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Abstract

Mounting evidence suggests that Type 3 Secretions Systems (T3SS) are widespread among Vibrio 
species, and are present in strains isolated from diverse sources such as human clinical infections, 

environmental reservoirs, and diseased marine life. Experiments evaluating V. parahaemolyticus 
and V. cholerae T3SS mediated virulence suggest that Vibrio T3SS pathogenicity islands have a 

tripartite composition. A conserved “core” region encodes functions essential for colonization and 

disease in vivo, including modulation of innate immune signaling pathways and actin dynamics, 

whereas regions flanking core sequences are variable among strains and encode effector proteins 

performing a diverse array of activities. Characterizing novel functions associated with Vibrio-

specific effectors is therefore essential for understanding how vibrios employ T3SS mechanisms to 

cause disease in a broad range of hosts and how T3SS island composition potentially defines 

species specific disease.

INTRODUCTION

Vibrio T3SS identification.

Despite widespread identification in many bacterial genera that began in the mid-1980’s 

with studies on pathogenic Yersinia species, Type 3 Secretion Systems (T3SSs) were not 

recognized as virulence mechanisms in pathogenic Vibrio species until the completed 

genome sequence of an O3:K6 serotype V. parahaemolyticus strain, RIMD 2210633, was 

reported in 2003 [1]. Rapid identification of T3SSs in other Vibrio species followed, and in 

2005, genomic sequencing identified the first V. cholerae T3SS in AM-19226, a clinically 

isolated non-O1/non-O139 serogroup, cholera toxin negative strain that causes non-epidemic 

cholera [2]. More recently, molecular methods combined with annotation of genomic 

sequence data expanded the list of T3SS-positive Vibrio species [3-10]. T3SS association 

with pathogenic Vibrio species is easily explained within the context of a virulence 
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mechanism, but knowing that Vibrio species often interact with multiple hosts (and not 

always as pathogens) raises the question of whether T3SSs can promote a more symbiotic 

relationship or alternatively, an advantage in the environmental niche. In either case, 

researchers now face the challenge of identifying and characterizing novel, often Vibrio-

specific effector proteins in an effort to mechanistically understand T3SS mediated 

interactions with a wide variety of eukaryotic hosts.

Two T3SSs.

Most Vibrio spp. encode one T3SS, but V. parahaemolyticus strains can carry one on each 

chromosome, respectively termed T3SS1 and T3SS2 [1]. T3SS1 and 2 gene organization 

and content differs; each T3SS is assembled from distinct proteins and functions 

independently [3]. T3SS1 is nearly ubiquitous among V. parahaemolyticus strains, is most 

similar to the Yersinia Ysc T3SS in sequence and synteny, and is associated with 

mammalian cell cytotoxicity in vitro [1]. Multiple lines of evidence support an ancestral 

origin, and Vibrio species pathogenic for non-human hosts (e.g. V. alginolyticus, V. 
campbellii, V. caribbenthicus, V. harveyi, and V. tubiashii) typically encode T3SS1 

[1,3,11,12].

In contrast, V. parahaemolyticus T3SS2 is encoded on a genomic pathogenicity island and 

appears restricted to pandemic O3:K6 serotype isolates and related, pathogenic serovariant 

strains. Historically, pathogenic strains were identified by a hemolytic property known as the 

Kanagawa phenomenon, encoded by tdh or trh genes. We now know that the tdh and trh loci 

are typically found within the T3SS2 genomic island, although the protein products are 

secreted by another mechanism and are not T3SS substrates [1,3,13].

A subset of V. cholerae non-O1/non-O139 serogroup strains, which can cause sporadic 

cholera but do not cause epidemic disease, encode T3SS2. The vast majority of T3SS-

positive strains lack the major, canonical virulence factors associated with epidemic strains 

(i.e. toxin co-regulated pilus and cholera toxin), employing the T3SS mediated pathogenic 

mechanisms instead [2,14-16]. For both V. cholerae and V. parahaemolyticus, experimental 

evidence using animal models of infection indicates that T3SS2 is required for colonization 

and disease [17-20].

