Skip to main content
. 2019 Apr 26;19(9):1966. doi: 10.3390/s19091966
Algorithm 1: Lagrange-Newton Method for EIT/UT Dual-Modality Image Reconstruction
Step 1: Initialization.
  Calculate the initial value of x using linear back-projection (LBP) algorithm [13]: x0=JTy,
  Given the value of the iteration termination parameter: ε0, ε=1×106,
  Given the value of the intermediate parameter in iteration: κ(0, 1), κ=0.5,η=1.
Step 2: Termination Condition Judgment.
  Calculate G(xk, λk) by Equation (27), and judge:
  If G(xk, λk)ε, stop iteration and return the xk as the optimal estimation value,
  Otherwise, calculate (δx)k and (δλ)k by the Equation (24).
Step 3: Compute Step Length.
  Calculate G(xk+η(δx)k,λk+η(δλ)k) and G(xk, λk) by Equation (27), and judge:
  If G(xk+η(δx)k,λk+η(δλ)k)(1κη)G(xk,λk), go to Step 4,
  Otherwise, set η=η/4, continue to the Step 3.
Step 4: Iteration Update.
  Update the conductivity difference x: xk+1=xk+η(δx)k,
  Update the Lagrange multiplier λ: λk+1=λk+η(δλ)k,
  Set k=k+1 and go to Step 2.