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Abstract

Brain activity at rest is characterized by widely distributed and spatially specific patterns of 

synchronized low-frequency blood-oxygenation level-dependent (BOLD) fluctuations, which 

correspond to physiologically relevant brain networks. This network behaviour is known to persist 

also during task execution, yet the details underlying task-associated modulations of within- and 

between-network connectivity are largely unknown. In this study we exploited a multi-parametric 

and multi-scale approach to investigate how low-frequency fluctuations adapt to a sustained n-

back working memory task. We found that the transition from the resting state to the task state 

involves a behaviourally relevant and scale-invariant modulation of synchronization patterns 

within both task-positive and default mode networks. Specifically, decreases of connectivity within 

networks are accompanied by increases of connectivity between networks. In spite of large and 

widespread changes of connectivity strength, the overall topology of brain networks is remarkably 
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preserved. We show that these findings are strongly influenced by connectivity at rest, suggesting 

that the absolute change of connectivity (i.e., disregarding the baseline) may be not the most 

suitable metric to study dynamic modulations of functional connectivity. Our results indicate that a 

task can evoke scale-invariant, distributed changes of BOLD fluctuations, further confirming that 

low frequency BOLD oscillations show a specialized response and are tightly bound to task-

evoked activation.

The human brain is organized in functional networks, characterized by long range functional 

connections between brain areas. This network behavior is modulated by the execution of tasks. In 

our work, we show that modulations associated to a task are massive and widespread, but changes 

are scale invariant and the overall topology of the networks is well preserved under stimulation, 

confirming that the functional networks are intrinsic features of the human brain function.

We found also that the amplitude of the massive change we observed is heavily influenced by the 

degree of connectivity at rest, indicating that the magnitude of connectivity change is not an 

independent metric for the assessment of functional network dynamics.
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1. Introduction

Spatially correlated, low-frequency BOLD oscillations occur in the brain both at rest and 

during the execution of a task (Rogers et al., 2007). The physiological relevance of low-

frequency brain fluctuations during the resting state is evidenced by the existence of brain-

wide networks that span across functionally-linked cortical areas (Damoiseaux et al., 2006; 

Yeo et al., 2011). Low-frequency BOLD fluctuations have been also shown to influence 

behaviour (Fox et al., 2007; Hampson et al., 2006) and contribute to variability in task-

evoked responses (Fox et al., 2006). Noticeably, alterations of functional connectivity (FC) 

have been associated with several brain diseases (Calhoun et al., 2008; Gili et al., 2011; 

Greicius, 2008; Mascali et al., 2015; Mascali D. et al., 2017; Prodoehl et al., 2014).

Considerable efforts have been devoted to characterize stationary task-related changes of 

brain networks, recently reviewed by Gonzalez-Castillo and Bandettini (Gonzalez-Castillo 

and Bandettini, 2017). In general, multiple classes of evoked activity, while introducing task-

specific features, do not significantly change the whole-brain patterns of correlated intrinsic 

fluctuations (Cole et al., 2014). Indeed, when subjects are cognitively engaged, correlated 

fluctuations seem to preserve their spatial structure (although with intensity modulations) 

within both the default mode network (DMN) (Fransson, 2006; Vatansever et al., 2015b) and 

the task-positive network (Fox et al., 2005). Accordingly, Independent Component Analysis 
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(ICA) decompositions of resting state and task-based fMRI response showed almost 

overlapping areas (Smith et al., 2009).

In spite of this consistency, the spatial scale and behavioural relevance of connectivity 

modulations associated with task executions are not yet completely understood. In fact, there 

is ambiguous evidence of how patterns of low frequency BOLD fluctuations change during 

the continuous performance of cognitive or sensory stimulations. Hampson et al. (Hampson 

et al., 2004) observed a spatial reduction of areas functionally connected to MT/V5 during a 

visual motion task, suggesting a transition to more spatially specialized network processes. 

On the other hand, other authors reported task-associated increments of functional 

connectivity between areas that are considered engaged during task-based experiments 

(Hampson et al., 2002; Lowe et al., 2000; Newton et al., 2007a), but even in this case the 

phenomenon was explained in terms of a change of the connected subareas within a network 

(Newton et al., 2007a). Within the DMN, task-associated reductions of connectivity have 

been usually observed (Gordon et al., 2014; Hampson et al., 2006), along with DMN 

deactivation (Fornito et al., 2012), and have thus been interpreted as evidence for DMN 

disengagement induced by task (see (Anticevic et al., 2012) and references therein). Similar 

conclusions were drawn based on more complex behaviours of DMN connectivity, 

suggestive of an internal network specialized structure, responding to the task with internal 

dissociation (Fornito et al., 2012; Leech et al., 2011). Converging evidence suggests that this 

internal dissociation might arise from the dynamic cooperation of DMN components with 

regions actively engaged by the task (Bray et al., 2015; Fornito et al., 2012; Leech et al., 

2011; Piccoli et al., 2015; Spreng et al., 2010).

Connectivity within the DMN at rest and during task execution, but not the task-associated 

change of connectivity, were found to be correlated with performance in an n-back task, 

suggesting that DMN connectivity is a prerequisite for correct task execution (Hampson et 

al., 2006). Similarly, the connectivity between DMN and other networks during task 

execution has been repeatedly shown to be behaviourally relevant. Vatansever and 

colleagues (Vatansever et al., 2015b) reported that connectivity between DMN and 

somatomotor network during a motor task predicts faster motor reaction times. Fornito et al. 

(Fornito et al., 2012) found that connectivity between the DMN and selected areas of the 

task positive network is associated with more rapid memory recollection. Finally, the 

behavioural relevance not only of network features during task, but also of network changes 

associated with tasks covering multiple domains have been recently reported by Elton & 

Gao, who observed a significant relationship between flexible changes of DMN connectivity 

and behaviour (Elton and Gao, 2015a; Elton and Gao, 2015b). In addition, Shultz & Cole 

reported that a smaller topological reorganization of whole-brain networks during task is 

related to behavioural performance and to personal intelligence (Schultz and Cole, 2016). 

This latter result is rather at odd with previous reports showing that a high degree of whole-

brain fast network reconfiguration during n-back task is correlated to enhanced working 

memory performance and overall cognitive flexibility (Braun et al., 2015).

Albeit the heterogeneity of the experimental procedures renders any strict conclusion 

difficult, two issues are likely to be related to the previously described, somewhat incoherent 

findings: 1) the baseline upon which connectivity changes are computed and 2) the spatial 
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scale at which the connectivity is probed. Regarding the former point, various relationships 

characterized by variable specificity have been found between pre-stimulus baseline and 

brain connectivity (Gordon et al., 2014; Tailby et al., 2015). Accordingly, it has been 

suggested that evoked activity may not be simply additive over baseline ((Huang et al., 

2017) and references therein). In addition, the on-going debate around the suitability of 

global signal regression in resting-state analyses highlights the importance of defining a 

proper baseline ((Murphy and Fox, 2017) and references therein). Regarding the latter point, 

conventional functional connectivity measures include also long range correlations, thus a 

multi-scale analysis including a strictly local measure of connectivity (e.g., regional 

homogeneity, (Zang et al., 2004)) can help disentangling the contribution from network 

modules of different size.

The aim of this study was to investigate the spatial scale at which functional connectivity is 

dynamically influenced by cognitive engagement, probing how connectivity changes in 

response to task execution. We aimed also at determining a suitable metric to identify 

behavioural relevant functional connectivity modulations. To this purpose, we extensively 

characterized network features during both resting state and sustained working memory 

(WM) task execution.

2.1. Subjects

Twenty right-handed Italian-speaking subjects (8 females, age 33 ± 6 years) participated in 

the study. All subjects were in good health and had no past history of neurological or 

psychiatric disease. Subjects had normal or corrected-to-normal (via contact lenses) visual 

acuity. The study was carried out in accordance with a protocol approved by the Ethics 

Committee of Santa Lucia Foundation in Rome. Recruited subjects gave written informed 

consent in accordance with the Declaration of Helsinki and European Union regulations.

2.2. Images acquisition

Data were collected on a 3 T MRI Scanner (Magnetom Allegra, Siemens Healthineers, 

Erlangen, Germany) equipped with a standard birdcage coil. Functional images were 

acquired via a Gradient-Echo Planar Imaging (GE-EPI) sequence (TR = 2100 ms, TE = 30 

ms, FA = 70°, voxel size 3 × 3 × 2.5 mm3) lasting 24 minutes and 38 seconds for a total of 

704 volumes (4 dummy scans included). The slices were positioned starting from the vertex 

and covered the whole cerebrum. The cerebellum was not consistently included in the field 

of view of each subject, and was excluded from any analysis. High resolution T1-weighted 

images were acquired for anatomic reference and tissue segmentation purpose using a 

Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE, TE = 4.38 ms, TR = 

2000 ms, FA = 8°, voxel size 1.33 × 1.33 × 1 mm3).

