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Abstract

Somatosensory thalamocortical (TC) neurons from the ventrobasal (VB) thalamus are cen-

tral components in the flow of sensory information between the periphery and the cerebral

cortex, and participate in the dynamic regulation of thalamocortical states including wakeful-

ness and sleep. This property is reflected at the cellular level by the ability to generate action

potentials in two distinct firing modes, called tonic firing and low-threshold bursting. Although

the general properties of TC neurons are known, we still lack a detailed characterization of

their morphological and electrical properties in the VB thalamus. The aim of this study was

to build biophysically-detailed models of VB TC neurons explicitly constrained with experi-

mental data from rats. We recorded the electrical activity of VB neurons (N = 49) and recon-

structed morphologies in 3D (N = 50) by applying standardized protocols. After identifying

distinct electrical types, we used a multi-objective optimization to fit single neuron electrical

models (e-models), which yielded multiple solutions consistent with the experimental data.

The models were tested for generalization using electrical stimuli and neuron morphologies

not used during fitting. A local sensitivity analysis revealed that the e-models are robust to

small parameter changes and that all the parameters were constrained by one or more fea-

tures. The e-models, when tested in combination with different morphologies, showed that

the electrical behavior is substantially preserved when changing dendritic structure and that

the e-models were not overfit to a specific morphology. The models and their analysis show

that automatic parameter search can be applied to capture complex firing behavior, such as

co-existence of tonic firing and low-threshold bursting over a wide range of parameter sets

and in combination with different neuron morphologies.

Author summary

Thalamocortical neurons are one of the main components of the thalamocortical system,

which is implicated in key functions including sensory transmission and the transition
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between brain states. These functions are reflected at the cellular level by the ability to gen-

erate action potentials in two distinct modes, called burst and tonic firing. Biophysically-

detailed computational modeling of these cells can provide a tool to understand the role

of these neurons within thalamocortical circuitry. We started by collecting single cell

experimental data by applying standardized experimental procedures in brain slices of the

rat. Prior work has demonstrated that biological constraints can be integrated using

multi-objective optimization to build biologically realistic models of neurons. Here, we

employed similar techniques, but extended them to capture the multiple firing modes of

thalamic neurons. We compared the model results with additional experimental data, test

their generalization and quantitatively reject those that deviated significantly from the

experimental variability. These models can be readily integrated in a data-driven pipeline

to reconstruct and simulate circuit activity in the thalamocortical system.

Introduction

Thalamocortical (TC) neurons are one of the main components of the thalamus and have been

extensively studied in vitro and in computo, especially in first order thalamic nuclei in different

species [1]. One of these nuclei, namely the ventral posterolateral nucleus (VPL), relays

somatosensory, proprioceptive, and nociceptive information from the whole body to the

somatosensory (non-barrel) cortex [2]. The VPL is located close to ventral posteromedial

nucleus (VPM), which transmits information from the face to the barrel cortex. The VPL and

VPM nuclei constitute the ventrobasal (VB) complex of the thalamus [3].

Despite its key role in sensory functions, a systematic characterization of the cellular prop-

erties of the VB complex is still missing. The morphologies of VPL neurons in adult rats were

described in early anatomical studies but were limited to two-dimensional drawings of Golgi-

impregnated cells [4]. The general electrical properties of TC neurons maintained in vitro are

known and similar in different thalamic nuclei and species with respect to the generation of

two distinct firing modes, called tonic firing and low-threshold bursting [5–8]. However, a sys-

tematic description on the electrical types in the VB thalamus in the rodents is still missing.

Collecting morphological and electrophysiological data, by following standardized experi-

mental procedures, is essential for the definition of cells types and it is the first step to con-

strain computational models of single neurons [9,10]. Although models of TC neurons have

been published previously, they were typically aimed at studying specific firing properties and

their parameters were hand tuned to achieve the desired result [11–15].

The purpose of our study is to systematically define the morphological and electrical types

by collecting in vitro experimental data and to constrain biophysically detailed models of VB

TC neurons of the juvenile rat. To the best of our knowledge, automatic parameter search has

not been applied, thus far, to capture complex firing behavior in thalamic neurons, in particu-

lar low-threshold bursting and tonic firing. We defined the electrical and morphological types

of TC neurons through in vitro patch-clamp recordings and 3D morphological reconstruc-

tions. We then extended an existing method [16] to account for their distinctive firing proper-

ties. These electrical models (e-models) were constrained by the electrical features extracted

from experimental data [9,10,17,18]. Other experimental data were used to assess the generali-

zation of the models to different stimuli and morphologies. We further performed a sensitivity

analysis by varying each parameter at a time by a small amount and recording the resulting

electrical features. This analysis provided an assessment of the robustness of the models and a

verification that the selected features provided sufficient constraints for the parameters.

Experimentally-constrained models of thalamocortical neurons
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Results

Physiological and morphological characterization

We characterized TC neurons in slices of the rat VB thalamus, by combining whole-cell patch-

clamp recordings, biocytin filling and 3D Neurolucida (MicroBrightField) reconstruction,

along with anatomical localization in a reference atlas [19] (Fig 1).

Visual inspection of 50 reconstructed morphologies (24 from the VPL, 26 from the VPM

nuclei) revealed variability in the number of principal dendritic trunks and their orientation,

in agreement with previous anatomical studies [4]. The maximum radial extent of the den-

drites ranged between 120 and 200 μm and they started to branch between 20 and 50 μm from

the soma (S1 Fig). We then analyzed the morphologies with two methods in order to quanti-

tively classify different morphological types. We used algebraic topology to extract the persis-

tent homology of each morphology and to visualize the persistence barcode [20] (Fig 2A, see

Methods). Each horizontal bar in the persistence barcode represents the start and end point of

each dendritic component in terms of its radial distance from the soma. The barcodes of all

Fig 1. Simultaneous physiological and morphological characterization. (A) View of a patched cell under optic microscope and anatomical localization of

biocytin-filled neurons (insets). Letters D and E identify morphologies in a slice. (B) Voltage responses of two different thalamocortical (TC) neurons to a

standardized battery of current stimuli. Each current amplitude was normalized by the threshold current of each neuron (e.g. 150% threshold, see Methods).

