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ABSTRACT: Hepatocellular organic anion transporting polypeptides (OATP1B1, OATP1B3, and OATP2B1) are important
for proper liver function and the regulation of the drug elimination process. Understanding their roles in different conditions of
liver toxicity and cancer requires an in-depth investigation of hepatic OATP−ligand interactions and selectivity. However, such
studies are impeded by the lack of crystal structures, the promiscuous nature of these transporters, and the limited availability of
reliable bioactivity data, which are spread over different data sources in the open domain. To this end, we integrated ligand
bioactivity data for hepatic OATPs from five open data sources (ChEMBL, the UCSF−FDA TransPortal database, DrugBank,
Metrabase, and IUPHAR) in a semiautomatic KNIME workflow. Highly curated data sets were analyzed with respect to
enriched scaffolds, and their activity profiles and interesting scaffold series providing indication for selective, dual-, or pan-
inhibitory activity toward hepatic OATPs could be extracted. In addition, a sequential binary modeling approach revealed
common and distinctive ligand features for inhibitory activity toward the individual transporters. The workflows designed for
integrating data from open sources, data curation, and subsequent substructure analyses are freely available and fully adaptable.
The new data sets for inhibitors and substrates of hepatic OATPs as well as the insights provided by the feature and
substructure analyses will guide future structure-based studies on hepatic OATP−ligand interactions and selectivity.

■ INTRODUCTION

Organic anion transporting polypeptides (OATPs) belong to
the SLCO (SLC21) superfamily of the solute carrier (SLC)
group of membrane transport proteins, which mediate the
transport of natural substrates as well as nutrients, clinically
relevant drugs, and other xenobiotics across cellular mem-
branes.1 Here we focus on OATP1B1, OATP1B3, and
OATP2B1 (encoded by the genes SLCO1B1, SLCO1B3,
and SLCO2B1, respectively), all of which are expressed at the
basolateral membrane of hepatocytes mediating the uptake of
endogenous compounds like bile salts and bilirubin into liver
cells. Therefore, hepatocellular OATPs are important for
proper liver function and physiological processes like the
enterohepatic circulation of bile salts2 and bilirubin metabo-
lism.3

Apart from the endogenous substrates (bile acids, steroid
conjugates, hormones, and linear and cyclic peptides), hepatic

OATPs accept a broad spectrum of structurally unrelated
pharmaceuticals, including antibiotics (e.g., rifampicin, benzyl-
penicillin, azithromycin, clarithromycin, and erythromycin4),
antivirals (e.g., telaprevir5), anticancer drugs (e.g., rapamycin,
SN-38, paclitaxel, docetaxel, and imatinib6), antifungals (e.g.,
caspofungin7), statins (e.g., pravastatin, rosuvastatin, and
cerivastatin8), antihistamines (e.g., fexofenadine9), antidia-
betics (e.g., repaglinide and rosiglitazone10), cardiac glycosides
(e.g., digoxin11), and anti-inflammatory drugs (e.g., diclofenac,
ibuprofen, and lumiracoxib12). Importantly, impairment of the
hepatic OATPs has been found to alter the pharmacokinetic
profiles of various compounds and drugs, which can lead to
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drug−drug interactions and consequently adverse drug
reactions and liver toxicity.13

The substrate and inhibitor profiles of the three hepatic
OATPs are partly overlapping, and some selective substrates
and inhibitors are known (e.g., pravastatin for OATP1B1 and
erlotinib for OATP2B1). Whereas hepatocytes are the
exclusive location for the expression of OATP1B1 and
OATP1B3, OATP2B1 is additionally expressed, e.g., in the
intestine, the mammary gland, and the placenta and at the
blood−brain barrier.14 Also, by sequence OATP2B1 is less
related to the hepatic members of the OATP1 family
(approximately 30%), and knowledge about this transporter
is the least among the three in terms of available ligand data
and biochemical studies. As our knowledge about all three
hepatic OATPs is increasing, we will learn more about their
interplay with respect to the delivery and disposition of
endogenous substances and drugs. These efforts are impeded
by the lack of crystal or NMR structures of any member of the
OATP family to be used as templates for structure-based
modeling as well as the limited availability of high-quality
bioactivity data, which are spread over different data sources in
the public domain. Furthermore, the promiscuous nature of
hepatic OATPs turns modeling efforts into even more
challenging tasks.
Several ligand-based computational studies have been

performed to predict hepatocellular OATP−ligand interac-
tions, with a predominance of studies focusing on inhibitors of
the structurally more closely related transporters OATP1B1
and OATP1B3 (approximately 80% sequence identity). For
example, de Bruyn et al.15 carried out in vitro high-throughput
screening of almost 2000 potential molecules against
OATP1B1 and OATP1B3, which identified 212 inhibitors
for OATP1B1 and 139 inhibitors for OATP1B3. Subsequently,
proteochemometric modeling for predicting OATP1B1/1B3
inhibitors was applied. In other studies, Bayesian models for
OATP1B1 and its mutated form OATP1B1*15 were
employed for inhibitor prediction,16 and Kotsampasakou et
al.17 used six in silico consensus classification models to predict
OATP1B1 and OATP1B3 inhibition. With respect to
OATP2B1, only very few computational studies are available
to date, likely because of the shortage of available data for this
member of the hepatic OATPs. Just recently, Giacomini and
co-workers addressed this shortcoming by combining bio-
chemical studies with in silico ligand-based and structure-based
approaches for the identification of novel OATP2B1
inhibitors.18

To the best of our knowledge, only one study is available
comparing the inhibitory activity profiles of 225 compounds
on these three hepatocellular OATPs. In that study 27, 9, and 3
specific inhibitors of OATP1B1 (e.g., amprenavir, indometha-
cin, rosiglitazone, and spironolactone), OATP2B1 (e.g.,
erlotinib, astemizole, piroxicam, and valproic acid), and
OATP1B3 (Hoechst 33342, mitoxantrone, and vincristine),
respectively, were identified.19

In the present work, we expanded on the investigations by
Karlgren et al.,19 including in our study different aspects related
to the chemical structures of the ligands contributing to
hepatic OATP−ligand interactions or selectivity. Since the
major aim of this study was to perform an in-depth
investigation of ligand availability, ligand profiles, and ligand
properties across the three related transporters, we started our
analysis with an extensive data curation exercise by integrating
ligand data from various open data sources via semiautomatic

KNIME20 workflows. By fusing ligand bioactivity data from
five different databases (ChEMBL,21 the UCSF−FDA Trans-
Portal database,22 DrugBank,23 Metrabase,24 and IUPHAR25),
we could increase the size of the data sets, their coverage of
chemical space, and the confidence in the data quality by
considering data from multiple independent bioactivity
measurements. In order to retrieve reliable annotations for
activity and selectivity, we filtered out ambiguous compounds
from multiple independent measurements. In order to be able
to systematically annotate a compound as either an inhibitor or
noninhibitor or as a substrate or nonsubstrate, we considered
the different bioactivity end points as well as different activity
annotations or activity comments available in the respective
databases. As a result, a total of six high-quality data sets
including selective, dual-selective, and pan-interacting ligands
for OATP1B1, OATP1B3, and OATP2B1 were retrieved,
treating inhibitors and substrates separately.
As we were interested in the structural determinants of

ligand selectivity, scaffold decomposition was applied, and
frequently occurring scaffolds per transporter were inspected
further. Here the focus was on the extraction of frameworks
with a higher prevalence for just one or two of the three
transporters. Scaffold series of this kind will be important
candidates for future detailed structure−activity relationship
(SAR) studies (including, e.g., molecular docking). We also
looked for pan-interacting scaffolds (e.g., the steroidal scaffold
and its conjugates derived from natural substrates). These
interesting cases can provide information on the influence of
side chains in conferring selectivity switches.
Finally, binary classification modeling by using hierarchical

levels for compound classification (sequential binary classi-
fication models) revealed important descriptors that might
trigger ligand activity or selectivity.
Here, we present an integrative, semiautomatic data mining

approach that combines data from various open data sources,
preprocesses and curates the data, and analyzes the chemical
compounds with respect to chemical features related to
transporter selectivity.
The novel high-quality data sets for OATP1B1, OATP1B3,

and OATP2B1 for (non)inhibitors and (non)substrates are
provided in the Supporting Information, and the data mining
workflows (which can be reused for ligand profiling on other
related targets of interest) are described. Insights provided by
the scaffold and substructure analyses as well as the binary
classification modeling will be helpful for subsequent ligand-
and structure-based in silico and in vitro studies investigating
novel tool compounds for hepatic OATPs.

