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Lambda interferons (IFNls, type III IFNs or interleukins-28/29)

were described fifteen years ago as novel cytokines sharing

structural and functional homology with IL-10 and type I IFNs,

respectively. IFNls engage a unique receptor complex

comprising IFNLR1 and IL10R2, nevertheless they share

signaling cascade and many functions with type I IFNs,

questioning their possible non-redundant roles and overall

biological importance. Here, we review the latest evidence

establishing the primacy of IFNls in front line protection at

anatomical barriers, mediating antiviral immunity before type I

IFNs. We also discuss their emerging role in regulating

inflammation and limiting host damage, a major difference to

type I IFNs. IFNls come thus to light as dual function cytokines

mediating antiviral immunity and damage control.
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Introduction
For a long time, type I interferons (IFNs) have been

considered as the primary antiviral defense system, acting

in an autocrine and paracrine manner to induce resistance

to infection and enhance innate and adaptive immune

responses needed for viral clearance [1]. Moreover, they

have attracted major interest in oncology and multiple
www.sciencedirect.com 
sclerosis as biological response modifiers able to improve

therapy [1]. However, although type I IFNs have been

approved for diverse indications including genital warts,

viral hepatitis, hairy cell leukemia and chronic myeloge-

nous leukemia, their use in the clinic is limited due to the

frequent and severe adverse effects (including flu-like

disease and depression) they exhibit.

With the completion of the Human Genome Project, it

became apparent that another cytokine family, termed

lambda IFNs (IFNls), type III IFNs or IL-28 and IL-29,

exists and shares structural homology with the interleukin

(IL)-10 family and functional homology with type I IFNs

[2,3]. Similarly to type I IFNs, IFNls are triggered by

infection and induce multiple antiviral responses medi-

ating viral clearance. They also exert pleiotropic effects

on the immune system, many of which highly reminiscent

to these of type I IFNs. This raised the question whether

IFNls and type I IFNs are redundant, and why our

organism needs two IFN-based antiviral defense systems

to confront infection. Here, we review the latest evidence

highlighting the primacy of IFNls in antimicrobial, and

in particular antiviral, immunity. We survey their unique

and common biology with type I IFNs, their co-operation

with type I IFNs in the fine-tuning of antimicrobial

immunity and their emerging role in damage control.

We also discuss their potential as novel therapeutics that

exhibit the beneficial effects, but lack the pro-inflamma-

tory activities causing side effects, of type I IFNs.

IFNl members, induction mechanisms and
expression patterns
There are four IFNl members in humans, IFNl1/IL-29,
IFNl2/IL-28A, IFNl3/IL-28B, IFNl4, and two (IFNl2/
IL-28A, IFNl3/IL-28B) in mice [2–4]. Much like type I

IFNs, IFNls are only transiently expressed following

stimulation by viruses and microbial products. These

include all major respiratory (influenza and parainfluenza

viruses, rhinoviruses, respiratory syncytial viruses, coro-

naviruses etc), gastrointestinal (rotaviruses, reoviruses,

noroviruses) and hepatotropic (hepatitis B and C) viruses

[2,3,5,6], intracellular and extracellular bacteria (Listeria
monocytogenes, Streptococcus pneumonia, Haemophilus influ-
enzae, Staphylococcus aureus, Salmonella enterica, Shigella
sonnei and Mycobacterium tuberculosis) [7,8,9�], and numer-

ous microbial components and synthetic ligands (imida-

zoquinolines, polyinosinic-polycytidylic acid, flagellin,

peptidoglycan and CpG oligodeoxynucleotides) [10,11].
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Central to IFNl production are pattern-recognition

receptors (PRRs) such as toll-like receptor (TLR)3,

TLR5, TLR7/8 and TLR9, RIG-I and MDA-5 which

trigger a downstream signaling cascade leading to the

activation of nuclear factor kB (NF-kB) and interferon

regulatory factors (IRFs). Accordingly, IFNl genes have

binding sites for NF-kB, IRF1, IRF3 and IRF7 in their

promoter regions similarly to type I IFNs [2,3,12].

