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Abstract

Objective: To test the hypothesis that HbA1c variability, as measured by standard deviation 

(SD), is associated with increased risk for incident microalbuminuria and persistent 

microalbuminuria in pediatric type 1 diabetes (T1D).

Methods: A retrospective analysis using data from electronic health records was performed on 

1195 patients from a pediatric diabetes clinic network in the Midwest USA from 1993 to 2009 

with ≥1 yr of T1D, ≥4 total HbA1c values, ≥2 HbA1c values/yr, ≥1 urine microalbumin. 

Microalbuminuria, the main outcome was defined as albumin excretion rate ≥20 mcg/min or 2 of 3 

consecutive urine microalbumin/creatinine ≥30 mg/gm. Patients who had persistently high 

microalbumin or who were treated with an angiotensin-converting-enzyme inhibitor within 1 yr 

were considered to have persistent microalbuminuria. Sex, race, age, diagnosis age, and duration 

were covariates.
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Results: Median numbers of per-patient HbA1c and microalbumin results were 14 and 3, 

respectively. Median intrapersonal mean HbA1c and SD were 8.62% (70.72 mol/mol) and 1.47% 

(16.07 mmol/mol), respectively. The median interquartile range (IQR) of diagnosis age was 9.4 yr 

(6.26–12.02) and diabetes duration was 4.97 yr (2.93–7.64). A total of 172 patients (14.4%) 

developed microalbuminuria; 55 (4.6%) had persistent microalbuminuria. Patients with higher SD 

of HbA1c had shorter time to microalbuminuria. In time-dependent Cox Proportional Hazard 

models, updated SD of HbA1c was significantly associated with microalbuminuria [univariate 

hazard ratio (HR) 1.48 (1.25–1.76); multivariable HR 1.28 (1.04–1.58)], whereas updated mean 

HbA1c was not [univariate HR 1.08 (0.97–1.22); multivariable HR 1.05 (0.92–1.2)]. Patients with 

persistent microalbuminuria had similar HRs.

Conclusions: HbA1c variability is independently associated with development of 

microalbuminuria in children with T1D, highlighting the importance of maintaining stable 

glycemic control in pediatric patients.
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Children with type-1 diabetes mellitus (T1D) experience significant risk for micro- and 

macrovascular complications (1–4). Mean glycemic control (HbA1c) is a major determinant 

of outcomes, but explains only 11% of the population variation in risk (5). Patients with the 

same HbA1c can have significantly divergent risk for complication (6). Furthermore, 

evidence suggests that poor glucose control early in the course of diabetes has long-lasting 

effects on the risk for diabetes-related complications (7–9). Incidence of pediatric T1D is 

increasing worldwide (10–14), making its sequelae a significant public health concern. 

Advances in insulin pharmacotherapy, insulin delivery technology, and blood glucose 

monitoring have led to improvements in glycemic control overall. However, many patients 

still develop long-term complications (15, 16). Therefore, there is a critical need to identify 

additional risk factors for diabetes-related complications, so that providers can better 

identify those patients at high risk and offer targeted intensive interventions before 

significant damage occurs.

Thus, we sought to determine whether variability in chronic glycemic control, as measured 

by HbA1c variability, is independently associated with microalbuminuria in a large 

population of children with T1D. Finding an association between greater HbA1c variability 

and early diabetic nephropathy that is independent of mean HbA1c can identify an 

additional target for therapy; namely, more stable glycemic control over time.

Methods

Data source

Data were extracted from the Children’s Mercy database on Type One Diabetes in Pediatrics 

(the ‘Mercy on TODP’ database) after getting approval from the institutional review board. 

The Mercy on TODP database is a longitudinal database containing demographic, clinical, 

and laboratory data extracted from the electronic health records of patients with T1D cared 
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for since 1 June 1993 at the Children’s Mercy Hospital (Kansas City, MO, USA) at its main 

location, three metropolitan branches, three satellite cities, and six rural locations.