■ MATERIALS AND METHODS
Fetching Data from Different Sources. KNIME

Analytics Platform20 (version 3.4) is an open-source solution
for the automatization of data integration and analysis that is
extensively used in the field of chemoinformatics. Here we
created (semi)automatic KNIME workflows for integrative
data mining from the open domain.
Bioactivity measurements and/or annotations (substrate,

nonsubstrate, inhibitor, noninhibitor) were fetched from five
different sources: ChEMBL,21 the UCSF−FDA TransPortal
database,22 DrugBank,23 Metrabase,24 and IUPHAR.25 In
addition, three novel OATP2B1 (non)inhibitors from Khuri
et al.18 as well as ten novel OATP1B1 and OATP1B3
(non)inhibitors from Kotsampasakou et al.17 were manually
added to the data set.
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Ligands from ChEMBL23 were collected via RESTful web
services by providing UniProt protein accession numbers for
OATP1B1 [Q9Y6L6], OATP1B3 [Q9NPD5], and OATP2B1
[O94956] to the “ChEMBLdb Connector” node. Data sets
retrieved from the UCSF−FDA TransPortal do not contain
any type of structural format. Therefore, an automated “name-
to-structure” mapping workflow was created to retrieve
InChIKeys according to generic names using PubChem’s
(https://pubchem.ncbi.nlm.nih.gov) PUG REST services.
URL links for retrieving compound identifiers (CIDs) from
PubChem were created by inserting the compound names as
variables. Records with CIDs were downloaded in XML file
format by the “GET Request” node, and the CIDs were
extracted (“XPath”). In the case of multiple CIDs for a single
entity, only the first one was retained. Unmapped compounds
were curated manually. Furthermore, InChIKeys for the
respective CIDs were retrieved (“GET Request” node) in
XML format and further extracted via an “XPath” query. The
quality of the bioactivity measurements from ChEMBL was
also assessed by the confidence score. This parameter is
included in all CHEMBL entries and evaluates the assay-to-
target relationships, ranging from 0 (i.e., so-far uncurated
entries) to 9 (i.e., high confidence level of the data). The
curated CHEMBL data in our data set have high confidence
scores of 9 (898 bioactivities) or 8 (2487 bioactivities), which
is a positive indicator of the quality of our curated data sets.
Data from DrugBank and IUPHAR were fetched from the

UniProt webpage by downloading the respective XML
(DrugBank) and JSON (IUPHAR) files for human
OATP1B1, OATP1B3, and OATP2B1. Compound identifiers,
compound names, and standard InChIKeys were further
extracted via the “XPath” or “JSON Path” node. Metrabase
data were fetched from its website using the “HttpRetriever”
and “HtmlParser” nodes. The HTML document was processed
via an “XPath” query to retrieve the compound names and the
associated activity values. InChIKeys for Metrabase com-
pounds were retrieved from PubChem using the same
procedure as for UCSF−FDA TransPortal data.
Data Preprocessing and Curation and Assignment of

Binary Activity Labels. For each data source, the ligand data
were split into two different tables to treat the substrates and
inhibitors separately. First, assignment was done on the basis of
the “Activity annotation” (substrate, nonsubstrate, inhibitor, or
noninhibitor), if available. If the manual activity annotation
was not available, the “bioactivity_type” was used as a criterion
for classification as either a substrate or inhibitor. For
substrates, data entries with either Km or EC50 end points
were considered. For inhibitors, data entries with Ki, IC50, and/
or percentage inhibition were considered. Potential data errors
(activity values greater than 108) were removed, as were data
points with missing activity values.
For all end points except percentage inhibition, activity units

other than nanomolar (e.g., micromolar) were converted into
nanomolar units and further into their negative logarithmic
molar values (−logActivity [molar]). The distribution of
bioactivity measurements for each transporter was analyzed
systematically in order to be able to rationally select a good
cutoff for the separation of actives from inactives. A compound
was defined as active if the bioactivity was <10 μM and inactive
if the bioactivity was greater than or equal to 10 μM. Data with
percentage inhibition values were inspected further since we
noted that some of them were rather measurements of uptake
stimulation. Data with such inverse expression of the inhibitory

effect (i.e., “% of control”) were converted into direct
inhibition values (100 − [% of control]). Values greater than
100% were interpreted as 100%.
Classification of percentage inhibition data into actives and

inactives was done on the basis of recommended thresholds
that were manually extracted from primary literature sources
(detailed information is available in Tables S1 and S2). If no
threshold was recommended but in one of the other sources
the same compound concentration was used, the threshold was
adopted accordingly. If such information was not available, the
data point was removed from the data set.
Percentage inhibition data with negative values (interpreted

as “stimulators of uptake”) were filtered out of the data set.
Retrieved chemical compounds were further standardized via
the Atkinson standardization protocol (available at https://
wwwdev.ebi.ac.uk/chembl/extra/francis/standardiser/). This
procedure includes breakage of covalent bonds between
oxygen/nitrogen atoms and metal atoms, charge neutralization,
application of structure normalization rules (e.g., proton shift
between heteroatoms, protonation of bicyclic heterocycles, or
correction of charge conjugation), and removal of salt/solvent.
All of the incorrectly standardized compounds were filtered out
(24 compounds). Compounds from various data sets were
subsequently grouped by their standardized InChIKeys. If
multiple measurements for a single compound/target pair were
available, the median activity label was retained. Compounds
with conflicting activity labels [median activity label (mean of
middle values) = 0.5] were sorted out. All of the compounds
with contradictory activity labels are listed in the Supporting
Information [Tables S3−S5 for (non)substrates and Tables
S6−S8 for (non)inhibitors]. A pivot table was generated by
grouping the data by compounds (standardized InChIKeys)
and targets. The applied data mining procedure is visually
depicted in Figure S1.

Scaffold Generation and Clustering. The three hepatic
OATPs were analyzed with respect to privileged scaffolds.
Murcko scaffolds26 were extracted via the “RDKit Find Murcko
Scaffolds” node in a targetwise manner. The obtained scaffolds
were used as queries for substructure mining against the sparse
data set for the respective target for the sake of enrichment of
existing clusters by additional molecules with analogous
scaffolds (since the addition of (a) ring(s) leads to a novel
Murcko scaffold). The relative occurrences of scaffolds in the
“active” and “inactive” activity classes were subsequently
calculated, and only scaffolds with higher prevalence in the
“active” class were kept. Generic scaffolds (i.e., those
composed of only one aromatic ring with zero or one
heteroatom) were filtered out. The Fisher exact test was
applied to keep only statistically significant scaffolds (p < 0.05,
unless otherwise stated). Hierarchical scaffold clustering
[“Hierarchical Clustering (DistMatrix)” node] was applied
for scaffolds that appeared in multiple data sets (for different
OATPs) by calculation of their maximum common sub-
structure as a measure of similarity. Scaffolds were assigned to
discrete clusters on the basis of their distance threshold (set to
0.7). Retrieved compounds belonging to a particular cluster
were selected in cases where they exerted the same
pharmacological profile as the parent scaffold. All inadequate
compounds were reassigned to a corresponding scaffold
cluster.
The same analysis was repeated with the dense data set

