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Abstract

Current therapeutic approaches are ineffective in many patients with established Diabetic Kidney 

Disease (DKD) disease, an epidemic affecting one in three patients with diabetes. Early 

identification of patients at high risk for progression and individualizing therapies have the 

potential to mitigate kidney complications due to diabetes. To achieve this, a better understanding 

of the complex pathophysiology of DKD is needed. A system biology approach integrating large 

scale omic data is well suited to unravel the molecular mechanisms driving DKD and may offer 

new perspectives how to personalize therapy. Recent studies indeed demonstrate that integrating 

genome scale data sets generated from prospectively designed clinical cohort studies with model 

systems using innovative bioinformatics analysis revealed critical molecular pathways in DKD and 

led to the development of candidate prognostic molecular biomarkers. This review seeks to 

provide an overview of the recent progress in the application of the integrative systems biology 

approaches specifically in the field of molecular biomarkers for DKD. We will mainly focus the 

discussion on how to use integrative system biology approach to firstly identify patients at high 

risk of progression, and secondly to identify patients who may or may not respond to treatment. 

Challenges and opportunities in applying precision medicine in DKD will also be discussed.
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Introduction

DKD is affecting one in three patients with diabetes.[1] The progression of DKD in these 

patients is often undetected and the main cause of DKD resulting in end-stage renal disease 

(ESRD), with substantial decreased quality of life and increased mortality and morbidity.[2] 

Early identification of patients at highest risk will allow early intervention which can delay 

disease onset and reduce incidence of ESRD.[3] The prediction of DKD has mainly relied 

on evaluation of the classical risk factors, such as blood pressure, estimated glomerular 

filtration rate (eGFR) and proteinuria. However, these factors have been inadequate at 
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identifying patients at high risk of progression and predicting if a patient will respond to a 

drug intervention.[4]

DKD is a complex multifactorial disease with many deregulated processes that initiate and 

sustain the progression of the disease including but not limited to cell respiration, oxidative 

stress, metabolic disorders, vascular and endothelial factors, inflammation and fibrosis, 

angiogenesis, and regeneration potential.[5] Research efforts that have targeted single 

pathways and molecules have had limited impact on our ability to effectively alter the course 

of the disease course in the past 25 years.[6,7]Novel alternative approaches are needed to 

gain a comprehensive understanding of the early disease pathophysiology at the molecular 

level to improve the clinical impact of basic and translational research.

Systems biology approach seeks to discover how dynamic interactions determine function, 

and addresses the missing links between molecules and physiology. The dominant top-down 

approach, which has been thoroughly reviewed by Bruggeman and Westerhoff,[8] starts 

from the view of the whole system by acquiring genome-wide experimental data, followed 

by data analysis and integration, and then by functional characterization leading to the 

formation of a testable hypotheses. The bottom-up systems biology approach examines the 

mechanisms through which functional properties arise in the interactions of known 

components.[9] Systems biology has been successfully applied in a wide spectrum of 

biomedical research and has improved our understanding of neurodegenerative,[10] cancer,

[11] inflammatory,[12]and genetic diseases.[13]

A system biology approach based on integrating multiple omics data types along the 

genome-phenome regulatory cascades can be a well-suited approach for DKD since it 

provides a comprehensive view of the disease pathophysiology cutting across multiple organ 

system in a chronic disease process. Though systems biology approaches have just recently 

been deployed to DKD, studies so far have made an impact by advancing the understanding 

of the molecular mechanisms underlying DKD pathogenesis. This has in turn lead to the 

identification of critical molecular abnormalities in DKD and to the development of novel 

treatments and potential molecular biomarkers.[14–18]

Several reviews have outlined the specifics of the underlying techniques used in systems 

biology with a focus on novel therapeutics development.[6,7,19,20] Here, we will describe 

recent advances in the discovery and validation of non-invasive biomarkers for predicting 

disease progression and response to treatment in DKD. Specifically, we will focus on how 

systems biology, through more comprehensive understanding of the complexity of DKD, 

will improve clinical outcome by facilitating the discovery of novel plasma or urinary 

molecular biomarkers to identify patients at high risk of progression (prognostic markers); 

and to predict the patients’ responses to treatment (predictive markers). In addition, we will 

also review challenges and strategies to apply integrative systems biology approach for 

precision medicine in DKD.
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The use of systems biology approach to identify patients at high risk of 

progression

Current clinical in-use markers for kidney disease progression

To identify targeted and untargeted molecular features that associate with DKD progression, 

the nephropathy progression phenotype is defined using changes in eGFR and albuminuria.