Inclusion/exclusion criteria for data source.—All patients diagnosed with T1D who 

had at least one appointment in the diabetes clinic were included. Patients with other types 

of diabetes (such as type 2, monogenic, cystic-fibrosis-related, or iatrogenic diabetes) or 

with other co-morbid diagnoses that might impact their diabetes care or complications (e.g., 

sickle cell disease, leukemia, congenital syndromes and heart disease) were excluded. In 

total, 3423 individuals were included in the database. Review of a random sample of 100 

charts indicated 100% accuracy of all extracted data.

Variable definitions for data source.

Age at T1D diagnosis.: Date of diagnosis was extracted from the clinic notes and used to 

calculate age at diagnosis to the nearest one-tenth year. When not documented, date of 

diagnosis was determined as the first date at which (1) the patient met American Diabetes 

Association (ADA) criteria for a diagnosis of diabetes, and (2) C peptide and/or auto-

antibody screening indicated T1D.

Demographic characteristics.: Sex (male/female) and race/ethnicity (Caucasian, African-

American, Hispanic, Asian, American-Indian or Alaska Native, Native Hawaiian or Pacific 

Islander, multi-racial, or other) were self-reported by the patient or family at the first 

encounter with the institution.

Hemoglobin A1c (HbA1c).: HbA1c was measured in the CMH endocrine laboratory using 

one of the following assays: QuikSep manual ion exchange column (1980–1999), BioRad-

diaStat HPLC (1999–2001), Biorad-Variant-II HPLC (2001–2004), Primus-PDQ Boronate 

Affinity (2004–2008), or Tosoh-G8 HPLC (2008–present). HbA1c assays used beyond 1999 

were all aligned to Diabetes Control and Complications Trial (DCCT) standards. Some of 

the measures obtained after 2009 were performed using In2it point-of-care instruments 

(Boronate Affinity, contemporary with the Tosh-G8 HPLC) when patients were seen in 

certain off-campus locations. Results were reported as percentages (%; NGSP standard) and 

SI units (mmol/mol; IFCC standard). The standard of care was to obtain HbA1c at every 

routine clinic appointment, typically every 3 months.

Urine microalbumin.: Urine microalbumin excretion was assessed using spot urine 

albumin/creatinine ratio (ACR) or timed urine albumin-excretion rate (AER), reported in 

mg/gm of creatinine or mcg/min, respectively. Microalbuminuria was defined as either a 

single abnormal AER ≥20 mcg/min, or abnormal ACR ≥30 mg/gm in two out of three 

consecutive samples. When an abnormal ACR or AER was followed by another abnormal 

result of either type, the patient was defined to have microalbuminuria at the time of the first 

abnormal result. Patients were considered to have persistent microalbuminuria if 

microalbumin levels remained elevated on subsequent collections for 1 yr, or if they were 

started on an angiotensin-converting-enzyme inhibitor within 1 yr of microalbuminuria.
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Cohort selection for this study

From the 3423 patients in the database, patients were excluded if they: had an unknown age 

at diagnosis (n = 438), did not have at least one documented urine microalbumin result (n = 

900), did not have at least four HbA1c measures (n = 488), did not have at least two HbA1c 

measures/yr (n = 391), or had T1D duration <1 yr (n = 11). Using these criteria, 1195 

subjects qualified for this study.

Statistical methods

Intrapersonal mean of HbA1c levels (mean-A1c) were calculated using all HbA1c results 

between diagnosis and either the detection of microalbuminuria (i.e., the ‘event’) or 

censoring at the end of the observation period. To measure HbA1c variability, standard 

deviation of HbA1c (SD-A1c) was calculated similarly.

All data are expressed as mean ± SD or median interquartile range (IQR). Characteristics of 

patients with and without microalbuminuria were compared using chi-square test and t-tests 

for categorical and continuous variables, respectively. Patients were stratified into groups 

based on their mean-A1c and SD-A1c. Kaplan–Meier survival curves were generated for 

each stratum. Strata based solely on SD-A1c included those ≥50th, 75th and 90th 

percentiles, and those within the 50–74th and 75–89th percentiles. Strata based on both 

mean-A1c and SD-A1c included low mean/low SD, high mean/low SD, high mean/low SD, 

and high mean/high SD, with ≥50th percentile indicating ‘high’ for each stratum. The log-

rank test was used to compare survival curves across strata.