V. mimicus and V. anguillarum strains pathogenic for humans can also encode a T3SS2 

[6,7]. Regarding other species, the use of increasingly sophisticated phylogenetic methods to 

redefine evolutionary relationships combined with our expanding knowledge of pangenomes 

results in a fluid understanding of pathogenic mechanisms associated with a particular 

species [10,21-23]. What follows next therefore summarizes our current knowledge of T3SS 

effector protein functions and species associations, based largely on experiments in V. 
parahaemolyticus and V. cholerae.

TYPE THREE SECRETION SYSTEM 1 (T3SS1)

Based on genetic content and organization, the ~40 kb V. parahaemolyticus T3SS1 locus is 

similar to that found in other Vibrio species. Effector proteins characterized thus far appear 

to functionally converge at the level of the host membrane, and in some cases, with multiple 
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activities attributed to single effectors. For example, VopQ (also known as VepA) reported 

activities include induction of autophagy in vitro, activation of the p38, JNK, and ERK 

Mitogen-Activated Protein Kinase (MAPK) pathways, and host cell lysosome rupture via 

interaction with the V0 domain of the V-ATPase that forms gated channels [24-26]. VopS 

encodes a bacterial phosphoinositide-binding (PIB) domain, and PIP2 ligand binding directs 

effector folding and targeting to the host plasma membrane where VopS mediates actin 

reorganization by AMPylation of Rho family GTPases, resulting in cytoskeletal collapse and 

cell rounding [27-29]. VopR also encodes a PIB domain and is localized to the plasma 

membrane, although its functions remain to be fully elucidated [29]. Interestingly, an 

effector encoded outside the T3SS1 island displays phosphatidylinositol phosphatase 

activity, leading Orth and colleagues to propose that other effector activities are influenced 

by depleting PIP2 from the host cell membrane [30,31].

Although primarily a pathogen of marine life, V. alginolyticus causes T3SS1 dependent 

cytotoxicity in both fish and mammalian cell lines [32,33]. Interestingly, apoptotic features 

were present in fish cell lines, whereas mammalian cells appeared to undergo autophagy. 

Two identified effectors, Val1686 and Val1680, are VopS and VopQ orthologues. Like VopS, 

Val1686 induces cell rounding, but is also sufficient to trigger apoptosis in infected fish 

cells. Unlike VopQ, Val1680 does not induce autophagy in fish cells, but it does contribute to 

T3SS-induced LDH release by an unidentified mechanism [34].

Speculation that T3SS1 is important for survival in the aquatic environment is supported by 

its presence in both environmental and clinical strains of V. parahaemolyticus and evidence 

indicating an ancestral origin, consistent with the theory proposed by Zhang et al. that 

T3SS1-mediated cytotoxicity provides a mechanism to supply nutrients in a nutrient-poor 

environmental reservoir [35]. Additionally, T3SS1 is not ubiquitously found in V. harveyi 
strains, and T3SS1 presence was not associated with pathogenicity in a shrimp model even 

though V. harveyi is documented as a significant marine pathogen, particularly of shrimp 

[10,36]. A definitive association between T3SS1-mediated phenotypes and human/marine-

life infection thus awaits additional molecular characterizations in model systems.

TYPE THREE SECRETION SYSTEM 2 (T3SS2)

T3SS2 clade classification and defining the core region.

The V. cholerae and V. parahaemolyticus T3SS2 gene clusters are more similar to each other 

in content and synteny than they are to T3SSs from other species. In addition, the Vibrio 
T3SS structural machinery components do not collectively align with a single T3SS family 

classification [37]. Rather, structural protein orthologues from each of the three families 

(Inv-Mxi-Spa, Ysc, and Ssa-Esc) are represented in the Vibrio gene clusters, although some 

components await definitive identification (Table 1). Given that the T3SS2 has been 

experimentally shown to function in both V. cholerae and V. parahaemolyticus, the 

prevailing opinion is that such proteins exist, but are encoded by novel sequences 

[2,3,17,23].