2.3. Stimulation paradigm

The functional stimulation, composed of both auditory and visual components, was 

generated using Cogent 2000 (Laboratory of Neurobiology, Wellcome Trust, London, UK) 

under Matlab 7.1 (The Mathworks Inc., Natick, Massachusetts, USA) and delivered during 

functional scans through the standard MRI headphone system and through a digital light 

processing (DLP) projector. The projector was located outside the magnet room and it 
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projected the visual stimulus on a screen positioned behind the subject, who viewed it 

through a mirror mounted on the head coil.

The stimulation paradigm (Supplementary Figure 1) consisted of alternated long-lasting 

epochs of open-eyes resting state and sustained auditory working memory task (4 minutes 

and 54 seconds each, starting with a resting-state epoch). The auditory working memory task 

involved continuous n-back trials administered in epochs either at “high” load (2-back) or 

“low” load (1-back). Each trial was composed of a 500-ms window, in which subjects were 

aurally presented with a vowel (pseudorandomly chosen among A, E, or O), and a 

subsequent 1600-ms response window, during which subjects had to report whether the 

current vowel was the same as the one presented one stimulus prior (1-back) or two stimuli 

prior (2-back). Subjects responded via an MRI compatible 2-button keyboard, with one 

button reserved for positive responses (matching trial) and one button reserved for negative 

responses (not matching trial). During the entire functional run subjects were asked to 

maintain the gaze on the center of the screen which was marked by one degree circle over a 

uniform black background. The fixation circle changed color to indicate the functional 

condition: grey for rest, red for vowel presentation window and green for response window. 

At the beginning of each working memory epoch the text “1-back” or “2-back” appeared on 

the screen. Subjects were trained for approximately 30 minutes before entering the scanner.

Two functional runs were acquired for each subject during the same experimental session, 

with epoch ordering: rest/1-back/rest/2-back/rest or rest/2-back/rest/1-back/rest. Run order 

was counterbalanced across subjects. The stimulation paradigm started after the second 

dummy scan (i.e., was overall shifted backwards by 2 TR) to roughly account for 

hemodynamic delay.

2.4. Working-memory performance

Subjects WM responses were monitored at runtime and recorded for later correlation 

analyses with FC metrics. Behavioural data from 3 subjects could not be recorded for 

technical problems, leaving a total of 17 subjects for behavioural analysis. Subject 

performance during each task epoch was evaluated in terms of accuracy obtained as the 

percentage of valid responses on the number of trials. A response was deemed valid if both 

correct and given during the response window.

2.5. Images preprocessing

Functional and structural MRI data were preprocessed using functional connectivity toolbox 

(CONN 17.c) (Whitfield-Gabrieli and Nieto-Castanon, 2012), and analysed with dedicated 

in-house routines based on Matlab R2013a (The Mathworks Inc., Natick, Massachusetts, 

USA) and AFNI (Cox, 1996). Preprocessing of functional data included the following steps: 

(i) removal of first four volumes (dummy scans) to assure that the MR signal reached 

stability (ii) compensation of systematic slice-dependent time shifts by phase shift in the 

Fourier domain, (iii) rigid body registration for inter-frame head motion within and across 

runs, (iv) unwarp algorithm to reduce the susceptibility-by-movements effects (Andersson et 

al., 2001) and (v) normalization to Montreal Neurological Institute (MNI) space (voxel size 

2 × 2 × 2 mm3) using as source image the EPI mean volume obtained from step iii. T1 
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weighted images were segmented to obtain grey matter (GM), white matter (WhM) and 

cerebrospinal fluid (CSF) probability maps in MNI space. Any further analysis of functional 

data was constrained to a common GM mask which was defined by thresholding at 50% the 

across-subjects average of GM probability maps.

Functional data were further processed regressing out spurious variance using a general 

linear model (3dTproject, AFNI routine). The following regressors were included in the 

model: a second order Legendre polynomial, a basis of sines and cosines to model 

frequencies outside the band of interest (0.008–0.09 Hz), the six estimated motion 

parameters and their first derivative, the first five eigenvectors from time series within a 

WhM mask (obtained thresholding the subject probability map at 70% and eroding the 

resulting binary map by 2 voxels to avoid partial volume effects) and the first five 

eigenvectors from the time series within a CSF mask (threshold = 80%, one voxel erosion), 

following the aCompCor approach (Behzadi et al., 2007). To further reduce the impact of 

motion on BOLD time series, data were censored by removing time points with more than 

0.4 mm of displacement (estimated as the Euclidian norm of motion parameter derivatives) 

along with each previous time point. The choice of the censoring threshold was not critical. 

Preliminary testing showed that different thresholds did not impact the overall results. 

Censoring was applied during the regression step removing time points from both data and 

regressors. Finally, spatial smoothing, constrained to the common GM mask, was applied 

with an 8 × 8 × 8 mm3 FWHM Gaussian kernel (3dBlurInMask, AFNI routine). An 

unsmoothed version of the data was retained for specific computation steps, as described 

below.

Each processed functional run was then split in its five epochs. The first resting state epoch 

of each run was used only for network definition and cortical parcellation, and then 

discarded from further processing to avoid double dipping (Kriegeskorte et al., 2009). The 

following four epochs were later used to extract epoch-related functional parameters.

2.6. Head motion assessment

The frame-wise displacement (FD), as defined in (Power et al., 2012), was computed to 

assess head movements during functional scans. For each run, the FD series obtained from 

the realignment parameters was split in 4 series corresponding to the 4 functional epochs. 

Then, the averaged FD was compared across epochs by paired t-tests.

2.7. ICA-based network definition

The first resting-state epochs of each run were analysed to extract the main resting-state 

networks which served as reference to study functional connectivity modulations associated 

with task execution. The networks were derived via group ICA using the FSL routine 

MELODIC (Beckmann and Smith, 2004). The decomposition was applied to the 4-

dimensional time series obtained by concatenating in the temporal dimension the first 

resting-state epoch (of each run) of all studied subjects. Among the resulting eleven 

independent components we identified six networks of interest based on visual inspection 

and cross-correlation with the network atlas defined by Yeo et al. (Yeo et al., 2011). The six 

identified networks were labelled as Dorsal Attention (DAN), Default Mode (DMN), 
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Frontoparietal (FPN), Somatomotor (SMN), Ventral Attention (VAN) and Visual (VIS) 

network (Figure 1).

2.8. Cortical parcellation

To investigate functional connectivity modulations at multiple spatial scales, the cortex was 

parcelled into a variable number of ROIs, via a 2-levels analysis that built group level ROIs 

based on the similarity between each voxel time courses. The approach, fully described 

elsewhere (Craddock et al., 2012), was applied to the same epochs used for ICA 

decomposition, and was used to obtain 150, 250, 350, 500, 750 and 1000 ROIs. ROIs were 

then classified into one of the ICA resting-state derived networks with a minimum overlap 

criterion (threshold = 65%). ROIs with insufficient overlap were excluded from further 

analyses, finally obtaining brain parcellations into 60, 110, 146, 227, 347, 477 ROIs, 

respectively.

2.9. Network metrics

The following metrics were computed to study task-associated modulations in network 

properties. Each metric was computed separately in each functional epoch, thus they 

represent specific network features at specific steady-state conditions. Prior to statistical 

comparison, metrics computed from homologous epochs belonging to different run were 

averaged for each subject, after preliminary analyses that indicated a much lower variance 

between homologous epochs than between epochs corresponding to different conditions.

Within-network FC.—For each ICA-derived network, we defined within-network FC as 

the average of z-Fisher transformed Pearson’s coefficients obtained correlating each within-

network voxel time-course with the network average time-course. To enhance signal-to-

noise ratio without losing spatial specificity, the average network time course was extracted 

from unsmoothed functional data and correlated to smoothed data. The metric assesses the 

internal network coherence at large scale.

Between-network/ROIs FC.—For each network (or ROI), an average time-course was 

extracted from unsmoothed data and correlated to each other network (or ROI) time-course, 

leading to a network-to-network (or ROI-to-ROI) correlation matrix. A z-Fisher 

transformation was applied to the correlation matrix to improve normality.

Regional Homogeneity.—The similarity of time series at small spatial scale was 

evaluated by computing Regional Homogeneity (Zang et al., 2004). For each voxel in the 

common GM mask, ReHo was computed as the Kendall’s coefficient of concordance among 

the selected voxel time series and the time series of its 18 nearest neighbours (3dReHo, 

AFNI). Given the known influence of spatial smoothing on ReHo (Xi-Nian Zuo et al., 

2013), the computation was performed on unsmoothed data. ReHo values were then 

averaged in the ICA-derived networks to assess the internal network coherence at small 

scale (as opposite to within-network FC).
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2.10. Statistical analyses

Task-associated changes of network metrics.—Functional connectivity modulations 

associated with task execution were evaluated for statistical significance by repeated-

measures ANOVA and paired t-tests. Tests were conducted for each functional metric 

(ReHo, within- and between-network FC) considering the following epochs: 1-back, rest, 2-

back, rest. Prior to statistical comparison, the bias due to different amount of head 

movements during different steady-state epochs was mitigated by regressing out, via a 

general linear model, the epoch-averaged FD. ANOVA results were corrected for multiple 

comparisons (across networks) via false discovery rate (FDR).