(compounds with measurements for all three hepatic OATPs)
in order to retrieve enriched scaffolds with a full pharmaco-
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logical profile. We also repeated the analysis with full dose−
response curve data only (excluding percentage inhibition
data) in order to be able to see whether major trends in
enriched scaffolds persist with data of higher confidence.
Side-Chain Analysis. The SMARTS pattern for steroidal

scaffolds was generated as a query for substructure mining with
the aim of detecting all steroid-associated compounds in the
sparse data set. The “A” ring (according to IUPAC
nomenclature) was defined to be less structurally restricted
in order to search for both sp3- and sp2-hybridized carbocycles
(estrone-like and cholate-like).
The “RDKit R Group Decomposition” node was used to

identify all distinct side chains across the given steroidal
scaffold of retrieved compounds. The frequencies of side-chain
attachment to different positions of steroidal scaffolds for the
different hepatic OATPs were subsequently calculated.
Semiautomatic KNIME Workflows. Workflows for

fetching data from different sources, scaffold clustering and
analysis, and side-chain analysis are available from myExperi-
ment (https://www.myexperiment.org/workflows/5097.html;
https://www.myexperiment.org/workflows/5098.html).
Data Sets for Binary Classification Models: Training

and Test Set Selection. Predictive binary classification
models were generated in KNIME in order to identify driving
factors for inhibitory activity (and eventually selectivity) in
terms of molecular features. Only data on transport inhibition
were considered, representing data sets more comprehensive
than that for substrates/nonsubstrates. Seventy percent of each
class was randomly selected to be used as the training set; the
remaining compounds were considered as the test set. The
compositions of the resulting data sets are shown in Table 1.

Descriptor Calculation and Feature Selection.
Twenty-six two-dimensional descriptors representing inter-
pretable physicochemical properties were calculated using the
“RDKit Descriptor Calculation node” in KNIME. The most
relevant descriptors for the respective data set were selected
using the “CfsSubsetEval” algorithm implemented in Weka27

with the “BestFirst” search method. Weka is an open-source
tool comprising different machine learning algorithms. The
exact list of descriptors is given in Tables S13−S16.
Machine Learning Models. Weka27 nodes implemented

in KNIME28 were used to train binary classification models for
inhibitors of OATP1B1, OATP1B3, and OATP2B1. “Random
tree”29,30 (with default parameters) was used as the base
classifier. In order to overcome the problem of data imbalance,
two different meta-classifiers were used: a cost-sensitive
classifier31 and stratified bagging.32,33 In case of the cost-

sensitive classifier, the misclassification was applied in
accordance with the imbalance ratio. For stratified bagging,
the number of bags was adjusted to 64, as a previous study33,34

suggested that generation of 64 models provides satisfactory
results without exponentially increasing the computational
cost.

Evaluation Method. All of the models were validated by
10-fold cross-validation and by their performances on the
external test sets. In both validation schemes, the confusion
matrix, sensitivity, specificity, balanced accuracy, and Matthews
correlation coefficient (MCC) are reported as measures of the
predictive power of the models.

Analyzing Important Molecular Features for OATP
Inhibition. The features appearing as most relevant for
hepatic OATP inhibition (as selected by the feature selection
methodology) were further analyzed by plotting the distribu-
tion of their values for inhibitors versus noninhibitors for the
three hepatic OATPs and the level 1 (general inhibitors) data
set. These analyses as well as the calculations of the statistical
significance of the pairwise comparisons of the distributions
using the Wilcoxon test were done in R version 1.0.143. The R
Project is a software for statistical analysis and data
visualization and is freely available at https://www.r-project.
org/.

■ RESULTS AND DISCUSSION
Semiautomatic Integration of Pharmacological Data

from Different Sources. Compound bioactivity data on
human OATP1B1, OATP1B3, and OATP2B1 were collected,
mapped, and integrated from five different data sources openly
available in the public domain: ChEMBL,21 Metrabase,24

DrugBank,23 the UCSF−FDA TransPortal database,22 and
IUPHAR/Guide to Pharmacology.25 The motivation for
curating data sets from such a large number of different
sources was the wish to enhance the particular data sets not
only in terms of their unique enumerated compounds but also
in terms of chemical space. Since the different data sources
focus on different aspects of bioactivity data (e.g., ChEMBL
contains literature data from primarily SAR series, Metrabase
has a focus on transporter substrates, and DrugBank contains a
collection of marketed or withdrawn drugs), it can be expected
that a greater variety in some molecular properties of
pharmaceutical interest (e.g., lipophilicity, molecular weight,
topological polar surface area, and the number of rotatable
bonds) would be introduced by integrating these various
sources. As shown in Figure S2, all four features are
significantly different in the other databases (DrugBank,
Metrabase, IUPHAR, TransPortal) compared with ChEMBL
(the Wilcoxon test revealed p < 0.05 in all pairwise
comparisons; data not shown), which illustrates the different
constitution of the five considered data sources.
A major goal in this study was the generation of the most

comprehensive data sets for hepatic OATPs available from the
open domain. These data sets should reflect both the state of
the art of available inhibitor and substrate compound spaces,
and there was a particular attempt to separate the two sets.
This objective was achieved by classifying compounds
according to different types of activity end points (Km and
EC50 for substrates; IC50, Ki, and percentage inhibition for
inhibitors) and activity annotations (substrate, nonsubstrate,
inhibitor, or noninhibitor). Interestingly, in terms of the
increase in the size of the data sets achieved by integrating data
from different sources, the situation looks strikingly different

Table 1. Compositions of the Data Sets Used in the
Sequential Binary Classification Modeling

transport inhibition data total inhibitor noninhibitor

all inhibitors + general noninhibitors
(training set)

324 262 62

all inhibitors + general noninhibitors (test
set)

139 113 26

OATP1B1 training set 937 232 705
OATP1B1 test set 403 100 303
OATP1B3 training set 875 139 736
OATP1B3 test set 375 59 316
OATP2B1 training set 161 43 118
OATP1B1 test set 69 19 50
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for inhibitor data sets versus substrate data sets for hepatic
OATPs (see Figure 1).
Whereas ChEMBL accounts for the largest collection of

compounds contributing to the inhibitor data set (1525 unique
compounds; 94% of all unique inhibitors/noninhibitors), for
substrates, Metrabase (70 unique compounds; 69% of all
unique substrates/nonsubstrates) and DrugBank (47 unique
compounds; 46%) were identified as the most useful resources.
Interestingly, just 25% (26 unique compounds) of all
substrates/nonsubstrates could be retrieved from ChEMBL,
which indeed justifies the integration of data from various
sources, especially when it comes to investigations on
transporter substrates.
Metrabase24 was originally created to serve as a large open

source for transporter ligand data with a special focus on
substrates. In total, 631 substrates, 183 nonsubstrates, 1256
inhibitors, and 370 noninhibitors of hepatic OATPs are
currently reported in Metrabase. Nevertheless, only a minority
of the data entries in Metrabase also report distinct bioactivity
values; instead, mostly the data are presented with activity
annotations only (e.g., substrate, nonsubstrate, inhibitor, or
noninhibitor). However, it is unclear how the data curators
decided upon the particular annotations in certain cases. To
give an example, primovist was defined as an OATP1B3
substrate, having Km = 4.1 mM.35 On the other hand,
clarithromycin was classified as an OATP1B3 nonsubstrate on
the basis of its reported Km value of 1 μM.36 In order to further
assess the confidence of Metrabase entries, activity annotations
from Metrabase were compared with annotations that were
assigned to bioactivity measurements from CHEMBL (for the
chosen cutoff for classifying actives/inactives, see below).
Strikingly, we found conflicting annotations for up to 74% of
the compounds retrieved from Metrabase (see Table S9).
Thus, only Metrabase entries including numerical bioactivity
values were included in our final data sets. Consequently, only
60 substrates/nonsubstrates (7% of the available substrates in
Metrabase) and 350 inhibitors/noninhibitors (22% of the
available inhibitors in Metrabase) from Metrabase are part of
our final data sets for hepatic OATPs.
DrugBank is a comprehensive repository comprising detailed

descriptions of small-molecule drugs and their associated
targets. Drug activity linked to a respective target is expressed
in the form of activity annotations (e.g., substrate, inhibitor,
unknown, stimulator, activator, or reducer). Interestingly,
DrugBank provided quite a balanced number of both
(non)substrates (47 unique compounds) and (non)inhibitors