[21] These markers correlate with risk of developing ESRD. Table 1 summarized the 

strengths and challenges of currently widely used definitions of progression endpoints.

The clinical markers perform well predicting risk of late stage chronic kidney disease (CKD) 

or DKD. A model using routinely obtained laboratory tests, including eGFR and 

albuminuria, has been shown to accurately predict progression to kidney failure in patients 

with CKD stages 3 to 5.[22] However, predicting progression at early CKD stage when 

treatment can make a difference remains challenging. Thus molecular biomarkers that are 

related to the pathogenesis of the disease and can predict the risk of progression better or 

add incremental value to the clinical markers are desired.

The identification of novel molecular markers associated with DKD progression

High throughput multi-omics approaches (transcriptomics, proteomics, metabolomics and 

lipidomics) have been used to profile patients’ biospecimen (kidney biopsy, plasma and 

urine samples). These multi-omics datasets contributed to the discovery of biomarker 

candidates that are associated with disease progression.[18,23–30] Table 2 includes 

molecular biomarkers that were discovered using systems biology approaches with 

demonstrated association with kidney outcomes in patient-related studies.

Candidate molecular biomarkers identified from plasma and urine can be secreted or shed 

from the kidney and other non-renal tissue and cells. For many candidate molecules, kidney 

secretion is only a small proportion of the amount detected and this raises major concern 

about the relevance of these markers to kidney pathophysiology. Privileged by minimal 

tissue sample requirement, transcriptomic data is by far the most utilized -omics data that 

can help to bridge the kidney pathophysiology and molecular signatures obtained in urine or 

plasma. The feasibility of this type of approach is illustrated by our recent study, in which a 

transcriptomic analysis identified a list of biomarkers associated with CKD (including DKD) 

pathogenesis. The protein products of these RNA transcripts were then assessed in urine to 

develop non-invasive biomarkers.[23] The most promising candidate was epidermal growth 

factor (EGF) because of its robust correlation with eGFR in multiple cohorts, kidney-tissue 

specificity, and the tight correlation between urinary EGF protein levels (uEGF) and 

intrarenal EGF mRNA levels in matching patient biospecimen. Interestingly, using a very 

different approach, Betz and colleagues also identified uEGF as a prognostic biomarker for 

DKD progression.[18] They first performed a urinary peptidomic analysis using a rat model 

with hyperglycemia and hypertension, reflecting the renal pathologic changes observed in 

human DKD.[31] Subsequently, they filtered the list of candidate biomarkers based on the 

differential expression of their associated mRNA in the kidney of patients with DKD using 

the data mining tool in the transcriptomic database Nephroseq (https://

www.nephroseq.com). In normoalbuminuric patients with preserved renal function at 
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baseline, the authors found that lower urine EGF/Cr was independently associated with a 

higher risk of both eGFR outcomes (eGFR <60 ml/min/1.73 m2 or eGFR decline of >5% 

per year ) after adjustment for established renal risk factors. These two independent studies 

support the further development of uEGF as prognostic biomarker of DKD progression 

especially in the clinical setting.

In addition, Betz’s study demonstrated the feasibility of first using an animal model as a 

primary discovery step to identify candidate markers and then applying cross-species 

validation in patient cohort studies. This is particularly relevant when there is a lack of 

access to patient samples. It is also worth noting that both studies utilized kidney tissue 

transcriptomic data to facilitate the prioritization of the biomarker candidates for further 

validation, highlighting the importance of evaluating biomarkers in the context of kidney 

pathophysiology.