Although this would suggest co-regulation, this is often

not the case; IFNls exhibit a restricted pattern of expres-

sion compared to type I IFNs which are almost ubiqui-

tously expressed. IFNls are most abundant at barrier

surfaces including the respiratory and gastrointestinal

tracts, and can be robustly produced by epithelia and

epithelial-origin cells including hepatocytes and some

immune cells [10,11,13,14]. This goes beyond the ability

of all cells to respond to PRR engagement, suggesting the

existence of additional cell-specific epigenetic, transcrip-

tional and post-transcriptional regulation of IFNl pro-

duction. For example, RIG-I-like receptor signaling

through mitochondrial antiviral signaling protein (MAVS)

in peroxisomes [15], sensing through the cytosolic DNA

sensor Ku70 [16], induction of the transcriptional co-

activator Med23 [17] or presence of transcriptional repres-

sors such as ZEB1 and BLIMP-1 [18,19] have all been

associated with IFNl production. Whether such mecha-

nisms can broadly account for IFNl expression patterns

remains to be established.

Downstream signaling cascades, target cells
and functional consequences
All IFNl members engage a unique heterodimeric

receptor complex, the IFNLR, that comprises IFNLR1

(IFNLRA, IL-28RA), and IL10R2 (IL-10RB).

IFNLR1 confers ligand specificity and enables receptor

assembly, while IL10R2 is shared with IL-10 family

members and is required for signaling. Binding of IFNl
to IFNLR1 and IL10R2 occurs at a 1:1:1 stoichiometry

compared to the 2:1:1 ratio between IL-10, IL10R1 and

IL10R2 [20�]. IFNLR stimulation leads to the activa-

tion of the tyrosine kinases JAK1 and TYK2, and the

transcription factors STAT1 and STAT2 which bind to

IRF9, forming the IFN-stimulated gene factor 3

(ISGF3) complex [2,3]. ISGF3 then enters the nucleus

and induces the transcription of hundreds of genes,

termed IFN-stimulated genes (ISGs), that generally

inhibit viral replication and spread, and exhibit broad

antimicrobial functions against viral, bacterial and par-

asitic infections [21]. Notably, this pathway is also

shared with type I IFNs, highlighting the very similar

antiviral activity these two systems exhibit [22–24].

Thus, it has been difficult to segregate IFNl from type

I IFN functional or transcriptional responses, with

IFNl-induced genes typically representing a subset

of all genes elicited by type I IFNs but exhibiting a

delayed peak and longer duration [23–26].
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The most striking difference between the two IFN

systems is their receptor distribution. The type I IFN

receptor is expressed in almost all cell types. On the

contrary, the IFNLR1/IL10RB complex is expressed

primarily in cells of epithelial origin and few immune

cells, mainly neutrophils and subsets of dendritic cells

(DCs), conferring selective IFNl responsiveness to them.

This has been demonstrated for both mouse

[27�,28��,29��] and human neutrophils [29��] and plasma-

cytoid DC (pDCs) [11,30], as well as human monocyte-

derived DC [31,32], and mouse bone marrow-derived or

lung-sorted conventional DC (cDC) of the DC2 pheno-

type [33] (Figure 1). The expression pattern of the

receptors largely follows that of their ligands with human

and mouse epithelial cells [2,3,13,28��,34], pDCs

[10,11,30,35,36], DC1 [37] and DC2 [11,28��,36,38] cells,

as well as human monocyte-derived DC [31,32,38,39] and

macrophages [34,38,40] expressing high levels of IFNls
upon activation. This points to more specialized roles for

IFNls in localized immune responses at epithelial barrier

surfaces conferred by epithelial and immune cells. How-

ever, subtler differences also exist. For example, JAK2

phosphorylation is induced only by IFNls but not type I

IFNs [15], while other less well-described pathways may

also be important for antiviral functions [41��], indicating

the existence of distinct signalling events that remain to

be characterized.