(36 unique compounds) for our final data sets. A similar
number of total compounds was included from the UCSF−
FDA TransPortal database, but with a predominance of
(non)inhibitors (57 unique compounds) over (non)substrates
(27 unique compounds). Providing data about FDA-approved
drugs linked to pharmaceutically relevant targets, UCSF−FDA
TransPortal comprises numerical bioactivity measurements
(e.g., Km, IC50, Ki) for hepatic OATPs. The source with the
lowest number of compounds for hepatic OATPs [21 unique
(non)substrates, 11 unique (non)inhibitors] turned out to be
IUPHAR, which provides both real activity measurements
and/or annotations for all licensed drugs and other ligands of
biologically relevant targets, including transporters. It mainly
provided additional information about the hepatic OATP
natural substrates. Finally, three novel OATP2B1 inhibitors/
noninhibitors recently reported by Giacomini and co-work-
ers18 and 10 novel OATP1B1 and OATP1B3 inhibitors/
noninhibitors reported by the group of Ecker17 (just one
compound, sirolimus, has been annotated to be a OATP1B1
inhibitor in DrugBank before) were also manually added to the
data sets.
In addition to enrichment in terms of chemical space and

data set size, we sought to increase the confidence in the final
data annotations (as actives or inactives) by collecting multiple
independently measured bioactivities or activity annotations
for compound/target pairs. Box plots showing the distributions
of the number of bioactivities/annotations per single
compound and transporter are shown in Figure S3.
For the sake of establishing quantitative SAR (QSAR)

models, it is not advisible to mix data from different bioactivity
end points or different assay setups.3738 When it comes to
binary classification (e.g., into actives and inactives), however,
the final label (e.g., inhibitor or noninhibitor) should be
independent of the specific experimental protocol.39 Combin-
ing data from different activity end points can thus provide a
more accurate perception of the OATP pharmacological
profiles since measurement errors will be detected and sorted
out to a higher extent.

Data Curation. Once the small-molecule bioactivity data
had been successfully fetched, the compound data had to be
mapped across the various sources in order to identify all
assays/bioactivity measurements for a particular compound
against one particular target but also across the three different
transporters. Hereby, the availability of encoded chemical
structures (in the form of InChIKeys, InChIs, or SMILES) was
a great advantage. However, this information is not implicitly

Figure 1. Venn diagrams showing the contributions from the different data sources (in terms of the numbers of unique compounds extracted and
curated from them) to the final data sets for (a) (non)substrates and (b) (non)inhibitors.
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included in all of the databases used herein (e.g., the UCSF−
FDA TransPortal provides only generic names for the
compounds). In such cases, the Chemical Identifier Resolver
(CIR) web service provided by NIH (available at https://
cactus.nci.nih.gov/chemical/structure) can be used in order to
assign chemical structural information (SMILES, InChI,
InChIKey, etc.) to a compound’s generic name.40 Since for
our data sets this procedure failed for 132 compounds, we
generated in house a fit-for-purpose “name-to-structure”
conversion workflow that retrieves standard InChIKeys from
the PubChem database. The majority of these compounds
could be mapped by this procedure (68%); however, for 41
compounds the mapping failed because of the wide range of
compound expressions and associated synonyms. InChIKeys
were manually added in these cases.
All of the precurated entries were subjected to Atkinson’s

standardization procedure. To account for consistency during
mapping of data from different sources, unified standard
InChIKeys were calculated from standardized compounds.
The selected cutoff for separating actives from inactives at 10

μM appears as a good choice upon inspection of the
distribution of the median bioactivities for each target since
we can observe a certain plateau when looking at the density
plots (see Figure S4).
Setting the cutoff for percentage inhibition values resulted in

a more complicated procedure. As can be seen from Table 2,

percentage inhibition values account for approximately 77% of
entries from the overall inhibitor data set. Interestingly, the
interpretation of percentage inhibition values is highly
inconsistent in different data sets originating from different
articles. In the case of CHEMBL entries, three out of 11
integrated data sets reported percentage inhibition values in
the form of the inhibitory effect, i.e., the higher the value, the
stronger the inhibitor. However, the remaining eight data sets
present inhibition as a percentage of control (also expressed as
“residual activity”), i.e., the lower the value, the stronger the
inhibitor. Interpretation of CHEMBL data gets even more
complicated, as some of the data (e.g., the data set reported by
Nozawa et al.41) were converted to the opposite form of
percentage inhibition values prior to being uploaded to
CHEMBL. Since a strict removal of entries with percentage
inhibition values would have resulted in a tremendous
reduction in the compound numbers of the inhibitor data
sets, we manually curated these data sets and transformed the
data into a uniform representation of the activity end point
“percentage inhibition”. For the ∼150 data sets with
percentage inhibition data provided by Metrabase, this
curation exercise was alleviated by the availability of activity
comments [“Uptake/Inhibition (% of control)” or “Inhib-
ition”]. Cutoffs for separating inhibitors and noninhibitors
were set individually on the basis of recommendations given in
the primary literature (Tables S1 and S2). The assignment of
activity labels was done prior to the creation of a

pharmacological overlap matrix. Consequently, compounds
with conflicting activity measurements (i.e., equivalent
frequencies of the active and inactive binary labels) could be
sorted out during this important step of mapping standard
InChIKeys in order to represent the whole data set together
with their activity labels toward the three transporters. Activity
labels for more than 65% of the compounds of the final data
set were assessed on basis of more than a single bioactivity
measurement. To give an example, we retrieved 59
independent data points (measured bioactivities and/or pure
annotations) for cyclosporine from all of the integrated
databases, including 19 values from CHEMBL (14 Ki/IC50
and five percentage inhibition values), 26 values from
Metrabase (22 Ki/IC50 and four percentage inhibition values),
12 Ki/IC50 values from the UCSF−FDA TransPortal, and two
IC50 values from IUPHAR.
For the subsequent analyses on chemical fragments and

features, two different data sets were generated. The “sparse
hepatic OATP data set” comprises the whole data matrix
(including missing annotations for one or two of the
transporters) and is made up of 102 unique substrates/
nonsubstrates and 1630 unique inhibitors/noninhibitors (see
Table 3 for the respective data subset compositions). The

“dense hepatic OATP data set”, however, comprises only 13
substrates and 163 inhibitors whose bioactivities have been
measured against all three hepatic OATPs [see Table S10 for
(non)substrates and Table S11 for (non)inhibitors]. Data from
the latter data set provide information about general (i.e.,
completely overlapping), partially overlapping, and selective
substrates/inhibitors. Both data sets are useful sources for
studying features that are potentially important for hepatic
OATP ligand activity or selectivity.