Third row is a low-threshold burst response from a hyperpolarized holding potential, Vhold = −84 mV (burst mode), the other responses are elicited from a

depolarized holding potential, Vhold = −64 mV (tonic mode). Two different holding currents (Ihold—tonic, Ihold—burst) are injected to obtain the desired

Vhold. The vertical scale bar applies to all the traces, the first horizontal scale bar from the top refers to the first two rows, the second applies to the last four

rows. (C) Analysis of adaptation index (AI) from recordings in tonic mode. Solid line is a non-parametric estimation of the distribution, dashed lines are two

Gaussian distributions fitted to the data (see Methods). The vertical line indicates the cut-off value.

https://doi.org/10.1371/journal.pcbi.1006753.g001
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the morphologies followed a semi-continuous distribution of decreasing length. To quantify

the differences between the barcodes, we computed the pairwise distances of the persistence

images (see Methods and S1 Fig). We found that they were in general small (<0.4, values

expected to vary between 0 and 1). These findings indicate that the morphologies cannot be

grouped in different classes based on the topology of their dendrites. Furthermore, we per-

formed Sholl Analysis [21] to compare the complexity of the dendritic trees (Fig 2B). We

observed that all the morphologies had dense dendritic branches, with a maximum number of

50–100 intersections between 50–80 μm from the soma. When comparing the Sholl profiles

for each pair of neurons we could not find any statistically significant difference (S1C Fig).

Considering the results of topological and Sholl analyses, we grouped all the morphologies in

one morphological type (m-type) called thalamocortical (TC) m-type.

Fig 2. Morphological properties. (A) Renderings of 3D reconstructed TC neurons along with their persistence barcode. The persistence barcode is a topological

description of the branching pattern of the neurons’ dendrites. Grey: soma and dendrites, blue: axon (only small sections available). (B) Sholl analysis of TC neuron

dendrites. For each Sholl ring, the number of intersections is shown (mean ± standard deviation, N = 50). Each grey circle represents one morphology, colored lines

correspond to the morphologies in A. See S1 Fig for further analysis.

https://doi.org/10.1371/journal.pcbi.1006753.g002
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We used an adaptive stimulation protocol, called e-code, consisting of a battery of current

stimuli (see Methods for details), where the stimulation amplitude was adapted to the excitabil-

ity of different neurons. This standardized protocol has previously been used to build biophy-

sically-accurate models of cortical electrical types (e-types) [16]. However, TC neurons from

different thalamic nuclei and species fire action potentials in two distinct firing modes, namely

tonic firing, when stimulated from a relatively depolarized membrane potential or low-thresh-

old bursting, from a hyperpolarized membrane potential [5–8]. We thus extended the e-code

to include two different holding currents. All the neurons recorded in this study displayed

tonic and burst firing, when stimulated with the appropriate holding current (Fig 1B). More-

over, we were able to classify different e-types by considering the voltage traces recorded in

tonic mode in response to step current injections (Fig 1B). The majority of the cells (59.3%)

showed a non-adapting tonic discharge (continuous non-adapting low-threshold bursting,

cNAD_ltb e-type) while others (40.7%) had higher adaptation rates (continuous adapting low-

threshold bursting, cAD_ltb e-type), as reflected by the adaptation index (Fig 1C). We followed

the Petilla convention [22] for naming the tonic firing discharge (cNAD or cAD), extending it

to include “_ltb” for the low-threshold bursting property. In some rare examples, we noticed

acceleration in the firing rate with decreasing inter-spike intervals (ISIs) towards the end of

the stimulus. Similar adapting and accelerating responses have already been described in the

VB thalamus of the cat [7]. We also observed stereotypical burst firing responses within the

same cell, with variation of the number of spikes per burst in different cells, but the burst firing

responses alone were insufficient to classify distinct e-types.

Constraining the models with experimental data

Multi-compartmental models comes with the need of tuning a large number of parameters

[23], therefore we constrained the models as much as possible with experimental data. We first

combined the morphology and the ionic currents models in the different morphological com-

partments (soma, dendrites and axon). Given that the reconstruction of the axon was limited,

we replaced it with a stub representing the initial segment [16]. We used previously published

ionic current models and selected those that best matched properties measured in rat TC neu-

rons (see Methods). The kinetics parameters were not part of the free parameters of the

models.

The distribution of the different ionic currents and their conductances in the dendrites of

TC neurons is largely unknown. The current amplitudes of the fast sodium, persistent and

transient (A-type) potassium currents were measured, but only up to 40–50 μm from the soma

[24]. Indirect measures of burst properties [15] or Ca2+ imaging studies [25] suggest that the

low-threshold calcium (T-type) channels are uniformly distributed in the somatodendritic

compartments. We thus assumed different peak conductance in the soma, dendrites and axon

for all the ionic currents, except for ICaT, which had the same conductance value in the soma

and dendrites. We then extracted the mean and standard deviation (STD) of different electrical

features in order to capture the variability of firing responses from different cells of the same e-

type [9,10,17] (Fig 3). We observed that some features extracted from tonic firing responses

had distinct distributions between the cAD_ltb and cNAD_ltb e-types (Fig 3A).

For optimizing the models’ parameters, we chose features that quantified passive (input

resistance, resting membrane potential), burst and tonic firing properties (number of spikes,

inverse of inter-spike intervals, latency to first spike, adaptation index), action potentials shape

(amplitude, half-width, depth of the fast after-hyperpolarization). We aimed at finding the

minimal set of features that captured the most important properties in the two firing modes.

This set was a trade-off between comprehensively describing the experimental data (i.e.

Experimentally-constrained models of thalamocortical neurons
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extracting all possible features), which can lead to over-fitting and loss of generalizability, and

a too small set that would miss some important characteristics. For the tonic firing responses,

we used three stimulation amplitudes (150%, 200%, 250% of firing threshold) which have been

shown to reproduce the complete input-output function of the neurons [16,17]. Responses to

two hyperpolarizing steps of different amplitudes (−40% and −140% threshold) constrained

the input resistance (conductance of the leak current) and the conductance of currents acti-

vated in hyperpolarization, for example the h-current, Ih (sag_amplitude feature). We included

baseline voltage values to the optimization objectives to ensure that the models were in the

right firing regime and spike count to penalize models that were firing in response to the hold-

ing currents. To constrain the low-threshold burst we used features (such as number of spikes)

which are influenced by specific ionic currents, for example the low-threshold calcium current,

ICaT.