Furthermore, Cox proportional hazard (CPH) analysis was used to assess the association 

between HbA1c variability and microalbuminuria using two models: (i) Primary (Time-
Dependent-Variable) model – where for every patient, a series of updated mean-A1c and 

SD-A1c were calculated annually from T1D diagnosis until the event or censoring using all 

HbA1c measures within each year. (ii) Secondary (Fixed-Variable) model – where mean-

A1c and SD-A1c were calculated using all HbA1c values from diagnosis until event or 

censoring. The former approach provides a more accurate assessment of glycemic control 

and variability over time. To complete the CPH time-dependent-variable analyses, three 

models were generated: Model 1A – with mean-A1c alone; Model 1B – with SD-A1c alone; 

and Model 1C – multivariable model with both mean-A1c and SD-A1c included, as well the 

covariates: sex, race/ethnicity, and age at T1D diagnosis. Similarly, for the CPH fixed-

variable analyses, three such models were developed: Model 2A – with mean-A1c alone; 

Model 2B – with SD-A1c alone; and Model 2C – a multivariable model with mean-A1c and 

SD-A1c, along with covariates.

All the analyses were performed using SAS 9.2 (Cary, NC, USA) and SPSS 20. Statistical 

significance was set at the 95% confidence level (p < 0.05).
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Results

Cohort characteristics

The study cohort included 1195 patients (53% male, 88% Caucasian, 7.6% African-

American). Of these, 83% (n = 997) had an HbA1c before initiation of insulin therapy 

indicating that the majority of patients were either diagnosed with T1D in our center or 

referred shortly after diagnosis. In addition, 50% of the cohort had 14 or more HbA1c values 

(IQR: 8–21) and 50% had at least three urine microalbumin measures (IQR: 2–5) before 

developing microalbuminuria or being censored. The population median (IQR) for mean-

A1c was 8.62% (8.05–9.41%) [70.72 (64.49–79.35)mmol/mol]; and that for SD–A1c was 

1.47% (1.03–2.06%) [16.07 (11.26–22.52) mmol/mol]. One hundred seventy-two patients 

(14.4%) developed microalbuminuria. When patients with microalbuminuria were compared 

to those without microalbuminuria, there was no significant difference between the two 

groups in their mean values for age at T1D diagnosis (9.2 vs. 9.0 yr), mean-A1c (8.91 vs. 

8.83%) (73.89 vs. 73.01 mmol/mol) and SD-A1c (1.72 vs. 1.66%) (18.80 vs. 18.14 mmol/

mol) (p > 0.05 for all). In addition, when comparing chronological ages and T1D duration at 

the last microalbumin measure, patients with microalbuminuria were younger (13.8 vs. 14.9 

yr, p = 0.0002) and had a shorter duration of diabetes (4.6 vs. 5.9 yr, p < 0.0001). A 

summary of patient characteristics and data quality measures is provided in Table 1.

Timing of microalbuminuria onset

In order to analyze the association between HbA1c variability and microalbuminuria, we 

generated survival curves and CPH models.

Survival curves stratified by SD-A1c level.—The cohort was stratified on 

intrapersonal SD-A1c to generate survival curves for SD-A1c above/below 1.47% (16.07 

mmol/mol) (50th percentile) (Fig. 1). As shown in Fig. 1, patients with SD-A1c above 

1.47% (16.07 mmol/mol) developed microalbuminuria earlier when compared to those with 

SD-A1c below that median. Among patients who developed microalbuminuria (n = 172), it 

is notable that 25% of patients with SD-A1c > 90th percentile had microalbuminuria within 

1.2 yr and 50% within 1.6 yr of T1D diagnosis. Among patients with SD-A1c at 75–90th 

percentile, 25% had microalbuminuria within 2 yr and 50% within 2.4 yr of T1D diagnosis. 

In contrast, median (IQR) for time to microalbuminuria in patients with SD-A1c <50th 

percentile and between 50th and 75th percentile were 5.3 (4–7.8) yr and 3.2 (2.1–5.4) yr, 

respectively.