Scaffold Clustering and Analysis. First, the analysis on
structural determinants for ligand interaction and selectivity
among hepatic OATPs was conducted at the scaffold level. As
demonstrated previously by looking at the distributions of
certain chemical features in the different data sources (Figure
S2), adding data sources led to an increase in chemical space.
In terms of new scaffolds, the addition of data from the
UCSF−FDA TransPortal database, DrugBank, Metrabase,
IUPHAR, and the literature to the data from ChEMBL also
led to a gain in terms of new chemical scaffolds (as
demonstrated for OATP1B1 inhibitors in Figure 2). Visual-
izations of new chemical scaffolds for OATP1B3 and
OATP2B1 inhibitors are included in Figures S5 and S6,
respectively.
In order to analyze the frequencies of scaffolds across the

different transporters, compounds were grouped by their
Murcko scaffolds26 for each transporter. We have to point out
that although these analyses were carried out for inhibitors and
substrates separately, the majority of the results discussed here

Table 2. Numbers of Unique Compounds for Different
Activity End Points

Ki IC50 Km EC50

%
inhibition

manual
annotation

(non)
substrates

− − 74 4 − 63

(non)
inhibitors

170 236 − − 1526 45

Table 3. Constitution of the “Sparse Hepatic OATP Data
Set”: Numbers of Compounds Per Annotation and
Transporter Are Shown (Compounds Might Appear
Annotated to More than One Target)

activity OATP1B1 OATP1B3 OATP2B1

substrates 53 45 26
nonsubstrates 19 16 6
inhibitors 332 198 62
noninhibitors 1008 1052 168
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were derived from inhibitor data because of data sparseness for
substrates in that domain.
The large number of different scaffolds (reflected by the

scaffold-to-compound ratio; Table 4)42 strongly indicates that

OATP ligands are structurally highly diverse compounds.
However, a few scaffolds (23 for inhibitors) were significantly
enriched in actives versus inactives (Fisher’s exact test, p <
0.05; see Figure 3).
One limitation of the scaffold algorithm of Bemis and

Murcko26 is the fact that adding (an) additional ring(s) leads
to a new Murcko scaffold. Therefore, for detecting congeneric
SAR series of compounds sharing a common scaffold within a
data set, the grouping by scaffolds should be combined with
additional substructure searches.43 In our case, this strategy has
proven useful, e.g., in order to find additional structural
analogues of pravastatin-like compounds in the inhibitor data
set. In the first instance, only three compounds sharing a
hexahydronaphthalene scaffold were detected in the 1B1
inhibitor data set, with pravastatin being a selective inhibitor
for OATP1B1 (lovastatin acid and tenivastatin are OATP1B1
inhibitors but have unknown activity toward the other two
transporters). By the subsequent substructure search, we could
retrieve seven additional compounds with a hexahydronaph-
thalene substructure but with some variation in their activity
profiles (see Table S12). While six compounds show activity

against OATP1B1, some do possess additional activity against
one of the other two transporters. A closer look at their
structures revealed that potentially the addition of more rings,
leading to three- or four-ring systems, is responsible for the
shift in activity, turning them into unselective hepatic OATP
inhibitors (also see the discussion on steroidal scaffolds
below).
After enrichment of the scaffold series with additional

compounds (by substructure searches), their pharmacological
profiles were inspected in order to identify scaffolds with a
pronounced activity for only one OATP, for two OATPs (dual
inhibitors), or for all three OATPs (pan inhibitors).
Furthermore, hierarchical scaffold clustering was applied in
order to group structurally similar scaffolds with the same
selectivity profile. Within the inhibitor data set, this procedure
led to seven enriched scaffold clusters for OATP1B1 (eight
scaffolds) and 11 enriched scaffold clusters for both OATP1B1
and OATP1B3 (15 scaffolds) (see Figure 3). Of course, this
analysis is influenced by data availability/sparseness and by no
means reflects a complete picture of the pharmacological
profiles (which especially accounts for the less investigated
target OATP2B1).
In order to be able to sort out scaffolds where a real

selectivity claim can be made (compared with just enriched
scaffolds without a complete pharmacological profile for
hepatic OATPs) we applied the scaffold frequency analysis
to the dense data set as well. This analysis delivered two
scaffolds with indications for OATP1B1 selectivity (pravasta-
tin-like scaffold, estrone-like) and one scaffold with an
indication for OATP1B subfamily selectivity (cyclosporin-like
scaffold) (Figure S7). In these cases, the available full
pharmacological profiles indicate inactivity toward the other
targets.

Figure 2. Murcko Scaffolds for OATP1B1 inhibitors retrieved from databases other than CHEMBL.

Table 4. Numbers of Unique Scaffolds in Substrate and
Inhibitor Data Sets and (in Parentheses) Their Scaffold-to-
Compound Ratios

OATP1B1 OATP1B3 OATP2B1

substrates 43 (0.86) 39 (0.86) 23 (0.88)
inhibitors 250 (0.75) 155 (0.78) 54 (0.87)
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We were also interested in whether some of the trends in
enriched scaffolds would remain if the analysis were repeated
with full dose−response curve data only. As can be seen from
Figure S8, upon exclusion of percentage inhibition data points,
most of the enriched scaffolds persisted (20 scaffolds out of
23).
Enriched Scaffolds for OATP1B1 Inhibitors. As shown in

Figure 3, frequently occurring scaffolds among the OATP1B1
inhibitors (eight scaffolds) can be grouped into seven different
clusters with the available data. Some of the most populated
clusters are those comprising steroid derivatives (estrone
derivatives and cholate derivatives), with 13 associated
compounds in total (six and seven compounds, respectively).
The scaffold made up of pravastatin-like compounds, as already
discussed above, is also among the most frequent ones for
OATP1B1. The seven member compounds have been
detected as either OATP1B1-selective inhibitors (pravastatin,
simvastatin, and mevinolin) or as OATP1B1 inhibitors (e.g.,
cyproterone and lovastatin acid; no measurements against
OATP1B3 and OATP2B1) in our data sets. Another cluster is
derived from porphyrin (five associated compounds). This
scaffold has been suggested for the design of new tool
compounds for therapeutic applications, mainly because of its
photodynamic effects against ovarian cancer. Current findings
show that porphyrin and its derivatives exert inhibitory activity
against OATP1B1.44 There is also evidence from activity
measurements for OATP1B3, suggesting that protoporphyrin
acts as a noninhibitor against OATP1B3.15 However, measure-
ments for all porphyrin-associated compounds are needed to

confirm the selectivity of this scaffold toward OATP1B1. The
remaining three scaffold clusters represent gedunin- and
khivorin-associated scaffolds (five associated compounds), N-
phenylpyrimidin-4-amine (three associated compounds), and
the valsartan-like scaffold (three compounds).

Enriched Scaffolds for Dual OATP1B1/OATP1B3 Inhib-
itors. In contrast to OATP1B1, inhibitors for OATP1B3 and
OATP2B1 do not constitute enriched scaffolds that are specific
for these transporters, since the number of respective
enumerated compounds does not exceed two in these cases
(data not shown).
Interestingly, the group of compounds and scaffolds with the

highest occupied clusters belong to the class of compounds
showing a pronounced activity against both OATP1B1 and
OATP1B3 (dual inhibitors) (15 scaffolds and 11 scaffold
clusters; depicted in Figure 3). This can be rationalized by the
high sequence similarity between these two targets (∼80%).
The largest scaffold cluster with this activity annotation (14
compounds) is derived from cyclosporine and other associated
macrocyclic compounds. There are two more clusters
possessing macrocyclic scaffolds (four associated compounds
each). Macrocyclic compounds in many cases show
peptidomimetic properties and will be interesting candidates
for future structure-based in silico studies, since it is likely that
they accommodate different binding pockets than the smaller
molecules.