The average value and STD of each feature were used to calculate the feature errors (Fig

4C). Each error measured how much the features of the models deviated from the experimen-

tal mean, in units of the experimental STD. We used a multiobjective optimization approach

(MOO), where each error was considered in parallel. To rank the resulting models after opti-

mization, we considered model A better than model B if the maximum error of all the features

of A was smaller than the maximum error of all the features of B.

Fig 3. Histograms of electrical features. Each vertical line represents the mean feature value for a cell. Tonic and burst refer to the holding voltage as in Fig 1. (A) Feature

values extracted from recordings in tonic mode (N = 11 cAD_ltb cells, N = 16 cNAD_ltb cells). The features highlighted by a black box show different distributions for the

cNAD_ltb and cAD_ltb electrical types (e-types) (p-value<0.05, two-sided Mann-Whitney U test with Bonferroni correction for multiple comparisons). Passive

properties (Vrest, Rinput) and spike shape features (AHP depth, AP amp., etc.) did not show clear differences between the two e-types. (B) Features measuring burst firing

properties (N = 22 cells).

https://doi.org/10.1371/journal.pcbi.1006753.g003
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By applying this MOO procedure, we generated multiple models with distinct parameter

combinations for each of the twenty-two free parameters (Fig 4B). The free parameters were

allowed to vary between the upper and lower bounds shown in Fig 5B. The models reproduced

well the key firing dynamics observed in the experimental recordings. They showed a low-

threshold burst when stimulated from a hyperpolarized membrane potential, crowned by a

variable number of sodium spikes (Fig 4B). In the tonic firing regime, they reproduced adapt-

ing and non-adapting firing discharges as observed in the two e-types. These results indicate

that the ion channels included in the models were sufficient to reproduce the experimental

Fig 4. Models of different TC e-types and their fitting errors. (A) Single neuron modelling pipeline. (B) Experimental and model voltage responses to a variety of

stimuli pattern used during the optimization of cNAD_ltb and cAD_ltb e-types. (C) Feature errors of the models shown in (B) reported as deviation from the

experimental mean. The models are compared with the mean of features shown in Fig 3. Note that the models shown in B are fitted in order to reproduce the mean firing

properties, not only a specific experimental recording. See S2 Fig for a complete list of fitting errors.

https://doi.org/10.1371/journal.pcbi.1006753.g004

Experimentally-constrained models of thalamocortical neurons
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firing properties and that different e-types in TC neurons could be generated by different ion

channel densities.

Model and experimental diversity

We found that different sets of parameter values reproduced the target firing behavior (Fig

5B). We further analyzed models that had all the feature errors below 3 STD. Models’ voltage

responses reflected the characteristic firing properties of TC neurons (S3 Fig), indicating that

the selected set of features and ion channels were sufficient to capture the two firing modes, in

both the adapting and non-adapting e-types. The voltage traces from different models showed

Fig 5. Diversity of model parameters and experimental variability. (A) Example of model fitting errors (sum of all feature errors) during optimization. (B) Initial

parameter ranges and diversity of solutions. Each vertical line represents the range for the parameters, when the horizontal lower bar is missing the bound is 0. The

characters following”.” in the parameter name specifies the morphological compartment for the parameter (”s”: soma,”d”: dendrites,”a”: axon). Black circles: parameter

values for one of the models in Fig 4, grey circles: parameter values of the models with all feature errors below 3 STD. (C) Features variability in the models and

experiments. Blue crosses: feature errors of a sample of 10 models. Each grey circle is the z-scored feature value of one experimental cell, obtained from the feature values

shown in Fig 3. The protocol names are shown in parenthesis and corresponds to the stimuli shown in Figs 1 and 4, tonic and burst refer to the holding current as in Fig 1.

https://doi.org/10.1371/journal.pcbi.1006753.g005
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small differences in spike amplitude, firing frequency, and depth of the after-hyperpolariza-

tion, as reflected by the variability of features values (Fig 5C), arising from differences in ion

channel densities between models.

Spike-shape related features (e.g. AP. amplitude) in the different models covered the

space of the experimental variability, while for some features (e.g. input resistance, Rinput),

all models tended to cluster on one of the tails of the experimental distribution. Rinput relates

to the neuron passive properties and depends both on the number of channels open at rest

(inverse of the leak conductance in the model) and the size of the cell. Given that all the

models for a given e-type were constrained on a single morphology, this result is not sur-

prising. Other features, such as sag amplitude were less variable in the models compared to

experiments. We hypothesized that this depended on the variable stimulation amplitudes

applied to different experimental cells, while all the models were stimulated with the same

current amplitudes.

Some other features were systematically above or below the experimental values in both e-

types. We suggest that this depend on the exact dynamics of some specific ion channels. For

example, the amplitudes of the first and second spikes in the burst tended to be similar or

above and below the experimental values, respectively. This can depend on the specific activa-

tion/inactivation properties of some ionic currents, for example the transient sodium current

(INaT) and delayed potassium current (IKd). During the rising phase of the low-threshold spike,

INaT in the model is readily activated and generated a first spike with higher amplitude, but is

not repolarized enough by the activation of IKd. At higher potentials, reached towards the peak

of the low-threshold spike, the availability of INaT and other depolarizing currents seemed

reduced and generated a spike with smaller amplitude. Sensitivity analysis confirmed that INaT

and IKd had an influence on the amplitude of the first and second spike in the burst. Further-

more, these two currents operate together with currents that generate the burst, such as the

low-threshold calcium current (ICaT) and the Ih in shaping the amplitude of the second spike

in the burst. Interestingly, the models also tended to have lower instantaneous frequency of the

first two spikes in the burst (Inv. 1st ISI) and this feature had similar sensitivity (but of opposite

signs) to the amplitude of the second spike in the burst.