IFNls in antiviral immunity
From the very first publications describing the discov-

ery of IFNls, it became evident that IFNls exhibit

potent antiviral activity [2,3]. Treatment of infected

cells in culture or experimental animals with recombi-

nant IFNls has been effective against a very diverse

range of viruses [42–44]. However, endogenous non-

redundant roles of IFNls that are not compensated by

type I IFNs have been difficult to establish. Important

progress has recently come from the study of gastroin-

testinal infections where it was shown that cell respon-

siveness to IFNls is largely compartmentalized with

IFNls acting on intestinal epithelial cells (expressing

high levels of IFNLR1) and having minimal effects on

lamina propria cells (expressing low levels), while type

I IFNs exhibiting the opposite effects [45,46��].
Accordingly, it was demonstrated that rotavirus —

which infects epithelial cells — is solely controlled

by IFNls while reovirus -which replicates in both

epithelial and non-epithelial cells and can spread sys-

temically- requires the co-operative action of IFNls
with type I IFNs [45,46��,47�]. Similarly, norovirus that

grows at the gastrointestinal epithelium but spreads

systemically is confronted by both IFN systems

[48��]. Interestingly, IFNls can effectively clear nor-

ovirus in antibiotics-treated mice, an effect prohibited

by gut commensals [49�], adding another level of com-

plexity to the equation.
www.sciencedirect.com
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Figure 1
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Sources and targets of IFNls among immune and non-immune cell populations. Blue arrows depict cells expressing and red arrows cells

responding to IFNls. MoDC, DC1 and DC2 cells produce IFNls but only moDC and DC2 cells also respond to them. DCs: Dendritic cells; MoDC:

monocyte-derived DCs; DC1: Dendritic cell subset 1; DC 2: Dendritic cell subset 2.
In the respiratory tract, such compartmentalization is less

obvious. Respiratory epithelial cells express receptors for

and respond to both types of IFNs, as do certain immune

cell populations residing or infiltrating the lung. More-

over, although nose, bronchial and alveolar epithelial cells

express high levels of IFNls following infection [34,50],

smooth muscle cells, fibroblasts, and DCs can also do so

[10,11,51,52]. This suggested a degree of redundancy

between the two IFN systems, supported by early work

showing increased susceptibility to respiratory viral infec-

tions in mice deficient in both IFNLR1 and IFNAR1, but

not in mice deficient in only IFNLR1 [23,53,54]. How-

ever, more recent studies have uncovered major and

unique roles of IFNls in antiviral immunity in the lung.

They have revealed that IFNls are induced first, at lower

viral burden than type I IFNs, and act to limit initial

infection spread [28��]. This is possibly due to the pro-

pensity of airway epithelial cells to selectively produce

type III IFNs [23,55]. In line with that, it has been

reported that IFNls are essential for preventing virus

transmission from the upper airways to the lungs, a

process that takes place early during infection [56��].
Interestingly, IFNls lack the strong pro-inflammatory

effects of type I IFNs and are rather anti-inflammatory

and tissue protective. As a result, IFNLR1�/� mice

exhibit increased viral load, inflammation and host dam-

age following infection [28��], whereas recombinant

IFNl2 treatment potently suppresses these outcomes

[57]. This is also the case when mice are treated with

IFNl2/3 neutralizing antibodies [58]. These data support
www.sciencedirect.com 
a model where IFNls confer initial antiviral protection

without provoking unnecessary inflammation, while type

I IFNs come into play as a second line of defense to

enhance antiviral responses at the expense of collateral

damage (Figure 2).

This model of IFNl action is consistent with the behavior

of IFNls in the gastrointestinal tract and may therefore

explain their broader role in antiviral defense. Indeed, in

the liver, IFNls are also important in providing protective

immunity against HBC and HCV infections as demon-

strated by the many IFNl gene polymorphisms linked to

improved spontaneous or treatment-induced viral clear-

ance, and the effectiveness of IFNl therapy [59]. Inter-

estingly, this is attributed to the ability of human hepa-

tocytes to preferentially generate and respond to IFNls
similarly to respiratory epithelial cells [60]. Moreover, in

the skin, IFNls are predominantly expressed over type I

IFNs and are associated with reduced incidence to infec-

tions [61].