Enriched Scaffolds for Pan Inhibitors of Hepatic OATPs.
As a result of the scaffold frequency analysis undertaken for
hepatic OATP inhibitors, no enriched scaffolds for pan

Figure 3. Enriched scaffolds (p < 0.05) for hepatic OATP inhibitors grouped by their pharmacological profiles with respect to hepatic OATPs.
Numbers in pink circles are the numbers of associated compounds for the respective scaffold clusters.
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Figure 4. R-group decomposition of steroidal inhibitors. (a) Stacked bar plot showing the distribution of the number of various functional groups
at certain R-group positions (blue bar plots, OATP1B1 inhibitors; purple bar plots, OATP1B3 inhibitors; green bar plots, OATP2B1 inhibitors).
The maximum common substructure of all of the steroidal inhibitors is shown to highlight the R-group positions. (b) Steroidal ligands with proven
pan-inhibitory effect: (1) taurodeoxycholic acid; (2) lithocholyltaurine; (3) glycoursodeoxycholic acid; (4) glycodeoxycholic acid. (c) Functional
groups identified at position 2 for (1) pan inhibitors, (2) dual OATP1B inhibitors, and (3) OATP1B1 inhibitors. (d) Functional groups identified
at position 16 for (1) pan inhibitors, (2) dual OATP1B inhibitors, and (3) OATP1B1 inhibitors.
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inhibitors were detected as significantly enriched at p < 0.05.
However, when the analysis was repeated at a bit weaker
significance level (p < 0.1), we found the cholate-like steroidal
scaffold to be enriched for all three hepatic OATPs (13
compounds in the sparse data set, four compounds in the
dense data set; Figure S9). This is not surprising since the
steroidal scaffold also occurs in natural substrates (e.g., cholate
and taurocholate) and was already found to be enriched in the
OATP1B1 inhibitor set. We applied an R-group decom-
position procedure and analyzed the frequency of various R
groups at certain positions in a targetwise manner. Positions 2
and 16 show the largest variety in terms of the numbers of
functional groups. For substitutions at position 2, hydrophilic
flexible side chains (e.g., N-sulfethylpropionamide-4-yl) occur

in ligands for all three hepatic OATPs, while, e.g., dihydrofuran
or tetrahydropyran groups were detected only among
OATP1B1 inhibitors at position 2 (Figure 4). At position
16, substitutions in general appear to be of hydrophilic nature,
with tetrahydropyran rings with hydroxyl groups attached to
the ring occurring only among OATP1B1 ligands (Figure 4).
Looking at compounds with a proven pan-inhibitory effect for
hepatic OATPs (four compounds from the dense data set;
Figure 4b), we can see that the trends that we found among
the sparse data set are verified for pan-inhibitory activity. In
order to be able to make real selectivity claims here, more data
with measurements on all three transporters will need to be
investigated in the future.

Table 5. Results on Level 1 (All Inhibitors + General Noninhibitors) and Level 2 (OATP1B1, OATP1B3, and OATP2B1
Inhibition Models) in Stratified Bagging for All Calculated Statistical Metrics: Sensitivity, Specificity, Balanced Accuracy, and
MCC (The Performance Is Given for Both 10-Fold Cross-Validation and on the External Test Set)

validation sensitivity specificity balanced accuracy MCC

level 1 training set 0.760 0.790 0.775 0.455
level 1 test set 0.796 0.769 0.783 0.477
level 2OATP1B1 training set 0.703 0.799 0.751 0.462
level 2OATP1B1 test set 0.730 0.809 0.769 0.497
level 2OATP1B3 training set 0.748 0.834 0.791 0.486
level 2OATP1B3 test set 0.746 0.829 0.787 0.476
level 2OATP2B1 training set 0.698 0.771 0.734 0.434
level 2OATP2B1 test set 0.632 0.840 0.736 0.464

Figure 5. List of relevant features extracted from four different binary classification models with percentage of descriptor importance: level 1 model
(any inhibitor vs general noninhibitors); level 2 models (separate models for OATP1B1 inhibition, OATP1B3 inhibition, and OATP2B1
inhibition).
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OATP Substrates. An analogous analysis of scaffold
frequency was also performed for OATP substrates. Because
of the considerably lower number of known substrates for
hepatic OATPs compared with inhibitors (see Table 3), this
analysis could not retrieve any statistically significantly
enriched scaffolds. It will be interesting to repeat this analysis
when more data become available for hepatic OATP
substrates.
In terms of side chains of steroid-associated substrates, we

observed consistent trends, as positions 2 and 16 also show the
largest variety of different side chains (data not shown).
Important Molecular Features for Inhibitory Activity.

After the investigation of molecular determinants for ligand
profiles at the scaffold level, it appeared interesting to look at a
more abstract representation of structural features: molecular
features/descriptors. Such representations might capture

commonalities among ligand sets of different hepatic OATPs
that would not at first sight appear obvious at the level of
scaffolds. The implemented strategy for retrieving important
molecular features for the different data sets included the
generation of binary classification models for hepatic OATP
inhibitors. In more detail, we followed a sequential binary
classification approach in which the first level comprised a
machine learning model for general noninhibitors (compounds
with annotations as “noninhibitors” for all three transporters)
versus all inhibitors (OATP1B1 or/and OATP1B3 or/and
OATP2B1 inhibitors). At the second level, three models for
OATP inhibition (separately for OATP1B1, OATP1B3, and
OATP2B1) were generated. It has to be pointed out that the
major aim of this modeling approach was the extraction of
relevant molecular descriptors and their careful analysis with
respect to the transporters and already existing knowledge in

Figure 6. Violin and box plots showing the distributions of different molecular discriptors, namely, lipophilicity (SlogP), average molecular weight
(AMW), topological polar surface area (TPSA), molecular refractivity (SMR), the number of rotatable bonds (RotB), and the number of aromatic
carbocycles (Aromatic Carbocycles), for inhibitors vs noninhibitors within four different data sets. Labeling on abscissae: 0, inactives; 1, actives.
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that domain. The use of these models for screening purposes
and the subsequent identification of novel compounds/
scaffolds (potentially active on hepatic OATPs) is not the
focus of this investigation but will be conducted in follow-up
studies.
A similar approach was used by Karlgren et al.19 in order to

describe hepatic OATP inhibitors in terms of chemical
features. One of the motivations to repeat this analysis was
our curiosity to check whether our models built on basis of the
chemically enhanced data sets would still prioritize the same
chemical features or if we could retrieve other or additional
features that likely better describe the data added since then.
We performed attribute selection (“CfsSubsetEval”45) as

implemented in the “BestFirst” search method in Weka27

before model building. For each inhibitor data set, significant
molecular features that would aid in distinguishing between
inhibitors and noninhibitors could thus be retrieved. On basis
of these “relevant” features, classification models were built
assuring that highly correlated features were eliminated in
order to get rid of redundant information. To account for
difficulties due to imbalanced data sets (imbalance ratios
between 1:2.5 and 1:4.5 for the different models), which
usually affect model accuracies, two different meta-classifiers
were used on top of “random tree” as the base classifier: a cost-
sensitive classifier31 and stratified bagging.32,33 In a recent
study by Jain et al.,34 these two meta-classifiers were found to
be the best-performing ones when dealing with imbalanced
data sets. Assessing the performances of the final models,
stratified bagging outperformed the cost-sensitive classifier.
The balanced accuracies of the final models were in the range
of 0.73 to 0.79, and the MCC values were between 0.43 and
0.5 (Table 5; model accuracies of all models built are given in
Tables S13−S16).
Figure 5 shows the list of important features for each level

and category of our sequential modeling approach. Since some
of the descriptors were correlated, the final models were
constructed with only a selection of those features (available in
Tables S13−S16). Upon inspection of the relevant features
given in Figure 5 and comparison of them across level 1 and to
the models from level 2, it becomes clear that the general
inhibitor model (level 1) broadly reflects the important
features from the three individual models at level 2. This is
not unexpected but shows that our methodology can capture
differences and commonalities in the data sets.
For all four models, average molecular weight (AMW)