Another possible explanation is the lack of some ionic currents in the model, for example

some specific subtype of potassium channels that promote higher firing rates (Kv3.1 and

Kv3.3). While neurons of the thalamic reticular nucleus are known to express this channel sub-

unit [26], the expression in TC neurons has not been confirmed yet. The dynamics of IKd

could also explain why the after-hyperpolarization (AHP depth) tended to be smaller in the

models compared to the experimental values. AHP depth is also influenced by other ionic cur-

rents, such as high-threshold calcium current (ICaL), calcium-activated potassium current (ISK)

and the intracellular calcium dynamics. The number of action potentials (Num. of APs) in dif-

ferent conditions (No stim, Ihold) ensured that the models did not spike in the absence of a

stimulus or in response to the holding current. For this reason, all the experimental and model

feature values in Fig 5C are equal to 0.

We examined the diversity of the parameter values with respect to the initial parameter

range (Fig 5B). Most of the optimized parameter values spanned intervals larger than one

order of magnitude. On the other hand, some parameter values were restricted to one order of

magnitude, for example the permeability of the low-threshold calcium current PCaT. This

result is in agreement with experiments showing a minimum value of ICaT is critical to gener-

ate burst activity and this critical value is reached only at a certain postnatal age [27]. The value

of PCaT was constrained by features measuring burst activity (such as number of spikes, fre-

quency, etc.).

Experimentally-constrained models of thalamocortical neurons
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Assessment of model generalization

We used different stimuli for model fitting (current steps) and for generalization assessment

(current ramps and noise). We simulated the experimental ramp currents, by stimulating the

models with the appropriate holding currents for the two firing modes and a linearly increas-

ing current. We first compared visually the model responses with the experimental recordings

(Fig 6A). In burst mode, the models reproduced the different behaviors observed experimen-

tally: absence of a burst, small low-threshold spike, burst (S4A Fig). Moreover, the latency of

burst generation substantially overlapped with the experimental one. However, a small fraction

of models (1.2%) generate repetitive burst that we have never observed in the experimental

recordings (S4B Fig). These models were quantitatively rejected by considering the number of

spikes and the inter-spike intervals. In tonic mode, the latency to first spike, the voltage thresh-

old, the shape of the subsequent action potentials and the increase in firing frequency were

comparable with the experimental recordings (Fig 6A). In addition, we quantified the

Fig 6. Model generalization. (A) Responses to a ramp current injection in burst mode (left) and tonic mode (right). (B) Responses to a noise current generated according

to an Ornstein-Uhlenbeck process and scaled based on the excitability of the different experimental cells and models (see Methods). (C) Generalization errors for all the

models that passed the generalization test (all generalization errors<3 STD). (D) Proportion of models that passed the generalization test (see S4 Fig for examples of

models that failed this test).

https://doi.org/10.1371/journal.pcbi.1006753.g006
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generalization error to ramp stimuli (Fig 6C), by considering the latency to first spike, firing

frequency increase over time (tonic mode) or number of spikes (burst mode).

Although conductance-based models can be fit by using step and ramp currents, these sti-

muli are different from synaptic inputs, which can be simulated by injecting noisy currents. To

test the response to such network-like input, we used a noisy current varying accordingly to an

Ornstein-Uhlenbeck (OU) process [28] to compare models’ responses with the experimental

data. Each experimentally recorded cell was stimulated with the same OU input, scaled by a

factor w. Experimentally, w was calculated by evaluating the responses to previous stimuli. We

developed a similar approach to generate the noise stimuli in silico (see Methods). The noise

current was injected on top of the holding currents used during the optimization. We found

that the models reproduced well the subthreshold potential, spike times and the distribution of

single spikes and bursts (Fig 6B). Moreover, we quantitatively evaluated the generalization to

the noise stimulus by extracting features (e.g. number of spikes) and comparing them with the

experimental mean.

We computed generalization errors for each model, which were calculated similarly to the

optimization errors (Fig 6C). We considered a model acceptable after generalization if it had

all generalization errors <3 STD and we found that the majority of the models (>90%) passed

the generalization test (Fig 6D).

Sensitivity of electrical features to small parameter perturbations

We assessed the robustness of the models to small changes in their parameter values. To that

end, we varied each parameter at a time by a small amount (± 2.5% of the optimized value)

and computed the values of the features. A sensitivity value of 2 between parameter p and fea-

ture y means that a 3% change in p caused a 6% change in f. We ranked the parameters from

the most to the least influential and the features from the most sensitive to the least sensitive.

Some features resulted to be more sensitive to parameter changes, both in term of magni-

tude of the sensitivity and number of parameters (e.g. adaptation index, inverse of inter-spike

intervals, ISIs, AHP depth). Most of these features describe the model firing pattern, which

depend more on the interplay between the different ionic currents than on the specific activa-

tion/inactivation dynamics. Conversely, spike shape-related features were less sensitive to

parameter changes (e.g. AP half-width, AP amp.) because they depend more on specific ionic

current dynamics (e.g. IKd, IL, INaT,). Some features were very weakly influenced by small

parameter changes, e.g. baseline voltage, which depend more on the holding current ampli-

tude, than on the model parameters (Fig 7A).

The conductance of the leak current gleak emerged as the most influential parameter (Fig

7A). An increase in gleak caused a decrease in firing frequency (inverse of ISIs) in both the

tonic and burst firing modes. These results are easy to interpret when considering Ohm’s law:

increasing gleak means decreasing the input resistance of the model, so that for the same input

current the voltage response becomes smaller. The second most influential parameter was the

conductance of the persistent sodium current gNaP in the dendrites, which increased the tonic

firing rate as expected from a depolarizing current. Interestingly, gNaP had an effect on the late

phase of the low-threshold burst (inverse last ISI—burst), suggesting that the low-threshold

burst is initiated by the activation of IT and modulated by INaP. An increase in the permeability

of the low-threshold calcium current PCaT, known to be one of the main currents underlying

low threshold bursting, enhanced burst firing responses (it increased the inverse of ISIs, i.e.

the firing frequency) and had effects on some of the tonic features. Increasing the somatic per-

meability of the high threshold calcium current PCaL decreased the tonic firing rate, despite

being a depolarizing current. Increasing PCaL means higher Ca2+ influx and higher activation
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of the Ca2+-activated potassium current (ISK). The parameter gSK had indeed a similar effect on

the features and thus clustered together with parameters regulating the intracellular calcium

dynamics γCa and τCa (Fig 7B). Sag amplitude, that is known to depend on the activity of Ih,

was mainly influenced by change in gleak, PCaT and gh. In summary, each parameter influenced

at least one feature. These results indicate that the model ability to generate tonic and burst fir-

ing is robust to small changes in parameter values and that all the parameters were constrained

during the optimization by one or more features.