However, the lack of kidney biopsy samples from patients with early stage DKD is a big 

barrier to the discovery of novel biomarkers. Recent work published by our group tackled 

this challenge by providing transcriptomic data of protocol kidney biopsies derived from 

Pima Indian participants with type II diabetes.[25] These individuals did not have overt 

clinical evidence of DKD at the time of biopsy but the ultrastructure lesion was observed 

morphologically. Integrative analysis of the transcriptomic data derived from tubular tissue 

with the quantitative morphometric analysis of the ultrastructural lesion indicated that the 

genes significantly correlated with tubule-interstitial damage are enriched for pathways 

involving in mitochondrial dysfunction, inflammation, migratory mechanisms, and tubular 

metabolic functions suggesting ongoing disease processes. Importantly, the expression of 

these genes at time of biopsy showed significant association with the urine albumin to 

creatinine ratio (uACR) and measured eGFR 10 years after biopsy, indicating a link between 

the early molecular events and long-term disease progression.[25] These transcriptomic data, 

along with rich longitudinal clinical follow-up information and the plasma and urine samples 

collected following standard procedures, provides a valuable resource which will 

continuously contribute to future identification and validation of novel therapeutic targets 

and non-invasive biomarkers of early DKD.

Given the strengths and limitations of each -omics technology, and the various 

interdependent and interactive processes measured by these -omics technologies, a 

comprehensive integration of this type of data is more likely to reveal more relevant 

biomarker candidates. An elegant example of this multi-scalar integration was recent study 

published by Sas et al, in which they applied transcriptomics, metabolomics, and metabolic 

flux analysis using diabetic rodent models and observed tissue-specific differences in 

glucose and fatty acid metabolism in the kidney, retina, and nerve tissues.[26] To confirm 

their findings from the animal model, the authors investigated diabetic kidney transcriptomic 

data and urinary metabolites from the Pima Indian cohort patients, and found increased 

expression in TCA cycle and associated metabolic cofactor pathways and observed that 

urinary TCA cycle intermediates are consistently increased in patients with DKD in 

comparison with healthy controls. The authors also demonstrated that levels of most TCA 

cycle metabolites in baseline urine samples were significantly higher in progressors versus 

non-progressors, supporting their potential as prognostic biomarkers of DKD progression.
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Finally, a panel of 273 urinary peptides that was identified from capillary electrophoresis-

mass spectrometry (MS) analysis of urine samples of patients with CKD was observed as 

another prognostic biomarker capable of predicting onset of microalbuminuria in 

normoalbuminuric in type 2 diabetic patients.[32][30] A letter of support from the US Food 

and Drug Administration (FDA) was issued to CKD273 to encourage the further 

development its clinical utility in ‘prognostic enrichment, drug development and study 

design considerations’ in early stage DKD.

Together, these studies illustrate the success of systems biology approaches at identifying 

novel markers of DKD progression and providing mechanistic insights involved in 

progressive CKD and early DKD.

The use of systems biology approach to predict patients’ response to treatment

Currently DKD clinical guidelines include a one-size fits all approach by recommending the 

same drug treatment for all patients regardless of their molecular heterogeneity. Clinical 

trials in patients with DKD focus on response in the overall population but do not take into 

account how patients respond to the drug individually. Careful subgroup analyses of recent 

trials in DKD, albeit post-hoc, suggested that disease molecular pathology differed between 

subgroups and disease subgroups associated with response, such that a subgroup of patients 

benefitted whereas other subgroups did not or were even harmed.[33–35][36,37] The failure 

of almost all trials in the last decade indicates that this one-size fits all approach is 

inadequate. Further subgroup analyses are needed to understand how the molecular 

heterogeneity of DKD can be incorporated in the treatment algorithm for DKD patients 

especially if the analysis can identify molecular markers to improve patient stratification 

strategies.

To improve DKD patient care, an individualized molecular-based treatment algorithm is 

needed to ensure that treatment recommendations are based on an individual’s molecular 

disease process. Systems biology approaches can comprehensively evaluate the molecular 

mechanisms driving the diverse responses to therapies as well as identify biomarkers that are 

able to predict the response to a therapy before treatment is initiated (predictive marker) or 

select individuals more likely to benefit from subsequent clinical outcomes after a few 

weeks’ of therapy (dynamic marker).[38–40] An exemplary study in developing a predictive 

response to therapy was carried out by Lindhardt et al. in patients with type 2 diabetes and 

therapy-resistant hypertension.[40] They investigated the potential of a marker panel at 

predicting the treatment response to mineralocorticoid receptor antagonists (MRA) 

spironolactone, an effective treatment for slowing the progression of renal function decline 

and reducing blood pressure and albuminuria.[40,41] The researchers found that higher 

CKD273, an aforementioned a proteomic classifier, is associated with a larger reduction in 

UACR in the spironolactone group than the placebo group. Further investigations in large 

prospective study cohorts are required to validate the finding.