Survival curves stratified by mean-A1c and SD-A1c.—In order to compare and 

contrast the effects of mean-A1c and SD-A1c on microalbuminuria, we stratified the study 

cohort into four groups using the median mean-A1c and SD-A1c as cutoffs: (i) low 

mean/low SD; (ii) high mean/low SD; (iii) low mean/high SD; (iv) high mean/high SD (Fig. 

2). Mean-A1c levels for both the low mean groups were 7.9 and 7.9% (62.85 and 62.85 

mmol/mol), respectively; whereas mean-A1c levels for the high mean groups were 9.3 and 

10% (78.15 and 85.8 mmol/mol) for low SD and high SD groups, respectively. Patients with 

high SD-A1c developed microalbuminuria more frequently (Fig. 2A) and almost twice as 
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fast as those with low SD-A1c (Fig. 2B). In contrast, mean-A1c appeared to show minimal 

or no association with time to microalbuminuria.

CPH models.—Multivariable Cox models were used to define the hazard ratios (HRs) for 

every 1U increase in mean-A1c and SD-A1c. Using these models, in addition to comparing 

all patients who developed microalbuminuria (n = 172) with those who did not develop 

microalbuminuria (n = 1023), we also ran analyses to compare those patients who developed 

persistent microalbuminuria (n = 55) with those who did not develop microalbuminuria (n = 

1023).

Time-dependent-variable CPH models.—Because mean-A1c and SD-A1c can vary 

from quarter to quarter, we developed time-dependent CPH models (Models 1A, 1B, and 

1C) as described earlier. Mean-A1c was not significantly associated with time to 

microalbuminuria, with HR of 1.08 (0.97–1.22), p = 0.17 (Model 1A, Table 2). On the other 

hand, the SD-A1c was significantly associated with time to microalbuminuria with HR of 

1.48 (1.25–1.76), p < 0.0001 (Model 1B). In the multivariable analysis (Model 1C), mean-

A1c remained insignificant with HR 1.05 (0.92–1.2), p = 0.44, whereas SD-A1c continued 

to be significant with HR of 1.28 (1.04–1.58), p = 0.02. Similar results were obtained when 

we compared individuals with persistent microalbuminuria to those with without 

microalbuminuria (Table 3).

Fixed-variable CPH models.—We also developed three CPH models using the overall-

fixed Mean-A1c and SD-A1c calculated for each patient by including all available HbA1c 

values before the event or censoring (Models 2A, 2B, and 2C). Mean-A1c was insignificant 

in Model 2A with a HR of 1.02 (0.9–1.15), p = 0.82; whereas, in Model 2B, SD-A1c was 

significantly associated with time to microalbuminuria with HR of 1.64 (1.41–1.91), p < 

0.0001 as shown in Table 2. In the multivariable model (Model 2C), mean-A1c remained 

insignificant [HR of 0.92 (0.8–1.06), p = 0.23]; whereas, SD-A1c continued to be significant 

[HR of 1.6 (1.3–1.97), p < 0.0001]. Similar results were obtained when we compared 

patients with persistent microalbuminuria to those without microalbuminuria (Table 3).

Among covariates, age at T1D diagnosis was significantly associated with time to 

microalbuminuria development (Table 2; p < 0.0001). African-American race was found to 

be associated with slower progression to microalbuminuria compared to non-Hispanic white 

race (p = 0.037 and p = 0.049, respectively; Table 2, models 1C and 2C). There were no 

differences in time to microalbuminuria based on sex, and no differences between other race/

ethnicity groups and non-Hispanic whites.

Discussion

Poor glycemic control is known to be associated with T1D complications risk; however, we 

found that mean-A1c was not independently associated with microalbuminuria after 

adjusting for variability in HbA1c. In contrast, HbA1c variability was independently 

associated with the time to microalbuminuria onset. These findings were unchanged even 

when we analyzed only those patients who developed persistent microalbuminuria against 

those who did not develop microalbuminuria. In addition, we found that non-Hispanic white 
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patients exhibited higher risk than African-American patients, suggesting a possible 

underlying genetic or physiologic predisposition to microalbuminuria. Finally, we validated 

a previous study (17) showing that age at T1D diagnosis is associated with the risk of 

developing microalbuminuria, with patients diagnosed at older ages experiencing a greater 

risk than younger patients.