Multi-scale assessment of task-associated changes in FC.—For each parcellation 

scheme, the average correlation matrix at task (irrespectively of cognitive load) was 

compared to the average correlation matrix at rest via paired t-tests. The epoch-averaged FD 

was used as nuisance covariate in statistical comparisons. For the 110-ROIs parcellation 

scheme, the significant task-associated changes in FC were assessed at p < 0.05, corrected 

via false discovery rate (FDR) using the Matlab toolbox NBS (https://www.nitrc.org/

projects/nbs/), and their spatial representation was visualized with BrainNet Viewer (Xia et 

al., 2013).

Rest vs task FC relationship.—To check for the influence of resting connectivity on 

connectivity changes, a linear model between FC at rest,FCR, and FC at task,FCT, was 

tested:

FCT = β1FCR + β0, eq. (1)

which implies for connectivity change Δ FC= FCT − FCRthe following relationship:

ΔFC = β1 − 1 FCR + β0 . eq. (2)

The model in eq. (1) was tested separately for each subject using the 110-ROIs parcellation. 

Specifically, for each subject, correlation matrices calculated from resting epochs and those 

calculated from task epochs were averaged separately, leading to two correlation matrices. 

Then, the upper triangular parts of two correlation matrices were split according to the six 

ICA-derived networks, leading to 21 arrays of correlations which included 6 within-network 

and 15 between-network sets of correlations. For each array, correlations belonging to rest 

matrix FCR and those belonging to task matrix FCT were fed to the model in eq. (1). Finally, 

β0 and β1 were estimated via ordinary least squares method.

The explanatory power of linear and constant terms in eq. (2) were estimated by computing 

the respective coefficient of determination, R2, as squared inter-subject Pearson’s correlation 

coefficient between each of the two explanatory variable and Δ FC

FC and subject’s accuracy.—The behavioural relevance of within and between-network 

FC was assessed via partial correlations with subject’s accuracy in task execution, 

Tommasin et al. Page 8

Neuroimage. Author manuscript; available in PMC 2019 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nitrc.org/projects/nbs/
https://www.nitrc.org/projects/nbs/


controlling for the effect of epoch-averaged FD. Accuracy was separately correlated with FC 

during rest, during task and with the relative change (ΔFC = FCT − FCR). The behavioural 

relevance of the model in eq (1) was also tested correlating subject’s accuracy with the 

estimated β0 and β1 Results were corrected for multiple comparisons via FDR.

Numerical results.—All numerical results are given as mean ± standard deviation, unless 

otherwise stated.

3. Results

3.1. Subjects’ functional response and behaviour

Subjects’ functional response to the complex task was strong and widespread, encompassing 

all the brain domains, and in particular all the investigated networks (Supplementary Figure 

2).

Subjects’ accuracy during task was consistently high and above chance level, with an 

average of (97±2) % of correct responses during the low-load condition and (84±8) % 

during the high-load condition. The two conditions significantly differed in subject’s 

accuracy (paired t-test, p<10−5). Percentage of correct responses did not show any tendency 

to change during the second run (paired t-test, p>0.57). As expected from previous studies 

(Huijbers et al., 2017), subjects moved more during resting epochs compared to task epochs, 

with an average FD of (0.14±0.05) mm during rest and (0.09±0.03) mm during task (paired 

t-test, p<10−5). To reduce the bias due to the different amount of head movements, results 

were corrected for the epoch-averaged FD.

3.2. Connectivity changes in the ICA-derived networks

The WM task influenced the synchronization of BOLD low-frequency fluctuations, leading 

to a diffused decrease of within-network functional connectivity compared with rest. Indeed, 

within-network FC was generally reduced during both low- and high-load task in all 

considered networks, including the DMN, with an average decrement of (7.8±1.8) % (mean

±SEM, standard error of the mean) during task execution (Figure 2). Increased cognitive 

load caused a significant effect only within FPN, with a reduction of connectivity at n=2 vs 

n=1 (p = 0.038).

The strong modulation of within-network connectivity was mirrored by widespread, 

opposite changes of between-network connectivity. The effect was very strong for DMN-

VAN and DMN-DAN connectivity, and was well noticeable also in connections between 

DAN, VAN and FPN, namely DAN-VAN, DAN-FPN, VAN-FPN. All the between-network 

connections showed some significant task-related changes, except DMN-FPN, DMN-VIS 

and SMN-VAN. The detail of changes is shown in Figure 3.

The behaviour of low-frequency fluctuations was essentially the same at the opposite 

extremum of the spatial scale we investigated, represented by ReHo, which probes similarity 

among timeseries of neighbouring voxels. ReHo values averaged in the ICA-derived 

networks were systematically and substantially reduced during task by (6.4±0.2) % (mean

±SEM). The effect was rather homogeneous in all networks, and within DMN and FPN was 
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characterized by a significant effect of load (Figure 4A). ReHo changes were correlated to 

changes of within-network connectivity in 5 out of 6 investigated networks, suggesting that 

the reported change of connectivity tends to be scale invariant within large brain networks 

(Figure 4B).

3.3. Multi-scale assessment of connectivity changes

The multi-scale analysis showed an overall task-associated reduction in connectivity within 

each network (see the diagonal partitions in Figure 5A, B), at each parcellation scale (from 

60 to 477 ROIs), and thus at each ROI size (from 688±181 to 108±34 voxels). Connectivity 

between ROIs belonging to different networks was generally lower than connectivity 

between ROIs from the same network both at rest and at task, and had a tendency to increase 

during task (out of diagonal partitions in Figure 5A,B). Internal structure of the DMN, 

showing anterior and posterior partitions characterized by a high internal integration and a 

weaker but discernible correlation between them, is seen at each parcellation scheme. The 

same feature emerged also for VAN, but limited to parcellations into high number of ROIs 

(from 146).

The spatial representation of significant changes of the adjacency matrix for 110-ROIs 

confirms that during task several internetwork connections increased their strength, 

including connectivity between nodes in the posterior DMN (cingulum) and motor areas 

(superior temporal gyrus), in DMN (parietal Inferior lobe) and DAN areas (middle occipital 

lobe), in DMN (superior frontal orbital gyrus) and VAN (temporal middle gyrus) areas, as 

well as connections between VIS areas (cuneus) and nodes in the supplementary motor area. 

In addition, significant higher connections were found between nodes in DAN and nodes in 

VAN and FPN (Figure 6a). On the other hand, the decrease of connectivity related to task 

was mainly confined to nodes within the same network, with the DMN and especially its 

temporal areas representing the large majority of changes. Two exceptions, significant for 

amplitude of connectivity change and for their high degree of centrality, are a node in the 

precuneus (DAN), which strongly decreased its connectivity with nodes in the anterior and 

posterior DMN and in the FPN, and a node in the inferior frontal gyrus (FPN) that decreased 

its connectivity with a node in the anterior DMN.

3.4. Relationship between rest and task connectivity

In spite of the widespread task-related modulations of functional connectivity, the overall 

topology of brain networks was remarkably preserved in the transition from rest to WM 

task. Across the 110-ROIs parcellation, connectivity during task was highly correlated to 

connectivity at rest in the whole brain (Figure 7A, r>0.94, p<<10−5). Similarity between 

networks at rest and during task was equally high within each of the investigated networks 

separately (Figure 7B), and was only marginally reduced between ROIs in different 

networks (Figure C), thus confirming the preservation of connectivity both within and 

between networks. Variability between subjects is represented in Supplementary figure 3, 

which shows the regression plots corresponding to Figure 7B, C, but performed separately 

for each subject instead of averaging across subjects. Similarity between networks at rest 

and during task was conspicuously confirmed at each spatial scale (Supplementary figure 4).
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Visual examination of the plots in Figure 7, as well as the results of general linear modelling 

of task vs rest connectivity across ROIs (Table 1) indicated that the swap from rest to task is 

associated to two effects: a rigid, whole-brain switch to higher values of connectivity (β0 in 

Table 1), and a slope linking connectivity during task and at rest that is positive but less than 

unitary (β1 in Table 1). In other words, the task-associated change of connectivity is a 

decreasing function of connectivity at rest (eq. (2), with 0< β1<1). The multi-scale patterns 

of connectivity changes shown in figure 5B are largely explained by this effect, insofar 

connectivity between ROIs in the same network is generally high (Figure 5A), and thus the 

effect of FCR∗ β1 is large and overcomes the effect of β0, resulting in a decrease of 

connectivity, while the opposite is true for connectivity between ROIs in different networks. 

Overall, on average in all networks and subjects, the variance of ΔFC is dominated by the 

linear term in eq. (2) (R2=0.36), while the constant term accounts for about one sixth of the 

linear term (R2=0.06).