Despite lacking sequence similarity to other known T3SS hydrophilic translocators, VopW 

was experimentally identified by Zhou et al. as a third translocon component essential for 
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effector translocation in V. parahaemolyticus [38,39]. vopW sequences are present in all V. 
cholerae and V. parahaemolyticus T3SS2 islands, although gene location, number, and 

sequence identity are variable. Somewhat paradoxically, VopW was identified as a 

translocated effector protein in both V. parahaemolyticus and V. cholerae [38,40]. However, 

the collective results are consistent with reports from other systems of effector proteins 

having dual structural/effector function or T3SS-independent entry [41,42].

T3SS2 has been categorized into two clades, alpha (α) and beta (β), based on the sequences 

of genes encoding structural components and collective observations suggesting independent 

acquisition events by ancestral clones [23,43,44]. T3SS2 sequence comparisons that also 

combine genomic island organization indicate that V. parahaemolyticus and V. cholerae 
T3SS2α (e.g. RIMD 2210633 and AM-19226) are more similar to each other than T3SS2α 
and T3SS2β of the same species (e.g. V. cholerae strains AM-19226 and 1587). V. 
anguillarum and V. mimicus T3SS2 clade classifications have remained elusive, largely due 

to insufficient sequence data and/or hybrid characteristics [6].

Seven proteins identified as V. cholerae effectors are encoded within and immediately 

adjacent to the cluster of operons encoding structural apparatus proteins (Vops, Figure 1). 

Based on sequence similarity, synteny and/or evidence of translocation, each has a V. 
parahaemolyticus ortholog. For both species, experiments demonstrated that effectors 

encoded within the structural apparatus cluster are essential in vivo for colonization or 

disease related phenotypes (described below). Effector proteins are also encoded within 

mosaic “flanking regions” that lie 5’ and 3’ adjacent to the structural gene operon cluster, 

but associated phenotypes are less dramatic or remain unknown.

We thus conclude that a Vibrio-specific “core” region can be defined within the T3SS 

pathogenicity island, having the following properties: 1) gene content and position well 

conserved between species, 2) encoding proteins essential for T3SS structural apparatus 

function, 3) including effector functions necessary and potentially sufficient for pathogenic 

mechanisms, such as colonization, and 4) encoding transcriptional regulatory proteins 

required for T3SS expression. Based on such criteria, the core region (using strain 

AM-19226 as a reference) is bounded 5’ by vttRA, encoding one of two essential, ToxR-like 

transmembrane transcriptional regulators, and 3’ by vopF [45]. Shared features between V. 
cholerae and V. parahaemolyticus thus raises the interesting possibility of a common T3SS 

mediated mechanism of Vibrio colonization orchestrated by orthologous, core encoded 

effector proteins.

The clinical spectrum of Vibrio T3SS2-associated human disease

V. parahaemolyticus and V. cholerae primarily cause gastroenteritis, though clinical 

manifestations of disease are host variable and are also influenced by species and serogroup 

differences: V. parahaemolyticus typically induces an inflammatory diarrhea, whereas 

epidemic, O1/O139 serogroup V. cholerae infection is characterized by secretory diarrhea 

with no damage to the intestinal epithelium [46,47]. Infection by cholera toxin negative, 

non-O1/non-O139 serogroup V. cholerae strains is historically considered clinically 

indistinguishable from epidemic strains, but a subset of cases presents with a mild 

inflammatory component [47,48]. V. mimicus can cause acute gastroenteritis and otitis 
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media after exposure to seawater or contaminated seafood. V. anguillarum is largely a 

pathogen of crustaceans and bivalves, but along with V. hollisae, is associated with wound 

infections and can cause severe illness in immunocompromised individuals [21].

It is therefore interesting to note that the inflammatory component of Vibrio spp. associated 

gastroenteritis has been linked to T3SS2 presence and the causality borne out by 

experiments recapitulating disease using an orogastrically inoculated infant rabbit model 

[18]. The intestinal epithelium remains intact during infection by cholera toxin-positive O1 

serogroup strains, but infection by T3SS2α-positive strains results in both diarrhea and an 

altered epithelial cell architecture, with V. parahaemolyticus infection causing increased 

inflammation and disruption compared to less dramatic damage observed by T3SS-positive 

V. cholerae strain infection [18,49,50]. One interpretation of the differing T3SS-related 

pathologies is that common effector proteins and mechanisms are used to colonize and 

establish an infection, but that clinical variations result from a combination of host factors 

and species-specific effector proteins or effector alleles.