Glycemic variability can be characterized as either short-term (intra- and inter-day blood 

glucose variability) (18, 19) or long-term (HbA1c variability) (20, 21). While previous 

studies have shown that acute hyperglycemia and daily glycemic variability associate with 

biomarkers of vascular oxidative stress and inflammation (22–25), there are none that show 

a relationship between daily glycemic variability and the development of diabetes 

microvascular complications. Our study shows a significant association between HbA1c 

variability and the rate of development of microalbuminuria during the first two decades 

after diagnosis of childhood-onset T1D. This work adds to the current body of evidence that 

long-term glycemic variability associates with risk for microvascular complications in 

patients with T1D. Previously, two studies conducted in primarily adult populations with 

T1D identified an association between HbA1c variability and nephropathy (20, 21). In the 

DCCT cohort HbA1c variability was significantly associated with time to development of 

microalbuminuria, nephropathy and retinopathy, independent of the mean-A1c (20). 

Furthermore, HbA1c variability was associated with time to microalbuminuria, progression 

of renal disease and incident cardiovascular events in T1D patients enrolled in the 

observational Finnish Diabetic Nephropathy study (FinnDiaNe) (21).

In a UK registry-based study which included pediatric patients, the authors identified a 

significant association between SD-A1c and the development of microalbuminuria (26). 

However, they additionally noted an association between mean-A1c and the risk for 

microalbuminuria, which was not observed in our study. These disparate findings may be 

explained by the fact that the UK study included only annual HbA1c measures, with 50% of 

patients having four or fewer total HbA1c results. In contrast, our study leverages denser 

longitudinal HbA1c data. Also our study is enhanced by the development of time-dependent 

models in which updated mean-A1c and SD-A1c were calculated annually. Several 

differences in population characteristics may also explain the different findings. First, the 

median (IQR) for T1D duration for our cohort was shorter at 4.97 (2.94–7.64) yr compared 

to 8.6 (5.6–11.6) yr for the UK-based study. Second, mean-A1c for this cohort (8.84%) 

(73.12 mmol/mol) was significantly lower than the mean-A1c for the UK-based cohort 

(9.5%) (80.34 mmol/mol). Finally, mean-A1c and SD-A1c were not significantly different 

between patients with and without microalbuminuria in this study [8.9 vs. 8.8% (73.78 vs. 

72.68 mmol/mol) and 1.72 vs. 1.66% (18.80 vs. 18.14 mmol/mol), respectively]. In contrast, 

patients with microalbuminuria in the UK study exhibited higher mean-A1c and SD-A1c 

compared to those without microalbuminuria [10.4 vs. 9.4% (90.17 vs. 79.24 mmol/mol) 

and 1.16 vs. 0.86% (12.68 vs. 9.40 mmol/mol), respectively].

The finding that mean-A1c is associated with neither the risk for, nor the time to 

development of, microalbuminuria in our cohort is novel and suggests that the influences of 

glycemic risk factors for diabetes-related complications might be impacted by their temporal 

relationship to ontogeny. Alternatively, glycemic risk factors could differentially influence 
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various outcomes, with fluctuating glycemic control exhibiting a greater influence on the 

rate of development of early-stage nephropathy and mean glycemic control exerting a 

dominant influence on the rate of development of later-stage nephropathy.

The results of this study are clinically important. If validated in prospective studies, the next 

important step is to evaluate whether interventions that cause reductions in HbA1c 

variability can decrease risk for microalbuminuria. Patients with microalbuminuria are at 

increased risk for developing progressive diabetic nephropathy and chronic kidney disease 

(27). Furthermore, the FinnDiaNe study and Pittsburgh Epidemiology of Diabetes 

Complications study revealed that the presence and severity of diabetic kidney disease in 

patients with T1D increases their all-cause mortality (28, 29). Recent publications have 

noted that, in Swedish (30), Scottish (31) and North-American (32) cohorts, patients with 

T1D have increased risk for all-cause mortality and premature cardiovascular-related deaths; 

presence of renal disease further increases these mortality risks. Hence efforts to minimize 

the onset and progression of diabetic nephropathy will be vital to decreasing the long-term 

morbidity and mortality for patients with T1D.