Systems biology approaches can facilitate better prediction of patient’s response to current 

approved drugs for treating DKD, through integration of 1) drug-specific molecular profile 

or mechanism of action (MOA); 2) patient-specific non-invasive molecular profile that 

reflects individual kidney progression pathogenesis and 3) bioinformatics tools to match the 
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patient-specific non-invasive molecular profile with the drug molecular profile. Drug-

specific molecular profiles for renoprotective drugs under investigation can be generated 

using multi-omics profiling of treatment responses in in vitro and in vivo model systems.

[42–45] Relevant kidney-specific models include key kidney cell types (primary cells are 

preferred as they reflect in vivo condition better than established cell lines), organoids, and 

in vivo DKD rodent models. These molecular profiles provide insights to the MOA of tested 

drugs and can be associated with morphometric and phenotypic outcomes. Integration of 

intrarenal transcriptomic data with patient-specific non-invasive molecular profile will allow 

generation of signatures that reflects individual’s kidney progression pathogenesis. Pattern-

matching tools, which have been helpful in understanding disease and advancing the 

discovery of novel drugs in oncology can be applied to detect similarities among gene 

expression signatures.[46–48][49] The drug-specific molecular profile with the highest 

correlation to the patient’s molecular profile is hypothesized to be the most appropriate 

candidate. This type of integrative systems biology approach is “the right drug for the right 

patients” approach physician will need to advance treatment in DKD. To the best of our 

knowledge, no report has yet utilized above described integrative approach in DKD, 

however, several projects from the Biomarker Enterprise to Attack Diabetic Kidney Disease 

(BEAt-DKD) Consortium are ongoing. The results from this project are awaited with 

interest.

The caveat is that animal and cell culture models sometimes fail to recapitulate many aspects 

of DKD found in humans and thus the limitations of model systems need to be taken into 

consideration.[50] Human biospecimen from adequately powered and well–designed clinical 

trial studies are therefore necessary. Post-hoc comparison of the molecular profiles of 

responders versus non-responders can identify candidate markers that are associated with 

drug response in patients. These candidate markers, together with the above described drug 

molecular signatures, will provide a powerful resource to allow for more accurate prediction 

of treatment.

Strategies to meet existing challenges for discovery of prognostic and predictive 
biomarkers

The integration of multi-scalar datasets shows promise in advancing the discovery of novel 

biomarkers for the prediction of DKD progression and response to treatment. Many 

challenges exist that could hinder the success of applying integrative systems biology 

approach for precision medicine in DKD, including but certainly not limited to: 1) lack of a 

well-powered early DKD study cohort where multi-omics data is available for individual 

patients; 2) lack of information about tissue/cell- specificity to reduce the nonrenal 

confounding processes; 3) lack of appropriate algorithms and theoretical methods to turn big 

data into knowledge that supports the discovery, development and clinical implementation of 

the molecular markers for risk prediction and patients stratification. Below we describe our 

view of potential strategies to address these challenges.

Expand biosample availability for research—Well-powered early DKD study cohorts 

with kidney biopsy, urine and plasma sample from the same patients are needed to 

adequately perform integrative, multi-omics study. At the present time unfortunately, renal 
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biopsies are only indicated for patients with diabetes under the suspicion of the presence of 

nephropathies other than DKD.[51] As mentioned before, the lack of kidney biopsy makes it 

more difficult to associate non-invasive biomarkers from urine or plasma with kidney 

outcomes.

A global effort to develop well-designed DKD study cohorts are currently ongoing. 