Core encoded effectors.

The prototype T3SS2α V. cholerae strain, AM-19226, encodes at least 13 translocated 

proteins. Seven are found within the core region of V. cholerae and are shared with V. 
parahaemolyticus (differing nomenclature is indicated in parentheses): VopZZ(VopZ), VopH, 

VopA, VopM (VopV), VopI, VopW, and VopF, (VopN/ VopL) (Figure 1) [40] (Dziejman 

laboratory, unpublished data). Variable amino acid sequence conservation (28-49% identity 

and 42-65% similarity) suggests that Vops have strain/species specific attributes while 

retaining structural conservation to carry out a subset of conserved functions. Whether all 

proteins detected as present in host cells and translocated in a T3SS-dependent manner 

function solely as effectors remains to be determined, since bioinformatic and experimental 

data suggest functions consistent with “missing” secretory apparatus components [19,51].

VopF/N/L all possess Wiscott-Aldrich homology 2 (WH2) domains, which promote 

mammalian cell actin rearrangement [17,52-55]. All three proteins nucleate actin in vitro, 

but the phenotypes associated with infection or transfection of mammalian cells differ in that 

VopF induces actin-rich protrusions, whereas VopN and VopL form actin stress fibers/non-

functional actin filaments. V. cholerae vopF is required for wild-type levels of colonization 

in the infant mouse model, consistent with a role for modulating host cell cytoskeletal 

dynamics during the early stages of infection. A recent report documented an association 

between VopL actin dysregulation and limited ROS production resulting from halted 

assembly of the NADPH oxidase complex at the plasma membrane during V. 
parahaemolyticus infection [56].

VopV/VopM also display actin reorganization activities, and are essential for in vivo 
colonization. Biophysical analyses and in vivo results demonstrate that VopV binds actin via 

~400bp repeated sequences and interacts with filamin via C-terminal sequences. The 

resulting cytoskeletal rearrangements play a critical role in brush border effacement and 

remodel the epithelial cell surface to promote attachment [57-59]. Thus, modulation of actin 

dynamics clearly plays an important role in Vibrio T3SS pathogenesis, although it is often 

challenging to determine the pathogenic outcome of cytoskeletal alterations and direct 
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activities vs. global effects resulting from rearrangements, and the precise mechanisms of 

bacterial adherence to host tissues remain unclear.

The V. parahaemolyticus VopZ effector protein (not to be confused with the V. cholerae 
effector VopZ, function unknown) is a bifunctional protein important for colonization and 

intestinal fluid accumulation in the infant rabbit model [60]. Investigators also identified N-

terminal domain sequences required for inhibiting TAK1 kinase activation and thus 

interfering with the NFκB and MAPK signaling pathways. The results thus suggest that like 

other T3SS positive bacteria, vibrios can modulate the immune response during infection. In 

V. cholerae strain AM-19226, the VopZZ effector (a VopZ homolog) is absolutely required 

to cause cytotoxicity in vitro and colonization in vivo, although molecular activities remain 

to be uncovered and are difficult to reliably predict based on sequence similarity (Dziejman 

laboratory, unpublished data).

Regions flanking the structural core are mosaic and encode diverse proteins.

Notable T3SS2 genomic island diversity in terms of size (~47kb-~100kb) and genetic 

content is conferred by 5’ and 3’ flanking regions, which carry sequence remnants consistent 

with lateral acquisition events [1,2]. The V. cholerae 5’ genomic island flanking sequences 

encode the VopE and VopX effector proteins [40]. Although VopE is not required for infant 

mouse colonization, a conserved Rho GTPase-activating domain is responsible for an 

activity that interferes with mitochondrial dynamics and innate immune responses that 

utilize mitochondria as a signaling platform [18,40,61-63]. VopX is dispensable for 

colonization in the infant mouse model, but mediates a cell growth defect in S. cerevisiae by 

interacting with components of the cell wall integrity (CWI) MAPK pathway, similar to 

results observed when VopE is expressed in yeast [64,65]. In place of VopX, some strains 

encode an effector similar to Shigella OspB, which has been shown to modulate the host 

inflammatory response [66].