(100% descriptor importance), the number of atoms (100−
40%), and the number of heavy atoms (100−40%) are among
the most important features for separating hepatic OATP
inhibitors from noninhibitors (Figure 5). Since these three
features are highly correlated, for building the final models only
AMW was considered.
Lipophilicity (SlogP) was found to be an important

descriptor (100% descriptor importance) for all of the models
except the OATP2B1 model (Figure 5). It was therefore not
taken into account for building the OATP2B1 model. For
topological polar surface area (TPSA), we observe that it plays
a role for the individual models but not for the general level 1
model. In addition, it seems to be less important in the case of
OATP2B1 (40% descriptor importance; Figure 5). Thus,
TPSA was not considered for building the final level 1 and
OATP2B1 models.
Upon examination of the distribution of those features

within the individual data sets (Figure 6 and Table S17) it

becomes obvious that in general hepatic OATP inhibitors do
possess a higher lipophilicity, molecular weight, and polarity
than noninhibitors. These findings are in accordance with the
findings of Karlgren et al.,19 but in addition, we were able to
prioritize a few other important features, one of which is the
molecular refractivity or polarizability (SMR), which reflects
the charge distribution on a molecules’ surface. Since in the
case of OATPs an inwardly directed pH gradient likely drives
the transport,46 a generally higher polarizability in the case of
inhibitors versus noninhibitors together with a higher polarity
seems very plausible (Figure 6). Interestingly, SMR appears
with 100% descriptor importance for all of the individual level
2 models but does not contribute to the general level 1 model.
Other important parameters that were not discussed before

by Karlgren et al.19 include the influence of flexibility
(expressed by the number of rotatable bonds) and counts of
different ring systems (especially aromatic rings). The number
of rotatable bonds has previously been described as a
discriminating factor for OATP1B1 inhibitors versus non-
inhibitors by van de Steeg et al.16 Our analysis suggests an
important role of this feature for all hepatic OATP inhibitors
(Figure 6 and Table S17). The number of rings was previously
described as a discriminative molecular property by van de
Steeg et al.16 for OATP1B1 inhibitors. De Bruyn et al.15

correlated a number of rings < 4 with OATP1B inactivity,
which could be confirmed by our analysis and was also
observed here for OATP2B1 (see Table S17). We found the
number of rings to be discriminative for OATP1B1 and
OATP1B3 inhibitors versus the respective noninhibitors (60−
40% descriptor importance). However, for OATP2B1
inhibitors, more specific descriptorsnamely, the numbers
of aliphatic and aromatic carbocycleswere among the list of
selected features. Since aromaticity can be linked to molecular
complexity or 3D-ness, we were interested in how the feature
“number of aromatic carbocycles” was distributed among the
four inhibitor data sets. From Figure 6 and Table S17 it
becomes obvious that only for OATP2B1 inhibitor data there
is a significant difference in the distribution of this feature for
inhibitors versus noninhibitors (for OATP1B1/OATP1B3, p >
0.05 in the Wilcoxon test; for OATP2B1, p = 0.0004).
Although the feature “FractionCSP3” (Fsp3), i.e., the

fraction of sp3-hybridized carbons, was not among the
prioritized ones for any model, one would expect to observe
a similar trend in the distribution of this feature across the
different transporters. Indeed, it was observed that for all of the
data sets except the OATP2B1 data set, the inhibitors show a
significantly higher Fsp3 than the respective noninhibitors. For
OATP2B1, it can be observed that inhibitors on average
possess lower Fsp3 values than inhibitors from the OATP1
subfamiles, which correlates with higher aromaticity and
therefore higher planarity (Figure S10). Here again, a lack of
data might be the reason for a tendency of planar molecules to
inhibit OATP2B1. As is also visible from Figure 3, inhibitors of
the OATP1B family do include large, flexible ring systems
(e.g., cyclosporine, antamanide, microcystin, caspofungin),
which were mostly not tested against OATP2B1.
Finally, the number of amide bonds was highlighted in cases

of OATP1B inhibition models but not for the OATP2B1 and
the general inhibition model. This can again be explained by
the availability of large ring systems containing up to 11 amide
bonds (e.g., cyclosporin) in the OATP1B data sets
preferentially.
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■ SUMMARY, CONCLUSIONS, AND OUTLOOK
The main aim of this study was to investigate potential
structural determinants responsible for ligand activity or
selectivity among hepatic OATPs on the basis of data available
from the open domain. In this first study, we focused merely
on ligand information as a rich source of chemical structures
and bioactivities (pharmacological data).
Emphasis was put on data integration and data curation

during the course of this study, as well as on semiautomatic
processing of the data. All of the workflows have been made
openly available to the scientific community so that they can
be reused for other case studies. In addition, since hepatic
OATPs are transporters of emerging interest for the research
field of hepatotoxicity47 and also in relation to cancer48 and
drug resistance,49,50 the current knowledge in this domain is
expected to constantly increase in the near future. Therefore,
our data integration, curation, and substructure analysis
workflows will especially prove useful when a substantial
amount of new data become available since in that case the
whole analyses can be repeated and refined efficiently and
swiftly.
As a side effect of this study, we collected six high-quality

curated data sets, for substrates and inhibitors of OATP1B1,
OATP1B3, and OATP2B1. Although data sparseness does not
always allow delivery of a full ligand profile for all three hepatic
OATPs, this analysis exemplifies that nonetheless common-
alities and differences among related transporters can be
determined by using the methods of data mining, chem-
informatics, and ligand-based modeling.
These data sets as well as the information gained on

enriched scaffolds and ligand properties of individual and
general hepatic OATP inhibitors will serve as a basis for future
investigations on ligand interactions and selectivity of hepatic
OATPs. Especially the scaffold analyses delivered interesting
scaffold series that will be exploited further in terms of their
selectivity profiles with the help of structure-based in silico
studies exploring individual ligand−protein binding events at
the molecular level.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jcim.8b00466.

Data sets in (a) CHEMBL and (b) Metrabase annotated
with bioactivity end point “inhibition”; lists of removed
substrates and inhibitors with conflicting annotations;
percentages of conflicting compound activities based on
comparison of the data from CHEMBL and Metrabase;
dense data sets for hepatic OATP substrates and
inhibitors; 10 detected compounds with the hexahy-
dronaphthalene-associated scaffold with pharmacological
profiles included; results from level 1 models (all
inhibitors + general noninhibitors) for all calculated
statistical metrics; results from OATP1B1, OATP1B3,
and OATP2B1 inhibition models (level 2) for all
calculated statistical metrics; summary statistics for
molecular descriptors calculated for inhibitors of
OATP1B1, OATP1B3, and OATP2B1; schematic work-
flow for integrative data mining and curation; box-and-
whisker plots showing the distribution of molecular
properties for compounds measured against human
OATP1B1, OATP1B3, and OATP2B1 originating from

five different data sources (ChEMBL, Metrabase,
DrugBank, IUPHAR, TransPortal); box plot with
number of bioactivities/annotations per unique com-
pound; histograms showing the distributions of median
bioactivities for OATP1B1, OATP1B3, and OATP2B1;
Murcko scaffolds for OATP1B3 and OATP2B1
inhibitors retrieved from databases other than
CHEMBL; enriched scaffolds (p < 0.05) for hepatic
OATP inhibitors considering the dense data set (with
complete pharmacological profile); enriched scaffolds (p
< 0.05) for hepatic OATP inhibitors, excluding
percentage inhibition data; enriched scaffolds (p < 0.1)
for hepatic OATP inhibitors; violin plots showing the
distribution feature “FractionCSP3” (Fsp3) for inhib-
itors versus noninhibitors within four different data sets
(PDF)

Supplementary data files with sparse substrate/non-
substrate and inhibitor/noninhibitor data sets in CSV
format (ZIP)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: barbara.zdrazil@univie.ac.at; phone: +43-1-4277-
55113.
ORCID
Barbara Zdrazil: 0000-0001-9395-1515
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We are grateful for technical support by Jana Gurinova when
fetching the data from different sources. Gratitude is further
expressed to Jennifer Hemmerich for providing us with the
Atkinson standardization protocol as a KNIME node. This
work received funding from the Austrian Science Fund (FWF)
(Grant P 29712).