3.5. Behavioural relevance of functional connectivity findings

The most striking confirmation of the physiological relevance of the slope of FCT vs FCR 

comes from the analysis of behavioural correlates of the connectivity changes. Subjects’ 

accuracy was significantly and positively correlated with connectivity between several 

networks both at rest and during task (Figure 8A). The effect at rest was stronger for 

connectivity between DMN and VAN/DAN, but was also significant for connections with 

VIS, and within SMN. During task, the correlation was very high and significant between 

DMN on one side and VAN and SMN on the other. In spite of this complex pattern of 

correlations, the association between subjects’ accuracy and change (i.e. difference) of 

connectivity between task and rest tended to be weakly negative and did not reach 

significance for any couple of networks. However, we found a strong inverse correlation 

between subject’s accuracy and β1 of VAN-DAN and VAN-DMN connectivity, as well as β1 

of connectivity within DMN (Figure 8B, model parameters are estimated from the 110-

parcellation scheme). In other words, the lower the slope of FCT vs FCR, the higher the 

accuracy. Subject’s accuracy was not correlated to β0 (p-FDR > 0.9). Finally, the correlation 

matrices between subject’s accuracy and model parameters (i.e., β1 and β0) were highly 

reproducible across all the investigated scales as demonstrated by significant Kendall 

coefficients of concordance (W) among correlation matrices (W = 0.81, p < 10−11 for β1 and 

W = 0.79, p < 10−10 for β0).

4. Discussion

Spontaneous low-frequency BOLD fluctuations characterize the physiological brain activity 

both at rest and during task execution. Indeed, when the brain is engaged in a cognitive 

activity, low-frequency fluctuations coexist with the task-related BOLD response. Despite 

their proved relevance, how they get modulated during a sustained stimulation, as well as the 

behavioural relevance of their modulation, is still matter of debate (Gonzalez-Castillo and 

Bandettini, 2017). We sought to characterize the task-associated modulation of low-

frequency fluctuations by means of a multi-parametric and multi-scale approach, in order to 

define the spatial scale of connectivity changes. Previous similar studies usually adopted 

conventional block-design paradigms including relatively short epochs to disentangle 
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ongoing brain activity from task-evoked response, combined with regression techniques that 

heavily rely on a correct modelling of bulk BOLD response to task (e.g. see (Gonzalez-

Castillo and Bandettini, 2017) and references in (Anticevic et al., 2012)). Modelling the 

BOLD response in order to remove it as a confound is an open issue: for example, BOLD 

response is known to be non-linear with the stimulus duration (Miller et al., 2001; Vazquez 

and Noll, 1998; Yeşilyurt et al., 2008).

We chose to employ a modest number of protracted steady-state epochs (5 minutes each) 

that can be treated separately, and where the relative weight of hemodynamic response 

transients is minimized. Moreover, epoch to epoch variability and slow drifts of bulk BOLD 

response to task are outside the pass band of the filter. Albeit it is not clear how the brain 

response adapts to continuous stimulations (e.g. (Simon and Buxton, 2015)), long 

stimulation epochs have been exploited in a number of functional studies on humans 

(Bandettini et al., 1997; Howseman et al., 1998), and a stable metabolic response was 

reported (Mangia et al., 2006). Steady-state conditions were exploited as well for studies of 

functional connectivity conceptually similar to the present paper (Hampson et al., 2006; 

Newton et al., 2007a; Newton et al., 2011). Recently, Kwon and colleagues showed that 

longer epochs result in better sensitivity to connectivity changes associated to task, ruling 

out a major role of vascular confounds (Kwon et al., 2017). The reported evidence suggests 

that our results are mainly determined by the connectivity arising from ongoing BOLD 

fluctuations rather than from focal response. However, these signals are very difficult to 

completely disentangle, and the presence of residual contaminations cannot be entirely ruled 

out.

stimulation

We adopted a multi-parametric approach to study task-related modulations of spontaneous 

BOLD low-frequency fluctuations, and observed a complex pattern of adjustments during 

task. Modulations in the synchronization of low-frequency fluctuations were found in a large 

part the cerebral cortex, including both DMN and task-related networks (sensorimotor, 

frontoparietal and attentional). During task, the internal synchronization of networks was 

generally reduced, as indicated by decreased within-network FC (Figure 2). The task-

associated decrease of correlation at full network scale was accompanied by increased 

functional segregation at voxel scale, as indicated by decreased ReHo (Figure 4A). The two 

effects were indeed correlated (Figure 4B), suggesting that a task-driven decrease of 

correlation within functionally homogeneous areas is a scale invariant feature of the brain 

function, as confirmed by multi-scale analysis, which showed reduced within-network 

connectivity during task for all parcellation schemes (Figure 5). These results are in 

agreement with the findings reported by Hampson et al.(Hampson et al., 2004), who found a 

more spatially limited network during a motion detection task compared to resting state, 

suggesting that a smaller network engages specifically during a visual task. Similar findings 

were also reported by Fransson and colleagues (Fransson, 2006), who found reduced 

connectivity in the DAN during sustained tasks, and by Gordon et al (Gordon et al., 2014), 

who reported a reduced connectivity within the temporoparietal network during a working 

memory task.
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However, while we observed a systematic reduction of connectivity within networks, we 

observed also an increase of connectivity between networks during task execution (Figure 

3), which was also observed at different parcellation schemes (Figure 5). Indeed, other 

works reported that some classes of tasks, including n-back working memory, tend to 

increase connectivity in a number of task-relevant networks (Hampson et al., 2002; Lowe et 

al., 2000; Newton et al., 2007a; Newton et al., 2011), while contrasting findings were found 

in the DMN, that showed either an increase or a decrease of task-associated connectivity 

(Fransson, 2006; Gordon et al., 2014; Hampson et al., 2006; Newton et al., 2011).

The only network where changes of ReHo were uncorrelated to changes of FC was the 

VAN. Comparing Figure 2 with Figure 4, the effect seems related to a small task-related FC 

modulation when probed at network scale. Inspection of Figure 5 indicates that the cause is 

probably the relatively heterogeneous response within the ICA-derived VAN network. 

Indeed, anterior part of VAN, specifically temporal middle gyrus, at highest parcellation 

schemes (from 146) showed a substantial increase of connectivity to DMN and a decrease of 

connectivity to SMN. The effect is much lower in the posterior section of VAN (see figure 

5). The fact that the described behaviour disappears in presence of parcellation into larger 

ROIs may indicate that it is governed by phenomena that have a high spatial specificity, but 

it can be related also to the exclusion of an increased proportion of boundary areas between 

networks in presence of larger ROIs (see methods). Even if in the context of an overall 

preserved topology (see below), these results indicate a possible task-driven dissociation 

within the VAN. Our study was not specifically aimed at identifying flexible areas (i.e., 

areas shifting between networks, e.g. (Bray et al., 2015)), nonetheless, some connectivity 

changes, involving (beyond VAN) nodes in FPN, DAN, DMN and sensorial areas, were 

especially conspicuous (Figure 6).

The described changes of within-network FC were widespread (Figure 2) and were 

significant both in DMN and in SMN, DAN, VIS, FPN and VAN, the latter group being 

broadly overlapped to the “task positive” network, as introduced by (Fox et al., 2005). It 

should be noted that the stimulation was an attention-demanding task but included also 

auditory and visual cues with in addition a modest motor task for the feedback, and indeed 

the conventional functional response was pervasive as well (Supplementary Figure 2). ReHo 

changes were more consistent across the cortex. In contrast, previous studies have shown 

mainly localized ReHo enhancements during conventional motor task performance in 

humans (Lv et al., 2013; Zang et al., 2004) and in rodents (Goelman, 2004).

4.2. Task level effect

FC and ReHo showed a tendency to respond to task level, but this effect did not reach 

generalized statistical significance, thus all the subsequent results refer to the averaged effect 

of the two task levels. It should be noted, however, that the small effect of task level, when 

present, was coherent with the mean change, i.e., increase of task difficulty tended to further 

reduce functional connectivity and ReHo. Such trend is in agreement with Esposito et al. 

(Esposito et al., 2006) who reported a task level related increment of deactivation in DMN 

and in conceptual agreement with Newton et al. (Newton et al., 2011) who, however, 

reported the opposite change of connectivity in response to a similar n-back task. Several 

Tommasin et al. Page 13

Neuroimage. Author manuscript; available in PMC 2019 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fMRI studies showed that increasing WM load mainly results in a deeper involvement of the 

same networks, thus increasing the degree of either activation or deactivation, according to 

the brain area, without substantial pattern changes (Leung et al., 2004; Newton et al., 2011; 

Pyka et al., 2009), However, other studies reported that modulations of task load can 

effectively recruit new areas (Tomasi et al., 2007) or elicit internal differentiation within the 

involved areas (Gould et al., 2003). We were not able to find a consistent effect of task load, 

while the mean effect of task was very strong. This result can be related to the fact that FC 

and ReHo changes between epochs at different task level were much more similar to 

changes among rest epochs than to changes between task and rest (see Figures 2–4). 

Ultimately, a higher sensitivity would be needed to confirm subtle effects of WM load.

4.3. Stability of topology

Despite the diffuse and massive changes of the connectivity strength at both local and large 

scale, and of the opposite sign of connectivity change within and between networks, the 

overall topology of cortical connectivity was surprisingly stable, in agreement with the 

suggestion that the architecture of functional connectivity at rest is the main determinant of 

functional networks during activation (Cole et al., 2014). This effect can be understood 

considering that ΔFC is a negative function of FCR in the whole brain (Table 1), and the 

overall sign of ΔFC is mainly determined by FCR (the linear term of eq. (2) explains 36% of 

ΔFC variance). The DMN did not show any specific tendency to disengage from other 

networks during task. In contrast, the DMN connectivity change in response to task was very 

similar to the connectivity change in other networks. Our observations can be explained by 

means of multi-scale synchronization. We propose that the change of functional connectivity 

during task is related to the overlapping of widespread, specialized processes at smaller 

scale, that increment specialization (i.e., decrease connectivity) in smaller areas, resulting in 

an average increase of heterogeneity, that causes a reduction of mean network connectivity. 

This hypothesis is supported by the fact that in 5 out of 6 networks, the change of network-

scale connectivity was correlated with the change of ReHo (Figure 4B). Notably, the only 

network where this correlation was not present is VAN, which showed a peculiar 

dissociation behaviour, as discussed above.

A possible confound suggested by our results is the massive change of between and within-

network connectivity associated with task execution, a change that apparently involved all 

the considered networks, covering the majority of the cerebral cortex. In this context, 

techniques relying on averaging signals across the brain (global signal regression or related 

approaches, as used in (Fransson, 2006; Hampson et al., 2002; Lowe et al., 2000; Newton et 

al., 2007a; Newton et al., 2011) are supposed to rescale the connectivity changes between 

epochs, referring them to an average common behaviour in the same guise they 

mathematically mandate the emergence of spatial anticorrelations (Murphy et al., 2009). 

This can be especially true when considering that the change of FC within the DMN, which 

was the focus of all the mentioned works, had in our results the same sign, but a lower 

amplitude than in many other networks (Figure 2). Whether referring regional task responses 

to the global brain signal is appropriate or not depends on the asked question and on the non-

neural content of the latter (Murphy and Fox, 2017). In any case, the results that derive from 

a voxelwise measure, not affected by an arbitrary seed or threshold choice (the multi-scale 
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analysis and ReHo), indicate that connectivity changes induced by task within the DMN are 

similar to and have the same sign of changes induced in task-positive networks.

4.4. Behavioural relevance of connectivity changes

Some of our connectivity findings were behavioural relevant at rest. Among the other 

network pairs, resting connectivity between DMN, DAN, VAN and VIS and between VAN 

and VIS was correlated to working memory accuracy, suggesting that large scale integration 

is a prerequisite for proper task performance. Behavioural relevance of connectivity at task 

was more focused, being confined to connectivity between DMN, SMN and VAN. The most 

conspicuous feature, however, was the lack of behavioural significance of connectivity 

change itself, together with a significant inverse correlation between the slope of 

connectivity at task vs connectivity at rest within the DMN and between VAN and DAN/

DMN. Apparently, the bulk and widespread changes of connectivity we reported represent 

an overall effect that does not capture the behaviourally significant modulation of brain 

networks.

Indeed, the presence of a significant intercept in eq. (2) introduces a non-linear term in ΔFC, 

indicating that the change of connectivity is not related to connectivity at rest by a strictly 

linear relationship. This is especially important for studies focusing on connectivity changes. 

Indeed, from eq. (2), it is apparent that in presence of β1 slightly under unity, connectivity 

change related to task (and in particular its sign) is determined by the interplay between the 

amplitude of positive β0 and the small negative slope β1 − 1, that implies a change of 

connectivity decreasing with increased connectivity at rest. In these conditions, the sign of 

the change is biased by the distribution of connectivity values at rest, with connections 

characterized by higher connectivity at rest more likely to end with a negative change.

Our results indicate that the behaviourally significant changes of connectivity are rather 

specific at network level. The relevant changes involve the connectivity between the ventral 

attention network on one side, and the dorsal attention network and the DMN on the other 

side, as well as the connectivity within the DMN. In all cases a reduced linear dependence of 

connectivity at task vs connectivity at rest (i.e. a lower slope, or a higher network 

reconfiguration) is related to an increased accuracy during an n-back task. This result is 

essentially opposite to the findings by (Schultz and Cole, 2016), reporting that in three 

different tasks an increased similarity between whole brain networks at rest and task (i.e. 

less reconfiguration during the task) predicts behavioural performance. This incongruence 

can be related to various reasons. The Schultz and Cole study involved a large number of 

subjects from the Human Connectome Project dataset, possibly highlighting some subtle 

whole-brain overall effect that was beyond detectability in our sample, while authors did not 

focus on network specific effects. This possibility is strengthened by the fact that authors 

found correlations also between network similarity and general intelligence, an effect likely 

to be unspecific to any given network. Moreover, the experimental approach was different, 

because Schultz and Cole exploited block designed short tasks, barely containing any power 

from the lowest part of the band of interest for BOLD low-frequency fluctuations, and relied 

on task regression, thus including a corresponding increased weight of hemodynamic 

transients (or rather, of discrepancy between subjective haemodynamic transients and the 

Tommasin et al. Page 15

Neuroimage. Author manuscript; available in PMC 2019 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



“canonical” response used in the modelling, see also (Havlicek et al., 2017)). This fact, 

compounded with the use of full-band analysis, biased the results towards a frequency band 

higher than the band we explored. If confirmed, this interpretation would strengthen the 

hypothesis that different bands of low-frequency fluctuations convey a substantially distinct 

information content (Betti et al., 2013; Tommasin et al., 2017). It should be noted that 

inclusion of higher frequencies in the analysis can have an impact on other aspects of 

connectivity changes as well, including the scale invariance we observed. Indeed, there is 

interaction between frequency of neurophysiological activity and spatial scale of its 

correlation structure (Hipp et al., 2012).

Our finding possibly help understanding while previous results had shown relationship 

between connectivity within DMN (and other networks) and performance, but generally 

failed to report a significant behavioural correlate of the connectivity change itself (Caceda 

et al., 2015; Hahamy et al., 2015; Hampson et al., 2006; Sadaghiani et al., 2015). In more 

general terms, the rather low specificity of the overall connectivity changes we observed, as 

well as the fact that it is influenced by a behaviourally irrelevant parameter β0 and by 

connectivity at rest, questions the utility of the raw change of connectivity as metric in 

dynamic studies.

The fact that increases and decreases of connectivity coexist in a segregated and functionally 

meaningful distribution (Figure 5) strongly speaks against possible artefactual origin of the 

effect. Indeed, resting-state fMRI confounds including vascular effect and head motion, are 

global in nature (Murphy et al., 2013), and do not follow network boundaries. Moreover, 

extensive preliminary testing showed that the results, and in particular the sign of the change 

of connectivity, is not impacted by different censoring approaches (see Methods), indicating 

that motion did not play a significant role in our results. The reported whole brain effect 

finds a physiological substrate in the large scale BOLD response to simple tasks ((Gonzalez-

Castillo et al., 2015) and references therein), and more directly in the widespread response to 

the task shown in Supplementary Figure 2.

Finally, our results indicate that without a proper normalization against reference 

connectivity values, the raw connectivity change may not be the most physiologically 

meaningful parameter. In this context, it is important to note that vascular reactivity is a 

powerful modulator of fMRI response, and it has been recently shown that vascular 

reactivity spatially modulates resting functional connectivity and amplitude of BOLD 

fluctuations (Golestani et al., 2016). Considering also the large range of intersubjective 

variability of vascular reactivity (Lipp et al., 2015), it would be interesting to assess the role 

of vascular reactivity in determining connectivity changes associated to task. Given that it 

cannot be excluded that effects like those we reported can be present not only between 

epochs, but also between subjects, the point deserves further investigation, also in 

consideration of the large and increasing use of change of connectivity to study 

neurodegeneration.

4.5. Extrapolation to different domains

It is interesting to analyse to which extent our results can be extended to different cognitive 

domains and loads. The experiment was based on an auditory WM task that also involved 
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the activity of other domains as highlighted above. The corresponding fMRI response 

spanned substantially the whole cortex (Supplementary figure 2).

Task-related decreases of within network connectivity and increases of between network 

connectivity have been repeatedly reported for several combinations of networks during 

attention (Kwon et al., 2017; Spadone et al., 2015), while various studies involving 

parametrically modulated WM tasks indicated a monotonic network modulation with 

cognitive load, e.g. in terms of change of connectivity within the DMN (Newton et al., 

2007b) or of integration between several large scale networks (Vatansever et al., 2015a). 

Cole and colleagues identified common patterns of connectivity at rest and during several 

task states, encompassing multiple domains, and reported crucially that there is a set of 

consistent network changes across all tasks (Cole et al., 2014). These findings taken together 

suggest that our results may generalize to different scenarios, however this hypothesis 

deserves further experimental investigation.

5. Conclusions

We conclude that the execution of a sustained working memory task, compounded with 

simple but coordinated motor and visual tasks, induces widespread changes of functional 

connectivity strength, with a spatial extent previously unreported. These changes showed the 

same trend at any probed connectivity range, and were dominated by connectivity at rest. 

The topology of network connectivity was largely unaffected by the task at whole cortex 

scale. Our results indicate that a multi-scale synchrony of the endogenous low-frequency 

BOLD fluctuations may represent a sustained global feature, whose strength modulations do 

not change the distributed features of the brain networks, and are possibly not relevant in 

absolute terms, being both linearly dependent on connectivity at rest and behaviourally 

irrelevant. On the contrary, our result supports the idea that controlling the connectivity 

changes for the value of connectivity at rest allows the identification of behaviourally 

relevant changes of brain connectivity, highlighting that an increased reconfiguration of 

involved networks (VAN, DAN and DMN) between rest and task foster increased task 

performance.

The present work was supported by the Italian Ministry for Education, University and 

Research (Ministero dell’Istruzione, dell’Università e della Ricerca, MIUR) under the grant 

“Progetto premiale NETFUN: NETwork FUNzionali cerebrali studiati con NMR” 

(Functional brain networks studied by NMR). Research reported in this publication was also 

supported by Regione Lazio, grant PAMINA (to F.G.) and by the National Institutes of 

Health, award number R01DK099137 (to S.M.). This project has received funding from the 

European Union’s Horizon 2020 research and innovation programme under the Marie 

Skłodowska-Curie grant agreement No 691110 (MICROBRADAM). M.D.N. is supported 

by the European Union’s Horizon 2020 research and innovation programme under the Marie 

Sklodowska-Curie grant agreement No 701635. The content is solely the responsibility of 

the authors and does not necessarily represent the official views of the funding bodies.

ST and DM acquired and processed the data, prepared the figures and wrote the manuscript. 

MM acquired the data and performed the functional analysis. TG designed the study, 

Tommasin et al. Page 17

Neuroimage. Author manuscript; available in PMC 2019 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



programmed the stimulation and helped in the interpretation of the data. IEA and MF 

performed the experiment. MDN, RGW, SM, EM discussed the results and the manuscript 

and helped in the interpretation of the results. EM participated also in the study design. FG 

designed the study, interpreted the results and coordinated the research. All authors edited 

the text and approved the final version.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

References

Andersson JL, Hutton C, Ashburner J, Turner R, Friston K, 2001 Modeling geometric deformations in 
EPI time series. NeuroImage 13, 903–919. [PubMed: 11304086] 

Anticevic A, Cole MW, Murray JD, Corlett PR, Wang X-J, Krystal JH, 2012 The role of default 
network deactivation in cognition and disease. Trends Cogn Sci 16, 584–592. [PubMed: 23142417] 

Bandettini PA, Kwong KK, Davis TL, Tootell RB, Wong EC, Fox PT, Belliveau JW, Weisskoff RM, Br 
BRR, 1997 Characterization of cerebral blood oxygenation and flow changes during prolonged 
brain activation. Hum Brain Mapp. 5, 93–109. [PubMed: 10096414] 

Beckmann CF, Smith SM, 2004 Probabilistic Independent Component Analysis for Functional 
Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging. 23, 137–152. [PubMed: 
14964560] 

Behzadi Y, Restom K, Liau J, Liu TT, 2007 A component based noise correction method (CompCor) 
for BOLD and perfusion based fMRI. NeuroImage 37, 90–101. [PubMed: 17560126] 

Betti V, Della Penna S, de Pasquale F, Mantini D, Marzetti L, Romani GL, Corbetta M, 2013 Natural 
scenes viewing alters the dynamics of functional connectivity in the human brain. Neuron 79, 782–
797. [PubMed: 23891400] 

Braun U, Schafer A, Walter H, Erk S, Romanczuk-Seiferth N, Haddad L, Schweiger JI, Grimm O, 
Heinz A, Tost H, Meyer-Lindenberg A, Bassett DS, 2015 Dynamic reconfiguration of frontal brain 
networks during executive cognition in humans. Proceedings of the National Academy of Sciences 
of the United States of America 112, 11678–11683. [PubMed: 26324898] 

Bray S, Arnold AEGF, Levy RM, Iaria G, 2015 Spatial and Temporal Functional Connectivity 
Changes Between Resting and Attentive States. Human Brain Mapping 36, 549–565. [PubMed: 
25271132] 

Caceda R, James A, Gutman DA, Kilts CD, 2015 Organization of intrinsic functional brain 
connectivity predicts decisions to reciprocate social behavior. Behav. Brain Res. 292, 478–483. 
[PubMed: 26166191] 

Calhoun VD, Kiehl KA, Pearlson GD, 2008 Modulation of temporally coherent brain networks 
estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp. 29, 828–838. [PubMed: 
18438867] 

Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE, 2014 Intrinsic and task-evoked network 
architectures of the human brain. Neuron 83, 238–251. [PubMed: 24991964] 

Cox RW, 1996 AFNI: software for analysis and visualization of functional magnetic resonance 
neuroimages. Comput Biomed Res. 29, 162–173. [PubMed: 8812068] 

Craddock RC, James GA, Holtzheimer PE, Hu XPP, Mayberg HS, 2012 A whole brain fMRI atlas 
generated via spatially constrained spectral clustering. Human Brain Mapping 33, 1914–1928. 
[PubMed: 21769991] 

Damoiseaux JS, Rombouts S, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF, 2006 
Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103, 13848–
13853. [PubMed: 16945915] 

Elton A, Gao W, 2015a Task-positive Functional Connectivity of the Default Mode Network 
Transcends Task Domain. Journal of Cognitive Neuroscience 27, 2369–2381. [PubMed: 
26244722] 

Tommasin et al. Page 18

Neuroimage. Author manuscript; available in PMC 2019 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Elton A, Gao W, 2015b Task-Related Modulation of Functional Connectivity Variability and Its 
Behavioral Correlations. Human Brain Mapping 36, 3260–3272. [PubMed: 26015070] 

Esposito F, Bertolino A, Scarabino T, Latorre V, Blasi G, Popolizio T, Tedeschi G, Cirillo S, Goebel R, 
Salle FD, 2006 Independent component model of the default-mode brain function: Assessing the 
impact of active thinking. Brain Research Bulletin. 70, 263–269. [PubMed: 17027761] 

Fornito A, Harrison BJ, Zalesky A, Simons JS, 2012 Competitive and cooperative dynamics of large-
scale brain functional networks supporting recollection. Proceedings of the National Academy of 
Sciences of the United States of America 109, 12788–12793. [PubMed: 22807481] 

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Essen DCV, Raichle ME, 2005 he human brain is 
intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S 
A. 102, 9673–9678. [PubMed: 15976020] 

Fox MD, Snyder AZ, Vincent JL, Raichle ME, 2007 Intrinsic fluctuations within cortical systems 
account for intertrial variability in human behavior. Neuron 4, 171–184.

Fox MD, Snyder AZ, Zacks JM, Raichle ME, 2006 Coherent spontaneous activity accounts for trial-to-
trial variability in human evoked brain responses. Nat Neurosci. 9, 23–25. [PubMed: 16341210] 

Fransson P, 2006 How default is the default mode of brain function? Further evidence from intrinsic 
BOLD signal fluctuations. Neuropsychologia 44, 2836–2846. [PubMed: 16879844] 

Gili T, Cercignani M, Serra L, Perri R, Giove F, Maraviglia B, Caltagirone C, Bozzali M, 2011 
Regional brain atrophy and functional disconnection across Alzheimer’s disease evolution. J 
Neurol Neurosurg Psychiatry. 82, 58–66. [PubMed: 20639384] 

Goelman G, 2004 Radial correlation contrast--a functional connectivity MRI contrast to map changes 
in local neuronal communication. J Neurol Neurosurg Psychiatry. 23, 1432–1439.

Gonzalez-Castillo J, Bandettini PA, 2017 Task-based dynamic functional connectivity: Recent findings 
and open questions. NeuroImage.

Gonzalez-Castillo J, Hoy CW, Handwerker DA, Roopchansingh V, Inati SJ, Saad ZS, Cox RW, 
Bandettini PA, 2015 Task Dependence, Tissue Specificity, and Spatial Distribution of Widespread 
Activations in Large Single-Subject Functional MRI Datasets at 7T. Cerebral Cortex 25, 4667–
4677. [PubMed: 25405938] 

Gordon EM, Breeden AL, Bean SE, Vaidya CJ, 2014 Working Memory--Related Changes in 
Functional Connectivity Persist Beyond Task Disengagement. Human Brain Mapping. 35, 1004–
1017. [PubMed: 23281202] 

Gould RL, Brown RG, Owen AM, ffytche DH, Howard RJ, 2003 fMRI BOLD response to increasing 
task difficulty during successful paired associates learning. NeuroImage 20, 1006–1019. [PubMed: 
14568470] 

Greicius M, 2008 Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin 
Neurol. 21, 424–430. [PubMed: 18607202] 

Hahamy A, Sotiropoulos SN, Slater DH, Malach R, Johansen-Berg H, Makin TR, 2015 Normalisation 
of brain connectivity through compensatory behaviour, despite congenital hand absence. Elife. 
4:e04605.

Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT, 2006 Brain Connectivity Related to 
Working Memory Performance. J Neurosci. 26, 13338–13343. [PubMed: 17182784] 

Hampson M, Olson IR, Leung HC, Skudlarski P, Gore JC, 2004 Changes in functional connectivity of 
human MT/V5 with visual motion input. Neuroreport. 15, 1315–1319. [PubMed: 15167557] 

Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC, 2002 Detection of functional 
connectivity using temporal correlations in MR images. Hum Brain Mapp. 15, 247–262. [PubMed: 
11835612] 

Havlicek M, Roebroeck A, Friston KJ, Gardumi A, Ivanov D, Uludag K, 2017 On the importance of 
modeling fMRI transients when estimating effective connectivity: A dynamic causal modeling 
study using ASL data. NeuroImage 155, 217–233. [PubMed: 28323165] 

Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK, 2012 Large-scale cortical correlation 
structure of spontaneous oscillatory activity. Nat Neurosci 15, 884–890. [PubMed: 22561454] 

Howseman AM, Porter DA, Hutton C, Josephs O, Turner R, 1998 Blood oxygenation level dependent 
signal time courses during prolonged visual stimulation. Magn Reson Imaging. 16, 1–11. 
[PubMed: 9436941] 

Tommasin et al. Page 19

Neuroimage. Author manuscript; available in PMC 2019 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Huang ZR, Zhang JF, Longtin A, Dumont G, Duncan NW, Pokorny J, Qin PM, Dai R, Ferri F, Weng 
XC, Northoff G, 2017 Is There a Nonadditive Interaction Between Spontaneous and Evoked 
Activity? Phase-Dependence and Its Relation to the Temporal Structure of Scale-Free Brain 
Activity. Cerebral Cortex 27, 1037–1059. [PubMed: 26643354] 

Huijbers W, Van Dijk KRA, Boenniger MM, Stirnberg R, Breteler MMB, 2017 Less head motion 
during MRI under task than resting-state conditions. NeuroImage 147, 111–120. [PubMed: 
27919751] 

Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker CI, 2009 Circular analysis in systems 
neuroscience: the dangers of double dipping. nature neuroscience 12, 535–540. [PubMed: 
19396166] 

Kwon S, Watanabe M, Fischer E, Bartels A, 2017 Attention reorganizes connectivity across networks 
in a frequency specific manner. NeuroImage 144, 217–226. [PubMed: 27732887] 

Leech R, Kamourieh S, Beckmann CF, Sharp DJ, 2011 Fractionating the Default Mode Network: 
Distinct Contributions of the Ventral and Dorsal Posterior Cingulate Cortex to Cognitive Control. 
Journal of Neuroscience 31, 3217–3224. [PubMed: 21368033] 

Leung H-C, Seelig D, Gore JC, 2004 The effect of memory load on cortical activity in the spatial 
working memory circuit. Cognitive, affective & behavioral neuroscience 4, 553–563.

Lipp I, Murphy K, Caseras X, Wise RG, 2015 Agreement and repeatability of vascular reactivity 
estimates based on a breath-hold task and a resting state scan. NeuroImage 113, 387–396. 
[PubMed: 25795342] 

Lowe MJ, Dzemidzic M, Lurito JT, Mathews VP, Phillips MD, 2000 Correlations in low-frequency 
BOLD fluctuations reflect cortico-cortical connections. NeuroImage 12, 582–587. [PubMed: 
11034865] 

Lv Y, Margulies DS, Villringer A, Zang YF, 2013 Effects of finger tapping frequency on regional 
homogeneity of sensorimotor cortex. PLoS One. 8, e64115–e64115. [PubMed: 23696867] 

Mangia S, Tkác I, Gruetter R, Moortele PFVD, Giove F, Maraviglia B, Uğurbil K, 2006 Sensitivity of 
single-voxel 1H-MRS in investigating the metabolism of the activated human visual cortex at 7 T. 
Magn Reson Imaging. 24, 343–348. [PubMed: 16677939] 

Mascali D, DiNuzzo M, Gili T, Moraschi M, Fratini M, Maraviglia B, Serra L, Bozzali M, Giove F, 
2015 Intrinsic patterns of coupling between correlation and amplitude of low-frequency fMRI 
fluctuations are disrupted in degenerative dementia mainly due to functional disconnection. PloS 
One 10, e0120988–e0120988. [PubMed: 25844531] 

Mascali D, DiNuzzo M, Serra L, Mangia S, Maraviglia B, Bozzali M,F,G, 2017 Disruption of 
Semantic Network in Mild Alzheimer’s Disease Revealed by Resting-State fMRI. Neuroscience 
371, 38–48. [PubMed: 29197559] 

Miller KL, Luh WM, Liu TT, Martinez A, Obata T, Wong EC, Frank LR, Buxton RB, 2001 Nonlinear 
Temporal Dynamics of the Cerebral Blood Flow Response. Hum Brain Map. 13, 1–12.

Murphy K, Birn RM, Bandettini PA, 2013 Resting-state fMRI confounds and cleanup. Neuroimage 80, 
349–359. [PubMed: 23571418] 

Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA, 2009 The impact of global signal 
regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 44, 
893–905. [PubMed: 18976716] 

Murphy K, Fox MD, 2017 Towards a consensus regarding global signal regression for resting state 
functional connectivity MRI. NeuroImage 154, 169–173. [PubMed: 27888059] 

Newton AT, Morgan VL, Gore JC, 2007a Task demand modulation of steady-state functional 
connectivity to primary motor cortex. Human brain mapping 28, 663–672. [PubMed: 17080441] 

Newton AT, Morgan VL, Gore JC, 2007b Task demand modulation of steady-state functional 
connectivity to primary motor cortex. Hum Brain Mapp. 28, 663–672. [PubMed: 17080441] 

Newton AT, Morgan VL, Rogers BP, Gore JC, 2011 Modulation of steady state functional connectivity 
in the default mode and working memory networks by cognitive load. Human brain mapping 32, 
1649–1659. [PubMed: 21077136] 

Piccoli T, Valente G, Linden DEJ, Re M, Esposito F, Sack AT, Di Salle F, 2015 The Default Mode 
Network and the Working Memory Network Are Not Anti-Correlated during All Phases of a 
Working Memory Task. PloS One 10.

Tommasin et al. Page 20

Neuroimage. Author manuscript; available in PMC 2019 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE, 2012 Spurious but systematic 
correlations in functional connectivity MRI networks arise from subject motion (vol 59, pg 2142, 
2012). NeuroImage 63, 999–999.

Prodoehl J, Burciu RG, Vaillancourt DE, 2014 Resting state functional magnetic resonance imaging in 
Parkinson’s disease. Curr Neurol Neurosci Rep. 14, 448–448. [PubMed: 24744021] 

Pyka M, Beckmann CF, Schoning S, Hauke S, Heider D, Kugel H, Arolt V, Konrad C, 2009 Impact of 
working memory load on FMRI resting state pattern in subsequent resting phases. PloS one 4, 
e7198. [PubMed: 19779619] 

Rogers BP, Morgan VL, Newton AT, Gore JC, 2007 Assessing Functional Connectivity in the Human 
Brain by FMRI. Magn Reson Imaging. 25, 1347–1357. [PubMed: 17499467] 

Sadaghiani S, Poline JB, Kleinschmidt A, D’Esposito M, 2015 Ongoing dynamics in large-scale 
functional connectivity predict perception. Proc Natl Acad Sci U S A 11, 8463–8468.

Schultz DH, Cole MW, 2016 Higher Intelligence Is Associated with Less Task-Related Brain Network 
Reconfiguration. Journal of Neuroscience 36, 8551–8561. [PubMed: 27535904] 

Simon AB, Buxton RB, 2015 Understanding the dynamic relationship between cerebral blood flow 
and the BOLD signal: Implications for quantitative functional MRI. NeuroImage 116, 158–167. 
[PubMed: 25862267] 

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, 
Laird AR, Beckmann CF, 2009 Correspondence of the brain’s functional architecture during 
activation and rest. Proc Natl Acad Sci U S A 106, 13040–13045. [PubMed: 19620724] 

Spadone S, Della Penna S, Sestieri C, Betti V, Tosoni A, Perrucci MG, Romani GL, Corbetta M, 2015 
Dynamic reorganization of human resting-state networks during visuospatial attention. 
Proceedings of the National Academy of Sciences of the United States of America 112, 8112–
8117. [PubMed: 26080395] 

Spreng RN, Stevens WD, Chamberlain JP, Gilmore AW, Schacter DL, 2010 Default network activity, 
coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage 53, 
303–317. [PubMed: 20600998] 

Tailby C, Masterton RAJ, Huang JY, Jackson GD, Abbott DF, 2015 Resting state functional 
connectivity changes induced by prior brain state are not network specific. NeuroImage 106, 428–
440. [PubMed: 25463462] 

Tomasi D, Chang L, Caparelli EC, Ernst T, 2007 Different activation patterns for working memory 
load and visual attention load. Brain research 1132, 158–165. [PubMed: 17169343] 

Tommasin S, Mascali D, Gili T, Assan IE, Moraschi M, Fratini M, Wises RG, Macaluso E, Mangia S, 
Giove F, 2017 Task-Related Modulations of BOLD Low-Frequency Fluctuations within the 
Default Mode Network. Frontiers in Physics 5.