The 5’ and 3’ flanking regions in V. parahaemolyticus are more variable and can encode 

VopO, VopT, VopC, VopA/P and/or VopG, although vopT is not present in T3SS2 stains. 

The unique VopO effector has no known homologues, but is critical for host cell stress fiber 

formation and epithelial barrier disruption in vitro [67]. VopT functions as an ADP-

ribosyltransferase that targets the mammalian small G protein, Ras, and plays a role in in 
vitro cytotoxicity of Caco2 and HCT-8 cells [68]. VopA/P (a YopJ homolog, independent 

from the VopA encoded within the core region) is an acetyltransferase that inactivates MAP 

Kinase proteins through acetylation [69,70]. Although widely distributed in V. cholerae and 

V. parahaemolyticus, VopG (function unknown) is not required for V. cholerae infant mouse 

colonization and combined with the variable location, led to exclusion as a core cluster 

effector.

The ability of V. parahaemolyticus strain RIMD 2210633 (T3SS2α) to invade HeLa and 

Caco2 cells as well as HeLa cell invasion by T3SS2β V. cholerae strain 1587 has been 

attributed to VopC effector protein activity [71-73]. Limited Vibrio species invasion was 

documented more than 30 years ago prior to T3SS identification, and although the T3SS 

status of all strains in earlier studies is unknown, it is interesting to note that strain 1587 was 

among the strains analyzed [74-78]. However, current data indicate that the presence of a 
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T3SS cannot be strictly correlated with an invasive phenotype, and VopC is not required for 

V. parahaemolyticus colonization or fluid accumulation in the infant rabbit model, nor is it 

present in V. cholerae T3SSα clade strains [73]. Furthermore, in vivo imaging data from 

infant rabbit model studies and recently published evidence of intracellular K+ levels in 

target cells serving as a signal to switch secretion from middle (translocator) to late 

(effector) substrates strongly support the predominantly extracellular nature of the vibrio-

host relationship during gastrointestinal infection [49,50,79].

The V. cholerae mosaic 3’ region (~6.4 kb-17 kb) is comprised of sequences that lie 

downstream of VopF/N/L. Most V. cholerae strains encode four effector proteins in the 3’ 

region: VopG , VopK , VopY , and VopZ (which is not a V. parahaemolyticus homolog 

despite the same name) [40], although VopY is annotated in a limited number of strains. In 

AM-19226, no 3’ encoded effector is required for infant mouse colonization, but in an infant 

rabbit model of infection, moderate reductions in the incidence and severity of diarrhea as 

well as a slight decrease in colonization is observed during infection with VopK or VopY 

deletion strains [18]. In yeast, VopK toxicity is dependent on residues in the C-terminal 

domain postulated to comprise an MCF1-SHE serine peptidase domain, although peptidase 

activity was not detected and motif conservation is imprecise [80].

Conclusions

As we continue to recognize and catalog both similarities and differences, we begin to 

uncover how Vibrios have diversified T3SS functions to suit specific roles, adaptations, or 

environments. Thus, it seems likely that effector proteins present in the conserved core 

region of all T3SS2 islands dictate common mechanisms employed during infection, such as 

colonization, whereas the mosaic regions encode unique sets of effector proteins that may 

dictate specific characteristics of infection. Although T3SS1 has been difficult to definitively 

associate with disease in non-human pathogens, discovering T3SS1 encoded effector 

associated phenotypes has provided insight into how Vibrio encoded effectors interface with 

host proteins and pathways. As both V. cholerae and V. parahaemolyticus are considered to 

be environmental organisms that can act as human pathogens, we must consider whether the 

T3SS2 provides beneficial phenotypes in the natural aquatic reservoir. Matz et al. 
demonstrated that T3SS2 promotes V. parahaemolyticus survival during co-culture with a 

marine flagellate, which correlates with flagellate killing, and ciliates and amoeba were also 

susceptible to T3SS2-mediated killing [81]. Further studies examining the molecular 

mechanisms of effector protein function will help to elucidate how these proteins 

collectively or individually contribute to bacterial fitness and survival in the environment. 