Aforementioned BEAt-DKD and the Diabetes studY of Nephropathy And other 

Microvascular complications (DYNAMO) aim to deliver tools and knowledge that will 

facilitate the development of new personalized treatments for DKD. In the near future, more 

and more DKD cohorts are expected to become available under the support of these 

international collaborative consortia. Study cohorts of patients with DKD, with several 

layers of the multi-omics data from biospecimen of the same patient, may offer unique and 

valuable resources to study molecular mechanisms underlying early DKD progression and to 

identify molecular biomarkers and therapeutic targets.

Identify tissue- and cell- specific molecular markers—Kidney- specific biomarker 

are more likely to provide superior diagnostic specificity and less likely to be confounded by 

nonrenal processes.[23,52] Single-cell technology is considered a powerful tool to identify 

cell/tissue-specific biomarker in a disease-specific setting to diagnose and monitor the 

incidence and progression, as well as the responses of patients to the treatment.[53,54] 

Transcriptomic analysis using single-cell technology, such as single-cell RNA-seq (scRNA-

seq) has been applied to mouse kidney [55–57] and human kidney biopsies [58] and have led 

to the discovery of genes and their associated pathways that are cell type specific and that 

associate with kidney disease pathogenesis. Despite the rapid advances in this field, 

significant challenges remain in the analysis, integration, and interpretation of single-cell 

omics data, including extracting signal from noise especially in data derived from kidney 

biopsies.[59]

Until single cell data becomes reliable and widely available, there are other resources that 

can help facilitate cell/tissue specificity at the bulk mRNA level such as BioGPS (http://

biogps.org), a catalogue of tissue specific mRNA gene expression in a panel of 79 human 

and 61 mouse tissues. BioGPS allows comparison of gene expression among various tissues 

and identification of tissue-specific pattern of mRNA expression.[60] The Epithelial 

Systems Biology Laboratory (https://hpcwebapps.cit.nih.gov/ESBL/Database/Targets/

TranscriptomicData.html) contains RNA-seq data from microdissected rat glomeruli and 14 

structurally definable kidney tubular subunits which allows for comprehensive analysis of 

nephron segment–specific gene expression. [61] In silico nano-dissection (http://

nano.princeton.edu), an computational approach applied to bulk transcriptomic data from 

tissue homogenates, can accurately predict genes specifically expressed or enriched in 

specific cell types. [63] This method is particularly helpful for identification of genes 

specifically expressed in human cell types that are difficult to isolate.

Apply innovative bioinformatics tools—A significant body of literature is dedicated to 

developing novel algorithms and theoretical methods for multi-omic data integration which 

is necessary to extract meaning from big data.[64,65] Precision medicine has made its 

greatest impact in the field of oncology and the methods used in oncology may be useful in 
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the analysis of multi-omics data in DKD studies. Non-negative matrix factorization (NMF) 

method was applied to gene expression data from one of the largest most heterogeneous 

cancer cohort (The Cancer Genome Atlas (TCGA)) and it helped identify molecularly 

distinct subtypes that were clinically meaningful.[66,67] Matrix factorization approaches 

(iCluster) has also been successfully utilized to integrated multiple types of data including 

methylation, mRNA and microRNA data.[68] In DKD, these type of approaches can be 

applied to -omics data to help identify functionally relevant disease subsets and could also 

represent an approach to merge disparate data types in DKD study.

In a landmark paper, Iorio and colleagues leveraged multi-omic data to identify predictive 

biomarkers of response in cell line models.[68] The group used the machine learning 

algorithm LOBICO (a logic optimization for binary input to continuous input), to assess the 

contribution of multiple biomarker from different types of data in models predicting drug 

response. The multi-predictor models were better at predicting response to drugs in cell lines 

than single-predictor models and these observations further underscored the importance of 

integrative analytic approaches. Finally, the group successfully integrated public available 

molecular characterization data with their own experiment data to not only further advance 

and validate their discoveries but to increase the statistical power of their study. These 

approaches can be applied to collate similar data types in DKD from literature to 

appropriately increase the statistical power of a study.