A significant strength of our study is the large size of the pediatric cohort, the majority of 

whom had been followed since T1D diagnosis, with longitudinally dense HbA1c and urine 

microalbumin data. Other strengths include robust statistical analyses that include time-

dependent models evaluating mean-A1c/SD-A1c series as continuous variables and 

stratification of the cohort into different groups based on both their mean-A1c and SD-A1c. 

Limitations of this study include using data from a single network of clinical centers in a 

retrospective study; retrospective data collection has the potential to introduce bias into an 

investigation. In addition, because the study uses routine clinical care data, we cannot 

control for various assay methods used for HbA1c, although all assay methods were aligned 

to DCCT standards starting in 1999. Similarly, assays for urine microalbumin and creatinine 

have changed over time and the authors were unable to control for assay changes 

longitudinally; if laboratories in the future report the specific assay utilized with each result, 

health outcomes studies utilizing electronic health record data would benefit significantly. 

This investigation is also limited by the lack of availability of measures of blood pressure, 

body mass index (BMI), and insulin sensitivity (e.g., waist circumference, waist-to-hip ratio, 

estimated insulin sensitivity, HDL/TGLC), which each may influence risk for diabetes-

related complications. Finally, this study is limited by its focus on incident microalbuminuria 

and persistent microalbuminuria as outcomes; recent studies have suggested that the 

occurrence of regression to normoalbuminuria in some patients limits the utility of 

microalbuminuria as a marker of nephropathy (33). Others have suggested that changes in 

estimated glomerular filtration rate (GFR) and the presence of incident renal hyperfiltration 

represent better surrogate outcomes for incident early nephropathy in pediatric diabetes (34). 

In fact, the ADA has recently recommended the routine measurement of eGFR in pediatric 

patients with T1D (35).

This study underscores that children and adolescents with T1D should be strongly 

encouraged to have good and stable glycemic control during the first decade after diagnosis 

of T1D to minimize their risk for developing microalbuminuria. Interventions that 

specifically impact the degree of HbA1c variability should be developed and tested. Because 

Raman et al. Page 8

Pediatr Diabetes. Author manuscript; available in PMC 2019 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HbA1c is obtained quarterly in these patients, using HbA1c variability as a biomarker for 

long-term glycemic variability seems reasonable; if validated, HbA1c variability could 

easily be calculated and reported in electronic health records. Additionally, the relationship 

between daily glycemic variability and HbA1c variability remains undefined. Further studies 

are needed to evaluate how HbA1c variability can be used to risk-stratify pediatric patients 

with T1D and to evaluate the relationship between HbA1c variability and both intra- and 

inter-day glycemic variability. Finally, future investigations designed to evaluate HbA1c 

variability as a risk factor for incident early-stage nephropathy should include eGFR-derived 

measures as outcome variables.
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Fig. 1. 
Survival curves for microalbuminuria based on standard deviation (SD)-A1c above/below 

1.47% (16.07 mmol/mol) (50th percentile).
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Fig. 2. 
Comparison among subjects stratified by their mean-A1c and standard deviation (SD)-A1c. 

Low mean: mean-A1c <50th percentile; high mean: mean-A1c ≥ 50th percentile. Low SD: 

SD-A1c <50th percentile; High SD: SD-A1c ≥ 50th percentile. (A) Survival curves for 

microalbuminuria (n = 1195). (B) Box plots showing time to microalbuminuria (MAU) in 

patients who developed MAU (n = 172). Time to MAU differed between patients with low 

SD (box plots labeled A) vs. high SD (box plots labeled B); p < 0.002 for all pair-wise 

comparisons of box plots A vs. box plots B. Open circles represent outliers.
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