■ ABBREVIATIONS
OATP, organic anion transporting polypeptide; SLC, solute
carrier; KNIME, Konstanz Information Miner; WEKA,
Waikato Environment for Knowledge Analysis; MCC,
Matthews correlation coefficient; MW, molecular weight;
SMR, molecular refractivity; AMW, average molecular weight;
TPSA, topological polar surface area; RotB, number of
rotatable bonds; Fsp3, fraction of sp3-hybridized carbons

■ REFERENCES
(1) Lin, L.; Yee, S. W.; Kim, R. B.; Giacomini, K. M. SLC
Transporters as Therapeutic Targets: Emerging Opportunities. Nat.
Rev. Drug Discovery 2015, 14 (8), 543−560.
(2) Kullak-ublick, G. A.; Stieger, B.; Meier, P. J. Enterohepatic Bile
Salt Transporters in Normal Physiology and Liver Disease. Gastro-
enterology 2004, 126 (1), 322−342.
(3) Keppler, D. The Roles of MRP2, MRP3, OATP1B1, and
OATP1B3 in Conjugated Hyperbilirubinemia. Drug Metab. Dispos.
2014, 42 (4), 561−565.
(4) Seithel, A.; Eberl, S.; Singer, K.; Auge, D.; Heinkele, G.; Wolf, N.
B.; Dörje, F.; Fromm, M. F.; König, J. The Influence of Macrolide
Antibiotics on the Uptake of Organic Anions and Drugs Mediated by
OATP1B1 and OATP1B3. Drug Metab. Dispos. 2007, 35 (5), 779−
786.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.8b00466
J. Chem. Inf. Model. 2019, 59, 1811−1825

1823

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jcim.8b00466
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.8b00466/suppl_file/ci8b00466_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.8b00466/suppl_file/ci8b00466_si_002.zip
mailto:barbara.zdrazil@univie.ac.at
http://orcid.org/0000-0001-9395-1515
http://dx.doi.org/10.1021/acs.jcim.8b00466


(5) Kunze, A.; Huwyler, J.; Camenisch, G.; Gutmann, H. Interaction
of the Antiviral Drug Telaprevir with Renal and Hepatic Drug
Transporters. Biochem. Pharmacol. 2012, 84 (8), 1096−1102.
(6) Obaidat, A.; Roth, M.; Hagenbuch, B. The Expression and
Function of Organic Anion Transporting Polypeptides in Normal
Tissues and in Cancer. Annu. Rev. Pharmacol. Toxicol. 2012, 52 (1),
135−151.
(7) Sandhu, P.; Lee, W.; Xu, X.; Leake, B. F.; Yamazaki, M.; Stone, J.
A.; Lin, J. H.; Pearson, P. G.; Kim, R. B. Hepatic Uptake of the Novel
Antifungal Agent Caspofungin. Drug Metab. Dispos. 2005, 33 (5),
676−682.
(8) Kim, R. B. 3-Hydroxy-3-methylglutaryl−Coenzyme A Reductase
Inhibitors (Statins) and Genetic Variability (Single Nucleotide
Polymorphisms) in a Hepatic Drug Uptake Transporter: What’s It
All About? Clin. Pharmacol. Ther. 2004, 75 (5), 381−385.
(9) Cvetkovic, M.; Leake, B.; Fromm, M. F.; Wilkinson, G. R.; Kim,
R. B. OATP and P-Glycoprotein Transporters Mediate the Cellular
Uptake and Excretion of Fexofenadine. Drug Metab. Dispos. 1999, 27
(8), 866−871.
(10) Bachmakov, I.; Glaeser, H.; Fromm, M. F.; König, J. Interaction
of Oral Antidiabetic Drugs With Hepatic Uptake Transporters: Focus
on Organic Anion Transporting Polypeptides and Organic Cation
Transporter 1. Diabetes 2008, 57 (6), 1463−1469.
(11) Mikkaichi, T.; Suzuki, T.; Tanemoto, M.; Ito, S.; Abe, T. The
Organic Anion Transporter (OATP) Family. Drug Metab. Pharma-
cokinet. 2004, 19 (3), 171−179.
(12) Kindla, J.; Müller, F.; Mieth, M.; Fromm, M. F.; König, J.
Influence of Non-Steroidal Anti-Inflammatory Drugs on Organic
Anion Transporting Polypeptide (OATP) 1B1-and OATP1B3-
Mediated Drug Transport. Drug Metab. Dispos. 2011, 39 (6),
1047−1053.
(13) Shitara, Y.; Maeda, K.; Ikejiri, K.; Yoshida, K.; Horie, T.;
Sugiyama, Y. Clinical Significance of Organic Anion Transporting
Polypeptides (OATPs) in Drug Disposition: Their Roles in Hepatic
Clearance and Intestinal Absorption. Biopharm. Drug Dispos. 2013, 34
(1), 45−78.
(14) Hagenbuch, B.; Stieger, B. The SLCO (Former SLC21)
Superfamily of Transporters. Mol. Aspects Med. 2013, 34 (2−3), 396−
412.
(15) de Bruyn, T.; van Westen, G. J. P.; IJzerman, A. P.; Stieger, B.;
de Witte, P.; Augustijns, P. F.; Annaert, P. P. Structure-Based
Identification of OATP1B1/3 Inhibitors. Mol. Pharmacol. 2013, 83
(6), 1257−1267.
(16) van de Steeg, E.; Venhorst, J.; Jansen, H. T.; Nooijen, I. H. G.;
DeGroot, J.; Wortelboer, H. M.; Vlaming, M. L. H. Generation of
Bayesian Prediction Models for OATP-Mediated Drug−Drug
Interactions Based on Inhibition Screen of OATP1B1,
OATP1B1*15 and OATP1B3. Eur. J. Pharm. Sci. 2015, 70, 29−36.
(17) Kotsampasakou, E.; Brenner, S.; Jag̈er, W.; Ecker, G. F.
Identification of Novel Inhibitors of Organic Anion Transporting
Polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) Using a
Consensus Vote of Six Classification Models. Mol. Pharmaceutics
2015, 12 (12), 4395−4404.
(18) Khuri, N.; Zur, A. A.; Wittwer, M. B.; Lin, L.; Yee, S. W.; Sali,
A.; Giacomini, K. M. Computational Discovery and Experimental
Validation of Inhibitors of the Human Intestinal Transporter
OATP2B1. J. Chem. Inf. Model. 2017, 57 (6), 1402−1413.
(19) Karlgren, M.; Vildhede, A.; Norinder, U.; Wisniewski, J. R.;
Kimoto, E.; Lai, Y.; Haglund, U.; Artursson, P. Classification of
Inhibitors of Hepatic Organic Anion Transporting Polypeptides
(OATPs): Influence of Protein Expression on Drug−Drug Inter-
actions. J. Med. Chem. 2012, 55 (10), 4740−4763.
(20) Berthold, M. R.; Cebron, N.; Dill, F.; Gabriel, T. R.; Kötter, T.;
Meinl, T.; Ohl, P.; Thiel, K.; Wiswedel, B. KNIMEthe Konstanz
Information Miner: Version 2.0 and Beyond. SIGKDD Explor. Newsl.
2009, 11 (1), 26−31.
(21) Bento, A. P.; Gaulton, A.; Hersey, A.; Bellis, L. J.; Chambers, J.;
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