We then analyzed which features depended similarly on parameter changes, as they may

add superfluous degrees of freedom during parameters search. Fig 7B shows the same sensitivi-

ties as in Fig 7A, clustered by their similarities (see Methods). Features clustered together if

they were sensitive to similar parameter combinations and parameters clustered based on their

similar influence on the features. Not surprisingly, the same tonic features measured at differ-

ent level of current stimulation clustered together (e.g. AP amplitude and half-width, AHP

depth, latency of the first ISI) and tonic firing features belonged to a cluster that was different

from burst features. Some features measured in tonic mode (such as AP half-width and AP

amp.) clustered together because they depended mainly on the dynamics of INaT and IKd:

increasing the conductance of INaT increased the amplitude of the APs and decreased its dura-

tion. This was also true for the amplitude of the 1st AP in the burst. Features measured in burst

Fig 7. Local sensitivity analysis. (A) Sensitivity of the feature values to small changes to the parameter values for the cNAD_ltb model in Fig 4. Sensitivities (Δy/Δp) are

color coded as a heat map. Features are ranked from the most to the least sensitive and parameters are ranked from the most to the least influential. The last three rows are

features that ensure that the models were not firing without input or in the response to the holding current. Small changes to the parameter values are not expected to

make the model firing and thus the sensitivity of these features is 0. (B) Same sensitivity values as in (A), with features and parameters clustered by similar sensitivity and

influences.

https://doi.org/10.1371/journal.pcbi.1006753.g007
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mode had similar sensitivities because they depend on currents that are active at relatively

hyperpolarized potential (such IH and ICaT).

Preservation of model firing properties with different morphologies

We optimized the parameters for the adapting and non-adapting e-models in combination

with two different experimental morphologies selected at random and then tested them with

the other 48 morphologies. Considering that morphologies could not be classified in different

m-types based on topological analysis of their dendrites and that TC neurons have been shown

to be electrically compact [15], we expected the electrical behavior to be conserved when

changing morphology. Nonetheless, different neurons vary in their input resistance Rinput and

rheobase current Ithr due to variation in the surface area. Variation in Rinput and Ithr made the

current amplitude applied during the optimization inadequate to generate the appropriate

voltage trajectories. We thus devised an algorithm to search for the holding current to obtain

the target holding voltage (for example −64 mV or −84 mV for tonic and burst firing, respec-

tively) and Ithr from the desired holding voltage. The different e-model/morphology combina-

tions (me-combinations) were evaluated by computing the same feature errors calculated

during optimization (Fig 8A). For each morphology, we selected the e-model that generated

the smallest maximum error. We chose the value of 3 STD as the threshold to define which

me-combinations were acceptable [29], yielding 48 acceptable me-combinations out of the 48

tested (Fig 8A). All me-combinations reproduced burst and tonic firing (Fig 8B).

Given that the generalization of the electrical models to the other 48 morphologies worked

well, we can conclude that the morphological properties of the modeled neurons are very simi-

lar, at least for properties that have an impact on the electrical models (e.g. surface area, diame-

ters of the compartments).

Discussion

Our objective was to apply and extend an existing data-driven pipeline to identify the cell

types and build models of VB thalamocortical neurons that reproduced the multiple firing

modes that have been experimentally observed. We successfully modelled these novel firing

types, by including additional stimulation protocols and features to constrain the low-thresh-

old burst.

Our morphological and electrical data were used to define the properties of VB TC neurons

in the rat. We found two electrical types (e-types) of TC neurons, but no objectively different

morphological types (m-types) were revealed either using Sholl analysis [21] or topological

analysis of dendritic branching [20]. We cannot exclude that refinements to these methods

will reveal different m-types similar to the ones described in the visual thalamus of the mouse

[30]. We also showed that automatic parameter search can be applied to build biophysically

and morphologically detailed models. This method was already applied to model canonical fir-

ing behavior in cortical [9,10,16,17], hippocampal [31], cerebellar granule neurons [32] and

corticospinal neurons [33]. To the best of our knowledge, such an automatic parameter search

has not been used previously to capture different firing modes and complex firing behavior

such as low-threshold bursting in thalamic neurons. Standardized electrophysiological proto-

cols allowed us to identify for the first time in juvenile rat adapting and non-adapting e-types

of TC VB neurons that were previously observed in other species [7]. This finding suggests

that the intrinsic properties of TC neurons contribute to adaptation, a key phenomenon for fil-

tering out irrelevant stimuli, before sensory information reaches the neocortex. Further experi-

ments are needed to elucidate the relative contribution of intrinsic mechanisms and network

properties to adaptation in somatosensory systems. We named the two main e-types
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continuous non-adapting low-threshold bursting (cNAD_ltb) and continuous adapting low-

threshold bursting (cAD_ltb) by following and extending existing conventions [16,22,31].

In this study, we improved upon previous morphologically and biophysically detailed mod-

els of tonic and burst firing in TC neurons [12,13,15] by explicitly constraining the parameters

with experimental data, without hand-tuning of their values. Unlike previous models, we

chose a multi-objective optimization for a methodological and a scientific reason: it is more

time-efficient, reproducible, and it approximates the variability in ionic channel expression of

biological neurons [31,34–36], as shown by the family of acceptable solutions we found. How-

ever, experiments aimed at quantifying ion channel conductances are essential to assess if

these solutions fall between biological ranges. Furthermore, we tested the generalization capa-

bility of the models and found that more than 90% of the models were comparable with the

experimental data.

