding [+1] 

position with methyl ether at O-6.81g

The recent progress in the enzymatic synthesis of GAGs, and particularly HP, is about to 

bring new GAG-derived therapeutics with improved potencies, pharmacokinetic and safety 

parameters. However, it is important to understand that the global demand of GAGs could be 

only fulfilled by the recombinant expression method. In order to move away from the large-

scale extraction of HPs from the porcine trachea, new methods for the microbial production 

of HA, heparosan, and chondroitin, as well as enzymatic methods for the subsequent 

processing of these polysaccharides are being developed.82 In any event, further 

development of effective methods for the synthesis of heparin saccharides with regiodefined 

sulfation patterns to enable the study of their role in receptor binding and functions is 

needed. In addition to the identification of specific sulfotransferases for regioselective 

sulfation, the development of chemical methods for access to regiodefined sulfate derivatives 

could be an alternative approach20e.

CONCLUSION AND FUTURE PROSPECTS

In this review we deliberately focused on the evolution of methods for oligosaccharide 

synthesis with the goal to understand the roles of glycans in biology and to translate this 

knowledge into biomedical applications. However, the availability of homogeneous samples 

of glycans in sufficient quantities is vital for the study of chemical glycobiology2b,83 and 

development of essential tools (e.g., glycan arrays,83a glycosylation probes,2b and new 

techniques for studying glycosylation at the single-molecule level83b), as well as methods 

for glycan analysis (e.g., glycoproteomics and glycomics).83c The structural complexity of 

oligosaccharides and the technical challenges associated with their synthesis resulted in a 

unique situation, where both chemical and enzymatic methods are now commonly used to 

prepare homogeneous glycans, glycoproteins and other glycoconjugates, including the 

preparation of homogeneous samples which contain a probe, a drug or a prodrug through 

glycoengineering.84 We believe that in the next decade, many therapeutically relevant 

human-type sequences could be assembled by the methods described in this Perspective. 

The synthesis of oligosaccharides will continue to play a major role in exploratory research 
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for the understanding of biological glycosylation, illuminating the path for glycoscience and 

glycomedicines towards a new frontier.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Biosynthesis of N-glycans in ER and further diversification in Golgi; (B) Mucin-type O-

glycans; (C) Human milk oligosaccharides (HMOs); (D) Glycosphingolipids (GSLs); (E) 

Glycosaminoglycans (GAGs). Abbreviations: Calreticulin (CRT), Calnexin (CLX), 

endoplasmic reticulum (ER), Glucosidase I and II (GI and II), glycosyl transferases (GlcT, 

GlcNAcT, GalT and SialT), Mannosidase I and II (ManI and ManII), 

oligosaccharyltransferase (OST).
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Figure 2. 
(A) Synthesis of Globo H and stage-specific embryonic antigen 4 (SSEA-4) with GTs and 

an improved in situ UDP-Gal recycling system.4a (B) Synthesis of lyso-GM3 with activated 

fluoride donor and hydrolytically inactive endo-glycoceramidase II mutant (E351S),43b,c and 

depiction of the mechanism of a synthase mutant (in blue) and a wt. glycosidase (in red). (C) 

Glycosylation remodeling of ribonuclease B (RNase B) with ENGases and activated 

oxazoline donor.41f, 44b Depiction of hydrolysis with wt. Endo M (in red), and 

transglycosylation with Endo MN175A synthase (in green).
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Figure 3. 
(A) Generation of N-glycans libraries from a common precursor.53a,b,e,f (B) Modular glycan 

assembly by Wong.54a-c (C) Enzymatic synthesis of the branched HMOs.59d
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Figure 4. 
(A) The Tn-Thr antigen in the eclipsed conformation.62e (B) Stabilizing effect of the 

ManGlcNAc2 core on the protein backbone, and the preffered amino acids of the EAS.63a-g
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Figure 5. 
(A) Summary of the in vitro enzymatic glycan remodeling of proteins and peptides. (B) 

Optimized ENGases for the synthesis of homogenous mAbs. (C) Substrate specificities of 

Endo S2 mutants.55b
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Figure 6. 
(A) Convergent and “cassette”-based syntheses of glycopeptide fragments. (B) Illustration of 

NCL and selected examples of enabling methodologies. An up-to-date list of axillaries, 

thiol-modified amino acids and desulfurization methods could be found in a recent review.
69a (C) Semi-synthesis of proteins by EPL.
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Figure 7. 
(A) Polymerization of oxazoline donors.80 (B) Enzymatic synthesis of CS with GTs.81c (C) 

Chemoenzymatic synthesis of ULMWH containing antithrombin-III binding site.5a
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Table 1.

Selected methodologies for the synthesis of oligosaccharides.
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