IFNls in antibacterial and antifungal immunity
In addition to viruses, bacterial and fungal infections can

also trigger IFNl production. L. monocytogenes, S. enterica
and S. sonnei as well as several bacterial ligands induce

IFNls [7,9�], mainly in a MyD88-dependent manner [9�].
This is functionally important. in vitro, IFNls enhanced

epithelial barrier integrity, preventing bacterial dissemi-

nation [9�]. In vivo, in models of S. aureus or Pseudomonas
aeruginosa infection, IFNLR1�/� mice exhibited lower
Current Opinion in Immunology 2019, 56:67–75
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Figure 2
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Model of IFNl action. IFNls confer initial antiviral protection at anatomical barriers without provoking unnecessary inflammation. Type I IFNs come

up as a second line of defense, following escape from IFNl control, to enhance antiviral and immunoinflammatory responses, at the expense

though of collateral damage.
bacterial loads and less pathology, although inflammatory

cell infiltration was not affected [62]. Also, intranasal

infection of IFNLR1�/� mice with S. aureus led to sig-

nificantly increased bacterial clearance and, at the same

time, decreased proinflammatory cytokines including IL-

1b in the airways [63]. Interestingly, in this study IL-1b
production appeared to be regulated by proteases

released by neutrophils rather than NLRP3 and cap-

sase-1 activation. Moreover, in a model of invasive asper-

gillosis with Aspergillus fumigatus, IFNLR1�/�mice devel-

oped aggravated disease, with higher fungal loads in the

lungs and more severe fungal invasion [64��]. This was

largely due to IFNl-mediated STAT1 activation in neu-

trophils, that was shown to protect the host. Further

studies are therefore needed to shed light into the wider

role of IFNls in antimicrobial defenses beyond viral

infections.

IFNls in immune modulation and damage
control
In sharp contrast to type I IFNs, IFNls and their receptor

are not ubiquitously expressed in the immune system.

Rather, IFNls are produced by pDCs [10,11,30,35,36],

cDCs (DC1 [37] and DC2 [11,28��,36,38]), and mono-

cyte-derived DC [31,32,38,39] and macrophages

[34,38,40], as earlier discussed, while IFNLR1/IL10RB

is functional in neutrophils [27�,28��,29��], pDCs [11,30],

monocyte-derived DCs [31,32] and DC2 cells [33] but not

other leukocytes. IFNls therefore signal on a restricted set
Current Opinion in Immunology 2019, 56:67–75 
of leukocytes, exerting selective immune modulatory func-

tions which are only now starting to become understood.

A primary emerging activity of IFNls is the regulation of

innate immunity. Contrary to type I IFNs, IFNls sup-

press innate pro-inflammatory responses and limit the

host damaging effects associated with inflammation. This

is largely due to their selective action on neutrophils,

preventing their pro-inflammatory activation and func-

tions. Thus, in the context of influenza viral infection,

IFNls restrain the production of TNF, IL-1b and other

tissue destructive mediators from neutrophils, while

allowing effective antiviral responses to develop [28��].
Although it is unclear whether this is a direct effect, it

nevertheless shows that IFNls are critically involved in

keeping inflammation under control and limiting collat-

eral damage. In the context of chronic intestinal inflam-

mation, IFNls act directly on neutrophils to inhibit the

generation of ROS and their degranulation through a

process mediated by JAK2 [29��]. IFNls can also induce

additional beneficial effects by accelerating mucosal heal-

ing [65�]. Exogenous administration of recombinant

IFNls in experimental animal models with influenza

virus infection or colitis has further confirmed their regu-

latory and anti-inflammatory activity, and has highlighted

their therapeutic potential [29��,57]. Moreover, exoge-

nous administration of recombinant IFNls has shown

therapeutic potential in other diseases where IFNls may

not be produced naturally such as collagen-induced
www.sciencedirect.com
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arthritis [27�] and arterial thrombosis [66��]. In arthritis,

the efficacy of IFNl treatment was attributed to the

inhibitory effects of IFNls in neutrophil migration

[27�]. In arterial thrombosis, IFNl-mediated protection

was due to the suppressive effects of IFNls on neutro-

phil-extracellular traps (NETs) formation [66��]. This

anti-inflammatory or immune-modulatory behavior of

IFNls is reminiscent of the activity of IL-10 with which

IFNls share sequence homology and the IL10RB sub-

unit for signaling (Figure 3).