Nonetheless, we noticed some inaccuracies when comparing the voltage traces with the

experimental data when assessing the generalization of the models. For instance, some models

tended to generate small transient oscillations in response to ramp stimuli in burst mode. This

result is not surprising, considering that the exact kinetics for all the ionic currents are not

Fig 8. Model generalization to different experimental morphologies. (A) Feature errors from the best electrical models (e-models) showed in Fig 4 applied to 50

different TC cell morphologies. Each morphology is represented with a different color. None of the e-models/morphology combinations were rejected, because all the

feature errors were< 3 STD (dashed line). (B) Example of voltage responses from two accepted e-model/morphology combinations.

https://doi.org/10.1371/journal.pcbi.1006753.g008
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available and that there are known limitations in models of ionic channels derived from the lit-

erature or from other models [37,38]. In particular, modifications to the kinetics of the low-

threshold calcium current was shown to explain the propensity to generate oscillatory bursts in

TC neurons of other nuclei and species [39]. More generally, we included ion channels that

were used in previous models and that were validated with experimental data whenever possi-

ble. We undertook an extensive literature review to use channel kinetics derived from record-

ings in rat TC neurons from the ventrobasal (VB) thalamus or other first-order thalamic nuclei,

whenever the data was available (see Methods). Moreover, we cannot exclude that some ionic

currents were missing from our models and that they could have improved their fitness.

TC neurons have been shown to be electrically compact [15] and could, in principle, be

modeled as a single compartment. However, active mechanisms need to be located in the den-

drites in order to ensure synaptic integration and amplification [40]. Information regarding

specific conductances or firing properties in the dendrites of TC neurons is limited. For this

reason, dendritic parameters in our models may be underconstrained. However, the sensitivity

analysis revealed that dendritic parameters did not appear to be the least constrained because

they influenced different tonic and burst-related features.

We included in the model fitting and validation pipeline a sensitivity analysis, which is

often neglected in computational neuroscience [41]. Although we cannot use our simple uni-

variate approach to explore multidimensional parameter correlations and principles of co-reg-

ulation of ion channels expression, it is useful to find better constraints for parameters

optimization. The selection of the features is indeed a step that still requires care and experi-

ence by modelers. Furthermore, this type of sensitivity analysis allows to identify parameters

that can be traded-off during the optimization and that can be removed in order to reduce the

dimensionality of the problem. In our study, parameters related to the calcium dynamics were

shown to influence the features in a very similar fashion. This type of analysis is of particular

importance in future work aimed at using the full diversity of ion channels that can be inferred

from gene expression data. Gene expression data could also provide additional constraints on

the choice of ion channels and indicate the ones that are missing in our models. More in detail,

we propose that sensitivity analysis should be a fundamental tool in selecting which conduc-

tances are successfully optimized by the available experimental constraints. The example we

showed is a local approach, applied to a specific solution to the optimization problem, which

showed that our models are robust to small parameter changes. This analysis can be extended

to study how the sensitivities vary in the neighborhood of different solutions.

In conclusion, we systematically studied the morphological and electrical properties of VB

TC neurons and used these experimental data to constrain single neuron models, test their

generalization capability and assess their robustness. Further work will validate these models

in response to synaptic activity, in order to include them in a large-scale model of thalamocor-

tical microcircuitry [16].

Methods

Experimental procedures

Experimental data were collected in conformity with the Swiss Welfare Act and the Swiss

National Institutional Guidelines on Animal Experimentation for the ethical use of animals.

The Swiss Cantonal Veterinary Office approved the project following an ethical review by the

State Committee for Animal Experimentation.

All the experiments were conducted on coronal or horizontal brain slices (300 μm thick-

ness) from the right hemisphere of male and female juvenile (P14-18) Wistar Han rats. The

region of interest was identified using the Paxinos and Watson rat brain atlas [19]. After
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decapitation, brains were quickly dissected and sliced (HR2 vibratome, Sigmann Elektronik,

Germany) in ice-cold standard ACSF (in mM: NaCl 125.0, KCl 2.50, MgCl2 1.00, NaH2PO4

1.25, CaCl2 2.00, D-(+)-Glucose 50.00, NaHCO3 50.00; pH 7.40, aerated with 95% O2 / 5%

CO2). Recordings of thalamocortical neurons in the VB complex were performed at 34˚C in

standard ACSF with an Axon Instruments Axopatch 200B Amplifier (Molecular Devices,

USA) using 5–7 MO borosilicate pipettes, containing (in mM): K+-gluconate 110.00, KCl

10.00, ATP-Mg2+ 4.00, Na2-phosphocreatine 10.00, GTP-Na+ 0.30, HEPES 10.00, biocytin

13.00; pH adjusted to 7.20 with KOH, osmolarity 270–300 mOsm. Cells were visualized using

infrared differential interference contrast video microscopy (VX55 camera, Till Photonics,

Germany and BX51WI microscope, Olympus, Japan).

Membrane potentials were sampled at 10 kHz using an ITC-18 digitizing board (Instru-

TECH, USA) controlled by custom-written software operating within IGOR Pro (Wave-

metrics, USA). Voltage signals were low-pass filtered (Bessel, 10 kHz) and corrected after

acquisition for the liquid junction potential (LJP) of −14 mV. Only cells with a series resistance

<25 MO were used.

After reaching the whole-cell configuration, a battery of current stimuli was injected into

the cells and repeated 2–4 times (e-code). During the entire protocol, we defined offset cur-

rents in order to keep the cell at −50 mV (tonic firing) or −70 mV (burst firing) before LJP cor-

rection and applied them during the entire protocol. The step and ramp currents were injected

with a delay of 250 ms in the experiment. In the models, the stimuli were injected with a delay

of 800 ms, to allow for the decay of transients due to initialization. Each stimulus was normal-

ized to the rheobase current of each cell, calculated on-line as the current that elicited one

spike (stimulus TestAmp, duration 1350 ms). The stimuli used in the experiments, for fitting

and testing the models were:

• IDRest: current step of 1350 ms, injected at different amplitude levels in 25% increments

(range 50–300% threshold). IDRest was renamed to Step in the model.

• IDThresh: current step with duration of 270 ms, 4% increments (range 50–130%).

• IV: hyperpolarizing and depolarizing steps of 3000 ms injected in 20% increments (range

−140–60%).

• SponNoHold: the first 10 seconds of this stimulus was used to calculate the resting mem-

brane potential. No holding or stimulation currents were applied.

• SponHold: the first 10 seconds of this stimulus was used to calculate the holding current

applied to keep the cells at the target potential.

• PosCheops: ramps of current from 0 to 300% and from 300 to 0% having progressively

shorter durations (4000 ms, 2000 ms, 1250 ms). To test the models in tonic mode we used

the first increasing ramp in the stimulus, while we used the last one in the bursting firing

mode. We chose the last one because the biological cells were more likely to generate a burst,

while they were silent during the first two ramps.

• NOISEOU3: the original wave was scaled and offset for each cell based on the spike frequency

in response to the IDRest protocol. The scaling factor w was extracted from the frequency-

current curve and corresponded to the current value that made the cell fire at 7.5 Hz.

Neurons that were completely stained and those with high contrast were reconstructed in

3D and corrected for shrinkage as previously described [16]. Reconstruction used the Neurolu-

cida system (MicroBrightField). The location of the stained cells was defined by overlaying the
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stained slice and applying manually an affine transformation to the Paxinos and Watson’s rat

atlas [19].

Electrical features extraction

Electrical features were extracted using the Electrophys Feature Extraction Library (eFEL)

[42]. We calculated the adaptation index (AI) from recordings in tonic mode (Step 200%

threshold) and classified TC VB neurons into adapting (AI> = 0.029) and non-adapting

(AI<0.029) electrical types. AI was calculated using the eFEL feature adaptation_index2 and

corresponded to the average of the difference between two consecutive inter-spike intervals

(ISI) normalized by their sum. The cut-off value was calculated after fitting a Gaussian mixture

model to the bimodal data, using available routines for R [43,44]. In order to group data from

different cells and generate population features, we normalized all the stimuli by the rheobase

current Ithr of each cell. To calculate Ithr, we used IDRest and IDThresh and selected the mini-

mal amplitude that evoked a single spike. Along with the voltage features, we extracted mean

holding and threshold current values for all the experimental stimuli. Description of the fea-

tures and the details on their calculation are available on-line [42]. Current stimuli applied

during the optimization and generalization were directly obtained from the experimental val-

ues or automatically calculated by following the experimental procedures (e.g. noise stimulus).

Morphology analysis

Reconstructed morphologies were analyzed to objectively identify different morphological

types. The Sholl profiles of each pair of cells was statistically tested by using k-samples Ander-

son-Darling statistics. This test was preferred to the most common Kolmogorov-Smirnov test,

because it does not assume that the samples are drawn from a continuous distribution. The dif-

ferent Sholl profiles are indeed an analysis of the intersections with discrete spheres.

To compare the topological description of each morphology we transformed the persistence

barcodes into persistence images and calculated their distances as in [20]. Briefly, we converted

the persistence barcode, which encodes the start and end radial distances of a branch in the

neuronal tree, into a persistence diagram. In the persistence diagram, each bar of the barcode

is converted into a point in a 2D space, where the X and Y coordinates are the start and end

radial distances of each bar. The persistence diagram was then converted into a persistence

image by applying a Gaussian kernel. We used the library NeuroM [45] to perform Sholl and

morphometrics analyses.

Ionic currents models

We used Hodgkin-Huxley types of ionic current models, starting from kinetics equations

already available in the neuroscientific literature. Along with kinetics of the ionic currents, we

stored information on the experimental conditions, such as temperature and LJP, by using the

software NeuroCurator [46]. Whenever the data was available, we compared simulated volt-

age-clamp experiments to experimental data from juvenile rats. Ionic currents Ii were defined

as functions of the membrane potential v, its maximal conductance density gi and the constant

value of the reversal potential Ei:

Ii ¼ gim
x
i h

y
i ðv � EiÞ

mion and hion represent activation and inactivation probability (varying between 0 and 1), with

integer exponents x and y. Each probability varied according to:

n0ðvÞ ¼ ðn1ðvÞ � nÞ=tnðvÞ
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where n1(v) is a function of voltage that represents the steady-state activation/inactivation

function (normally fitted with a Boltzmann curve) and τn(v) is a voltage-dependent time con-

stant. Exceptions to this formalism are ionic currents that do not inactivate (y = 0) and ionic

currents with (in)activation processes mediated by two or more time constants. Calcium cur-

rents (ICaT and ICaL) were modeled according to the Goldman-Hodgkin-Katz constant field

equation and had permeability values instead of conductance [47].

Fast transient sodium current INaT and delayed potassium current IKd. INaT and IKd
were taken from a previous models of rat TC neurons from the VB nucleus [12], available on

SenseLab ModelDB (accession no. 279). INaT was compared with recordings of transient

sodium currents in P7-11 rat neurons from the dorsolateral geniculate (dLGN) nucleus [48].

Low-threshold activated (T-type) calcium current ICaT. ICaT model was taken from [12]

and available on-line (ModelDB, accession no. 279). This model was based on data recorded

from VB neurons of Sprague-Dawley rats (P7-12) at room temperature and corrected for −9

mV LJP [11].

Hyperpolarization-activated cationic current Ih. The steady-state activation for Ih was

derived from VB thalamic neurons in P10-20 Long-Evans rats and was already corrected for

−10 mV LJP in the original publication [49], The equation used was:

m1 ¼ 1=ð1þ exp½ðvþ 86:4Þ=11:2�Þ

The time constant of activation was modeled as in [50], which derived a mathematical

description of Ih based on data from the dLGN in adult guinea pigs [51]. The equation describ-

ing the time dependence of activation was:

tm ¼ 1=½expð� 14:59 � 0:086vÞ þ expð� 1:87þ 0:0701vÞ�

The equilibrium potential of the channel EH was −43 mV.