Indeed, many challenges remain: to identify which effectors are both necessary and 

sufficient for colonization, to identify effectors specific for activity in the human host during 

disease, to determine whether effectors are required for a particular niche or lifestyle, and to 

elucidate effector protein functions, be they unique or redundant within a strain or across 

T3SS clades and species.
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Highlights

• Vibrio spp. can encode one or two unique T3SSs

• An environmental role for the T3SS remains largely unknown

• Type 3 Secretion System 2 genomic islands in Vibrio species have conserved 

features

• Effectors encoded in the conserved, core gene cluster are critical for 

colonization

• Variable sequence flanking regions encoded effectors are clade and species-

specific
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Figure 1. 
Genetic organization of representative V. cholerae and V. parahaemolyticus T3SS2 island 

core regions. T3SS2αclade islands are depicted for V. cholerae strain AM-19226 and V. 
parahaemolyticus strain RIMD 2210633. T3SS2βclade islands are depicted for V. cholerae 
strain 1587 and V. parahaemolyticus strain TH3996. Black arrows designate structural 

apparatus genes, checkered arrows designate transcriptional regulator genes, diagonally 

lined arrows designate effector protein genes, vertically lined arrows designate chaperone 

genes, and gray arrows designate genes predicted to encode hypothetical or conserved 

hypothetical proteins. In addition to vopW position and copy number, differences include a 

variable length sequence between vcsR2 and vttRB, encoding one of two ToxR-like T3SS 

transcriptional regulators. vopW is denoted as an effector protein gene here, although its role 

as a structural component has been described and is discussed in the text. Double hatch lines 

indicate the end of a contig in the NCBI sequence. Bent arrows above the genes indicate 

putative promoters for the three major operons, named for the genes encoding the 11 

identified structural proteins in the core region: 1) vcsRTCNS2, 2) vcsVUQ2, and 3) vcsJ2, 
vspD, and vspB [45,82]. Transcriptional reporter fusion data combined with transcriptome 

analyses suggest the presence of a fourth promoter upstream of vspD (downstream of 

vopW). 5’ and 3’ genes and regulatory genes are labeled in all four strains for positional 

reference. Otherwise, only genes differing in position among the four strains are labeled.
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Table 1.

T3SS Nomenclature. Although a universal nomenclature remains elusive (even between Vibrio species), Table 

1 provides a reference to itemize T3SS components. Note that Vibrio ORFs encoding the needle filament, the 

needle length control protein, pilotin, and inner rod were not identified by initial sequence annotation and 

remain unidentified.

Predicted
Function

Yersinia spp. Salmonella SPI-1 V. parahaemolyticus
T3SS2

V. cholerae T3SS2

IM ring LcrD/YscV InvA VscV2 VcsV2

IM ring YscU SpaS VscU2 VcsU2

IM ring YscR InvL/SpaP VscR2 VcsR2

IM ring YscT InvN/SpaR VscT2 VcsT2

IM ring YscS SpaQ VscS2 VcsS2

IM ring YscD PrgH - VopH?

Periplasmic ring YscJ PrgK VscJ2 VcsJ2

Inner Rod YscI PrgJ - -

ATPase YscN InvC/SpaL VscN2 VcsN2

Cytoplasmic ring YscQ InvK/SpaO VscQ2 VcsQ2

Complex with ATPase YscL - - -

Secretin (OM ring) YscC MxiD VscC2 VcsC2

Pilotin YscW MxiM - -

Needle YscF PrgI - -

Needle length determinant YscP InvJ - -

Hydrophilic translocator LcrV SipD VopW VopW

Translocon YopB SipB VopB2 VspD2

Translocon YopD SipC VopD2 VspB2

SPI-1, Salmonella pathogenicity island 1; IM, inner membrane OM, outer membrane
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