Another major activity of IFNls is the regulation of

adaptive immunity. IFNls signal on DC2 cells [31–33]

and pDCs [11,30], of both human and mouse origin, and

modulate their function. in vitro, IFNls enhance the

propensity of human monocyte-derived DCs to generate

Foxp3+ regulatory T cells [31,32]. in vivo, IFNls suppress

the ability of mouse DC2 cells to induce T helper 2 (Th2)

and Th17 differentiation, and enhance Th1 cell develop-

ment [33]. This is consistent with cell culture studies

using mouse DC2 and T cells [33], or human peripheral

blood mononuclear cells (PBMC) [67]. Interestingly, a

SNP in the Ifnl3 locus (rs8099917) is linked to higher

IFNl3 production and Th1 skewing following PBMC

stimulation with influenza virus [68]. A shift in IFNg
production from NK cells is also observed but this might

be indirect as neither NK cells [11,13] nor T cells [11,33]

seem to respond to IFNls. The Th1 skewing effect of

IFNls may be related to their capacity to increase the

expression of the Th1 polarizing cytokine IL-12 in a

context-dependent manner [33,69]. Noteworthy, cyto-

toxic T cell responses may also be affected by IFNls
as increased CD8+ T cell responses have been reported in

IFNLR1�/� mice following acute LCMV infection [70].
Figure 3
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Interestingly, in T cell-driven diseases in experimental

animals IFNls are therapeutically effective. In allergic

asthma, IFNls potently suppress the activation of Th2

and Th17 responses, and the development of immuno-

pathology [33]. In autoimmune arthritis, they also inhibit

the induction of Th17 and gd T cell responses and they

ameliorate disease [27�]. IFNls therefore appear to be

broadly protective, in both acute and chronic inflamma-

tory diseases, mediating immune modulatory actions

aiming at restoring immunological balance and limiting

direct tissue damage caused by the byproducts of host

defense (Figure 4).

Conclusions
Over the last few years IFNls have come out of the

shadow of type I IFNs. They have emerged as a front line

defense system mediating antiviral immunity at anatomi-

cal barriers such as the gastrointestinal and respiratory

tracts. They have also emerged as novel immune regula-

tory cytokines with a special duty in damage control that

act to maintain immunological balance and limit immu-

nopathology. This extends beyond infections as IFNls
limit inflammation and prevent host damage in diverse

other diseases including colitis, autoimmune arthritis and

allergic asthma.

Central to the unique biology of IFNls is their selective

action on neutrophils, preventing their pro-inflammatory

activation, inhibiting ROS production, degranulation and

NET formation, and down regulating their migratory

capacity. This is in sharp contrast to the pro-inflammatory

effects of type I IFNs, which instead activate neutrophils

and other leukocytes, and highlights the IL-10-like prop-

erties of IFNls that remain to be further investigated.
IL-10

FNLR1)

•

•

•

•

•

•

•

•

•

•

Multi ple  exon 
genestr ucture 

12% se quence
homol ogy

Uniq uereceptor  α- 
subunit  (IL10R1)

Does  not  tri gger  ISGF3
assembly  nor  ISGs

Direct in hibiti on of 
NF- κB and  cytokin es

Indu ced by diverse 
infla mmat ory sti muli

Shared receptor
β-subunit  (IL10R2)

Immunoregulatory
&host protecti ve

activity
ceptor 

s

y some
&non-
ne
s

Prod uced only  by 
leukocytes

Ineffecti ve  in trial s 
for  chroni c diseas es

Current Opinion in Immunology

type I IFNs and IL-10. Antiviral activity is shared with type I IFNs

10.
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Figure 4
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IFNls as dual function cytokines mediating antiviral activity and damage control. The schematic shows the unique and non-redundant roles of

IFNls in antiviral defense, and their immune regulatory actions mediating disease protection as emerging over the last years.
This may also explain the improved safety profile IFNls
exhibit in the clinic.

The dual antimicrobial and immune regulatory function

of IFNls makes them particularly attractive for the

treatment of infectious diseases or chronic disorders such

as asthma and colitis where infections can exacerbate
Current Opinion in Immunology 2019, 56:67–75 
their severity, as IFNls can selectively up regulate anti-

viral responses while limiting host damaging inflamma-

tion and symptoms. It also advocates for the broader

evaluation of IFNls in the fine-tuning of immunity in

diseases which involve neutrophilic inflammation and

alterations of the Th1/Th2/Th7 balance. Further studies

towards these directions are therefore eagerly awaited.
www.sciencedirect.com
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