Summary and outlook

Systems biology research in DKD is helping to transform one-size-fits-all healthcare into a 

precision medicine based paradigm (Figure 1). Based on their molecular profiles, patients 

can be classified into disease subgroups; sensitive and specific prognostic biomarkers with 

better accuracy can be used to identify patients at high risk of progression at early stage of 

the disease; specific predictive biomarkers using innovative bioinformatics tool can be used 

to match patients’ molecular signature with the molecular profiles of drugs to pinpoint the 

most effective treatment option for individual patients. For clinical trials as well as drug use 

in clinical practice, systems biology can help to enrich trials through identifying the “right 

patients” thereby leading to ethical and efficient smaller, less complex and more efficient 

clinical trial conduct and drug use in practice.
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Figure 1: 
Systems biology approach facilitates the application of precision medicine in diabetic kidney 
disease. A systems biology approach applies bioinformatics tools on multi-omics datasets 

derived from in vitro and in vivo DKD associated model systems and patient studies with the 

aim to facilitate molecular characterization of DKD pathophysiology and stratification of 

patients based on the risk of progression and the response to treatment.
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Table 1:

Progression and treatment response phenotype.

Endpoint Challenges Advantages

ESRD ● Insensitive
● Long follow-up
● Low number of events

● Gold standard
● Clinically relevant for patient

eGFR
decline 30 -
57 %

● Inter-lab assay variation
● Influenced by drugs hemodynamics
● Diet and hydration status influence
 assay
● Variation attributed to nephron loss
 only reliable in advanced DKD

● Higher precision in advanced
 DKD
● Strong association with ESRD

eGFR slope ● Laboratory issues as described
 above
● Non linearity in eGFR slopes
 complicates interpretation
● Accuracy relies on multiple values
 over time
● Cut-off value for steep or shallow
 slope is arbitrary

● Can be used as continuous
 variable or a cut-off value can
 be applied to allow
 dichotomous comparison
● Can be assessed earlier than
 40% or 57% eGFR decline
● Allow studies in patients in
 early stages DKD

UACR /
Albuminuria
/Proteinuria
increase of
30%

● Reliability differs across assays
● Large day-to-day variation
● Unclear if decreased UACR
 necessarily improve clinical
 outcomes for all interventions

● Non-invasive
● High precision in early DKD

Diabetes Obes Metab. Author manuscript; available in PMC 2019 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mulder et al. Page 15

Table 2:

Candidate biomarkers yield from –omics studies and have shown association with DKD progression.

Marker Outcome measure Pathway Integration Study

Urinary EGF Composite endpoint of
ESRD or 40% eGFR
reduction, eGFR slope

Cell growth &
Regeneration

Transcriptomics &
protein & quantitative
morphometry

Ju et al.[23]
Nair et al.[25]

Rapid decline in
eGFR, onset of eGFR
less than 60

Cell growth &
Regeneration

Proteomics from rodent
model & validate in
patient study

Betz et al [18].

Urinary CKD273
classifier

Onset of
microalbuminuria,
Rapid decline in eGFR

Fibrosis & ECM
degradation

Proteomics Lindhardt et al.
[30]
Pontillo[69]

Urinary TCA
cycle metabolites

Onset of eGFR <65 Mitochondrial
metabolism

Transcriptomics &
metabolomics rodent
model & validation in
patient study

Sas et al.[26]

Plasma uremic
solutes and
essential amino
acids

ESRD Purine
metabolism and
Amino acids
metabolism

Metabolomics Niewszas et
al.[28]

Serum
7 modified
metabolites

ESRD, eGFR decline Metabolism
Underlie
acetylation or c-
glycosylation

Metabolomics Niewczas et
al/[27]

Serum
diacyglycerols and
monoacylglyxerol

ESRD Dysregulation of
Classical
pathways of
lipolysis

Lipidomics Afshinnia et al.
[29]

Diabetes Obes Metab. Author manuscript; available in PMC 2019 October 01.


	Abstract
	Introduction
	The use of systems biology approach to identify patients at high risk of progression
	Current clinical in-use markers for kidney disease progression
	The identification of novel molecular markers associated with DKD progression
	The use of systems biology approach to predict patients’ response to treatment
	Strategies to meet existing challenges for discovery of prognostic and predictive biomarkers
	Expand biosample availability for research
	Identify tissue- and cell- specific molecular markers
	Apply innovative bioinformatics tools


	Summary and outlook
	References
	Figure 1:
	Table 1:
	Table 2:

