Skip to main content
. 2019 May 3;16(9):1554. doi: 10.3390/ijerph16091554

Table 2.

Results of multivariable linear/ logistic regression models for the whole sample.

Non-Adjusted Adjusted
β or OR (95%CI) p Trend β or OR (95%CI) p Trend
Total costs (¥) & year
2014 0 0.201 0 0.118
2015 239.04 (151.74, 326.34) 258.21 (170.38, 346.04)
2016 68.73 (−16.04, 153.51) 83.97 (−1.25, 169.18)
OOP expenditures (¥) & year
2014 0 <0.001 0 <0.001
2015 79.76 (36.07, 123.45) 103.45 (59.51, 147.38)
2016 −100.22 (−142.65, –57.80) −79.49 (−122.12, –36.86)
CR & year
2014 0 <0.001 0 <0.001
2015 −0.01 (−0.01, −0.01) −0.01 (−0.01, −0.01)
2016 0.03 (0.03, 0.03) 0.03 (0.03, 0.03)
OOPR & year
2014 0 <0.001 0 <0.001
2015 0.01 (0.01, 0.01) 0.01 (0.01, 0.01)
2016 −0.03 (−0.03, −0.03) −0.03 (−0.03, −0.03)
LOS & year
2014 0 <0.001 0 <0.001
2015 0.13 (0.03, 0.23) 0.10 (−0.01, 0.20)
2016 −0.35 (−0.45, −0.25) −0.38 (−0.48, −0.28)
R30 & year
2014 1 <0.001 1 <0.001
2015 −0.27 (−0.35, −0.18) −0.31 (−0.40, −0.23)
2016 −0.53 (−0.61, −0.44) −0.56 (−0.65, −0.48)

Note: The table shows the regression coefficients of different outcome variables & the independent variable (year). The regression coefficient β was for continuous outcome variables (total costs, OOP, CR, OOPR, and LOS), while OR was for binary outcome variables (R30). Adjusted: sex and age of the inpatients were adjusted. The year “2014” was set as the dummy variable.