Vatansever D, Menon DK, Manktelow AE, Sahakian BJ, Stamatakis EA, 2015a Default Mode 
Dynamics for Global Functional Integration. The Journal of neuroscience : the official journal of 
the Society for Neuroscience 35, 15254–15262. [PubMed: 26586814] 

Vatansever D, Menon DK, Manktelow AE, Sahakian BJ, Stamatakis EA, 2015b Default mode network 
connectivity during task execution. NeuroImage 122, 96–104. [PubMed: 26220743] 

Vazquez AL, Noll DC, 1998 Nonlinear Aspects of the BOLD Response Functional MRI. NeuroImage 
7, 108–118. [PubMed: 9558643] 

Whitfield-Gabrieli S, Nieto-Castanon A, 2012 Conn: a functional connectivity toolbox for correlated 
and anticorrelated brain networks. Brain Connect. 2, 125–141. [PubMed: 22642651] 

Zuo Xi-Nian, Xu Ting, Jiang Lili Yang Zhi, Cao Xiao-Yan, He Yong, Zang Yu-Feng, Castellanos F. 
Xavier, Milhamf MP, 2013 Toward reliable characterization of functional homogeneity in the 
human brain: Preprocessing, scan duration, imaging resolution and computational space. 
NeuroImage 65, 374–386. [PubMed: 23085497] 

Xia MR, Wang JH, He Y, 2013 BrainNet Viewer: A Network Visualization Tool for Human Brain 
Connectomics. PloS One 8.

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, 
Zoellei L, Polimeni JR, Fischl B, Liu H, Buckner RL, 2011 The organization of the human 
cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 106, 1125–1165. 
[PubMed: 21653723] 

Tommasin et al. Page 21

Neuroimage. Author manuscript; available in PMC 2019 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yeşilyurt B, Uğurbil K, Uludağ K, 2008 Dynamics and nonlinearities of the BOLD response at very 
short stimulus durations. Magn Reson Imaging. 26, 853–862. [PubMed: 18479876] 

Zang Y, Jiang T, Lu Y, He Y, Tian L, 2004 Regional homogeneity approach to fMRI data analysis. 
Neuroimage 22, 394–400. [PubMed: 15110032] 

Tommasin et al. Page 22

Neuroimage. Author manuscript; available in PMC 2019 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Networks.
Group networks identified via ICA on the first resting state epoch of each run. The six 

identified networks were labelled as Dorsal Attention (DAN), Default Mode (DMN), 

Frontoparietal (FPN), Somatomotor (SMN), Ventral Attention (VAN) and Visual (VIS) 

network.
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Figure 2: Within-network FC across different steady-state epochs.
Plots show the within-network FC for each ICA-derived network as a function of the epoch 

condition (1B, REST, 2B, REST). In each plot, the group-averaged mean and SEM are 

displayed on top of single subject time-courses. In 5 out of 6 networks, FC significantly 

differed among epochs (one-way repeated-measures ANOVA, FDR corrected: DAN, 

p=2.3*10−4; DMN, p=1.9*10−3; FPN, p=0.021; SMN, p=1.4*10−4; VIS, p=2.2*10−6), being 

lower during task conditions compared to resting epochs as revealed by post-hoc paired t-

tests. Significance of t-tests is marked with asterisks: ∗∗∗ p< 0.001, ∗∗ p< 0.01, ∗ p< 0.05. 

Note than in this figure and in following figures 3 and 4 the horizontal axis does not 

represent a continuous timeline, because of randomization of epochs order (see Methods). 

However, each task epoch was kept together with the rest epoch immediately following it.
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Figure 3: Between-network FC across different steady-state epochs.
Plots show the between-network FC for each ICA-derived network as a function of the 

epoch condition (1B, REST, 2B, REST). In each plot, the group-averaged mean and SEM 

are displayed on top of single subject time-courses. With the exception of three network 

pairs (DMN-FPN, DMN-VIS and VAN-SMN), each couple of networks showed significant 

differences in FC among epochs (one-way repeated-measures ANOVA, p-FDR < 0.05). 

Post-hoc paired t-tests show significant increases in FC during task epochs (∗∗∗ p< 0.001, 

∗∗ p< 0.01, ∗ p< 0.05).
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Figure 4: A) ReHo across different steady-state epochs.
Plots show ReHo values averaged in the six ICA-derived networks as a function of the epoch 

condition (1B, REST, 2B, REST). In each plot, the group-averaged mean and SEM are 

displayed on top of single subject time-courses. In all networks, ReHo significantly differed 

among epochs (one-way repeated-measures ANOVA, p-FDR << 10−5) and was reduced by 

task, as revealed by post-hoc paired t-tests. Significance of t-tests is marked with asterisks: 

∗∗∗ p< 0.001, ∗∗ p< 0.01, ∗ p< 0.05. In DMN and FPN the reduction was characterized by 

a significant effect of load. B) Correlations between ReHo changes and FC changes. 
Correlation coefficient and p values were reported for each network. The correlation was 

significant for 5 out of 6 investigated networks.
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Figure 5: Multi-scale assessment of task-associated changes in FC.
Columns present the analysis of correlation matrices at different parcellation sizes, from 60 

to 477 ROIs. (A) shows the group-level matrices obtained averaging separately the rest and 

task-related correlation matrices. (B) shows results of the unthresholded paired t-test, task > 

rest.
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Figure 6: Spatial representation of significant FC changes for the 110-ROIs parcellation scheme.
Significant task-associated changes in FC were assessed via paired t-test (thresholded at p-

FDR < 0.05) and visualized in BrainNet Viewer (Xia et al., 2013). Colour code represents 

ICA derived networks as in Figure 1, line thickness represents significance of connectivity 

changes and sphere radius represents the degree centrality (number of significant edges 

associated with a given node). (a) Representation of the inter-networks connections 

increasing during task compared to rest condition (b) Representation of the inter-networks 

connections decreasing during task compared to rest condition.
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Figure 7: ROI-based task vs rest FC relationship.
Functional connectivity at rest was found highly correlated to functional connectivity at task. 

Correlations were computed between the rest and task group-level 110-ROIs matrices (A). 

The same correlation was computed separately for each set of ROIs belonging to a given 

ICA-derived network (B, within-network plots) and for each set of ROIs correlations 

belonging to a given couple of networks (C, between-network plots). Network membership 

is marked by different colours. In each plot, the fit of the linear model in eq. (1) is also 

plotted. As reference, color-coded ROIs correlations in (B) and (C) are plotted on top of all 

possible ROI correlations, marked in light-grey colour.

Tommasin et al. Page 29

Neuroimage. Author manuscript; available in PMC 2019 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: The behavioural relevance of FC.
A) Plots show correlations between working-memory subjects’ accuracy and FC during 

resting epochs (left panel), during task epochs (middle panel) and with the relative change of 

connectivity, ΔFC (right panel). In all matrices, the main diagonal elements were replaced 

with correlations between accuracy and within-network FC. B) Plots show correlations 

between working-memory subjects’ accuracy and β1(left) and β0 (right) values. Performance 

did not show any significant correlation with β0 (p-FDR > 0.9), while they showed strong 

negative correlations with β1 for within DMN connectivity, VAN-DAN and VAN-DMN 

connectivity. In all plots significant correlations are marked with asterisks: * p-FDR < 0.05.
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Table1:
General linear model results of task vs rest connectivity across networks.

A linear model between functional connectivity at rest and task was tested according to equation FCT = β1FCR 

+ β0. The switch from rest to task is mainly explained by two effects: a rigid, whole-brain switch to higher 

values of connectivity (β0) and a positive, but less than unitary, slope between connectivity at task and at rest 

(β1). These two effects are broadly uncorrelated, but they showed inverse correlation in some couple networks, 

as indicated by correlation values between β0 and β1 highlighted in red. Significance is marked with asterisk: 

∗∗∗ p< 0.001, ∗∗ p< 0.01, ∗ p< 0.05, FDR corrected.

DAN DMN FPN SMN VAN VIS

DAN

β1, = 0.622 ± 0.028*** 0.549 ± 0.026*** 0.666 ± 0.032*** 0.546 ± 0.027*** 0.575 ± 0.027*** 0.557 ± 0.047***

β0 = 0.095 ± 0.016*** 0.043 ± 0.011*** 0.085 ± 0.013*** 0.064 ± 0.012*** 0.065 ± 0.012*** 0.067 ± 0.014***

R = −0.557 −0.294 −0.316 −0.289 0.129 −0.594*

DMN

0.686 ± 0.025*** 0.702 ± 0.023*** 0.446 ± 0.027*** 0.625 ± 0.021*** 0.595 ± 0.038***

0.055 ± 0.008*** 0.024 ± 0.011* 0.046 ± 0.007*** 0.075 ± 0.012*** 0.040 ± 0.012**

−0.404 −0.508 −0.292 −0.656** 0.061

FPN

0.70 ± 0.03*** 0.392 ±0.042*** 0.607 ± 0.023*** 0.363 ± 0.069***

0.118 ± 0.031** 0.015 ± 0.009 0.073 ± 0.016*** 0.010 ± 0.015

−0.781*** −0.038 −0.398 −0.383

SMN

0.607 ± 0.018*** 0.504 ± 0.032*** 0.452 ± 0.042***

0.054 ± 0.015** 0.047 ± 0.008*** 0.078 ± 0.011***

−0.400 −0.420 0.030

VAN

0.627 ± 0.027*** 0.541 ± 0.047***

0.114 ± 0.017*** 0.035 ± 0.014*

−0.673** −0.062

VIS

0.762 ± 0.034***

−0.0002 ± 0.0318

−0.862***
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