Persistent sodium current INaP. We modeled INaP as in [17] which based their model on

recordings from entorhinal neurons of Long-Evans rats (P25-P35) [52]. The model is available

in ModelDB, accession no. 139653. The steady-state activation was modified according to [48]

and the steady-state inactivation according to [14]. The original steady-state activation data

were recorded at room temperature (22–24˚C) and corrected for −6/−7 mV LJP.

Fast transient (A-type) potassium current IKA. The mathematical formulation of IKA
was based on data recorded from VB neurons in Sprague-Dawley rats (P7-15), recorded at

room temperature (22–24˚C) [11]. A Q10 = 2.8 was experimentally determined and used for

simulations at different temperatures. In the original experiments a small LJP (<−4 mV) was

measured and not corrected. The current had a rapid and a slow component, represented by

two activation and two inactivation variables. The model of this current was provided by the

authors of [14].

High-threshold (L-type) calcium current ICaL. ICaL model is the same as TC neurons

model previously published [14]. The model was based on data from isolated guinea-pig hip-

pocampal neurons, recorded at room temperature (20–22˚C) with modifications to the Boltz-

mann curve parameters of activation contained in the correction to the original models. A

small LJP (<3 mV) was not corrected [50]. A Q10 of 3 was used for simulations at different

temperatures.

Calcium-activated potassium currents. TC neuron express genes for BK-type [53] and

SK-type calcium-activated potassium channels [54]. Models of BK-type currents, similar to the

IC current, have already been used to model TC neurons [14,50,53]. However, data characteriz-

ing this current in mammalian neurons are not available. We thus included only a model of
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ISK (available on ModelDB, accession no. 139653) based on rat mRNA expression data in

Xenopus oocytes [55].

Intracellular calcium dynamics. A simple exponential decay mechanism was used to

model the intracellular calcium dynamics (ModelDB, accession no. 139653). Both ICaT and

ICaL contributed to the intracellular calcium concentration.

In addition, we included a voltage-insensitive membrane current Ileak. The equilibrium

potential was −79 mV and corresponded to the average resting potential from our experimen-

tal recordings.

Simulation and parameters optimization

NEURON 7.5 software was used for simulation [56]. We used NEURON variable time step

method for all simulations. For the sake of spatial discretization, each section was divided into

segments of 40 μm length. The following global parameters were set during optimization and

generalisation: initial simulation voltage (−79 mV), simulation temperature (34˚C), specific

membrane capacitance (1 μF/cm2), specific intracellular resistivity 100Ocm for all the sec-

tions, equilibrium potentials for sodium and potassium were 50 mV and −90 mV, respectively.

BluePyOpt [18] with Indicator Based Evolutionary Algorithm (IBEA) were used to fit the

models to the experimental data. Each optimization run was repeated with three different ran-

dom seeds and evaluated 100 individuals for 100 generations. The evaluation of these 300 indi-

viduals for 100 generations was parallelized using the iPython ipyparallel package and took

between 21 and 52 h on 48 CPU cores (Intel Xeon 2.60 GHz) on a computing cluster. Each

optimization run typically resulted in tens or hundreds of unique acceptable solutions, defined

as models having all feature errors below 3 STD from the experimental mean.

Sensitivity analysis

We performed a sensitivity analysis of an optimization solution by varying one parameter

value (pm) at a time and calculating the electrical features from the voltage traces (y+ and y-).

We defined the sensitivity as the ratio between the normalized feature change and the parame-

ter change, which for smooth functions approximates a partial derivative [57,58]. The features

changes were normalized by the optimized feature value. For small changes of parameter val-

ues, we assumed that the features depend linearly on its parameters. We could thus linearize

the relationship between the features and the parameters around an optimized parameter set

and calculate the derivatives. The derivatives were calculated with a central difference scheme

[57].

@yn
@pm
�

yþn � y�n
2Dpm

We collected the derivatives (sensitivities) in the N XM Jacobian matrix, with N represent-

ing the number of features and M the number of parameters.

To rank parameters and features we computed their relative importance by calculating

their norms (the square root of the summed squared values) from the Jacobian columns and

rows, respectively. To cluster parameters based on similar influences on the features and to

cluster features that were similarly dependent on the parameters, we used angles between col-

umns (or rows) to compute distances D between parameters (or features):

D ¼ 1 � jcos yj

Features where thus considered similar if they depended in a similar manner on the param-

eters, independent of sign or magnitude.
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Supporting information

S1 Fig. Morphological analysis. (A) Morphometrics of the thalamocortical (TC) morphologi-

cal type. Each histogram shows basic morphometrics at the level of the neuron (first row) or at

the level of dendritic trees (second row). (B) Distance matrix between persistence barcodes for

all TC morphologies. Related to Fig 2A). (C) P-values for the k-samples Anderson-Darling sta-

tistics. It tests the null hypothesis that the Sholl profiles of each pair of morphologies are drawn

from the same population. The p-values are not corrected for multiple comparisons and show

that we cannot reject the null hypothesis for most of the morphology pairs (at 0.05 significance

level). Related to Fig 2B.

(TIF)

S2 Fig. Feature errors of the models shown in Fig 4. Detailed view of all feature errors for

two optimized models; where the error bar is missing the error value is 0.

(TIF)

S3 Fig. Example of traces from experimental recordings and models. Voltage traces from a

sample of 10 different experimental cells and models, corresponding to the features shown in

Fig 5C.

(TIF)

S4 Fig. Variability of experimental and model voltage responses to ramp stimuli. (A)

Experimental cells and models show three different types of behavior, when recorded in burst

mode: no firing (green), small low threshold spike (blue), low-threshold burst (low-threshold

spike crowned by sodium spikes, orange). (B) Example of models that tend to have repetitive

bursting or spiking behavior.

(TIF)

S1 Electrical features dataset. Spreadsheet containing experimental electrical features for all

the experimental cells, separated in three different sheets, two for recordings in tonic mode for

the two electrical types and one for the recordings in burst mode. The features, their means

and standard deviations were used in Figs 1C, 3, 4C, 5C and 8A.

(XLSX)
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Project administration: Henry Markram, Sean L. Hill.

Resources: Jane Yi, Ying Shi, Bas-Jan Zandt, Werner Van Geit, Christian Rössert.
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