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Abstract

Although driver genes in hepatocellular carcinoma (HCC) have been investigated in various 

previous genetic studies, prevalence of key driver genes among heterogeneous populations is 

unknown. Moreover, the phenotypic associations of these driver genes are poorly understood. This 

report aims to reveal the phenotypic impacts of a group of consensus driver genes in HCC. We 

used MutSigCV and OncodriveFM modules implemented in the IntOGen pipeline to identify 

consensus driver genes across six HCC cohorts comprising 1,494 samples in total. To access their 

global impacts, we used TCGA mutations and copy number variations to predict the 

transcriptomics data, under generalized linear models. We further investigated the associations of 

the consensus driver genes to patient survival, age, gender, race and risk factors. We identify 10 

consensus driver genes across six HCC cohorts in total. Integrative analysis of driver mutations, 

copy number variations and transcriptomic data reveals that these consensus driver mutations and 

their copy number variations are associated with majority (62.5%) of the mRNA transcriptome, 

but only a small fraction (8.9%) of miRNAs. Genes associated with TP53, CTNNB1, and 

ARID1A mutations contribute to the tripod of most densely connected pathway clusters. These 

driver genes are significantly associated with patients’ overall survival. Some driver genes are 

significantly linked to HCC gender (CTNNB1, ALB, TP53 and AXIN1), race (TP53 and 

CDKN2A), and age (RB1) disparities. This study prioritizes a group of consensus drivers in HCC, 
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which collectively show vast impacts on the phenotypes. These driver genes may warrant as 

valuable therapeutic targets of HCC.

Introduction

Liver cancer is the leading cause of cancer deaths worldwide, with more than 700,000 

incidences and deaths in recent years (1). Globally, this cancer is ranked second for cancer-

related mortality among men (2). In the US, it is one of the few cancers with increased rate 

of ~3% per year, for both incidence and mortality (3). Hepatocellular carcinoma (HCC) is 

the prominent histological type of liver cancer and accounts for approximately 75%−90% of 

all the liver cancer cases (4). The incidence rates of HCC vary by factors such as race, 

gender, age as well as demographic regions. East Asians are twice likely to develop liver 

cancer compared to Caucasian or African American populations (5). Additionally, males 

have 2 to 4 times higher incidence rates than females. The incidence rates peak around 60–

65 years for males and 65–70 for females (6,7). Various other risk factors for the HCC 

development have been well-determined, such as cirrhosis, hepatitis B (HBV) infection, 

hepatitis C (HCV) infection, alcohol abuse, obesity and environmental toxic intake (8). 

While HBV infection is the major risk for HCC cases in East Asian countries, HCV and 

alcohol abuse are the leading causes of HCC in North America and Europe (9).

The initiation and advancement of cancer are thought to occur after continuous 

accumulations of somatic genomic alterations, followed by the widespread manifestation of 

gene products (10–13). Using the whole genome sequencing (WGS) or whole exome-

sequencing (WES) technology, many studies have aimed to determine candidate driver gene 

mutations in HCC, the type of mutations that confer a selective growth advantage to the cell 

(14–20). TP53 and CTNNB1 are reported as the two most frequently mutated genes in HCC 

(21). Other putative driver genes include those related to genome stability, such as ARID1A, 

ARID2, and MLL1–4 (15,17,22–24), RB1 in cell cycle pathway (16), AXIN1 in Wnt 

signaling pathway (25), NFE2L2 in oxidative stress (22), and TSC1/TSC2 in MAPK 

signaling pathway (16,22). A recent analysis of hepatocellular carcinoma from The Cancer 

Genome Atlas (TCGA) reported the significant mutation of LZTR1 (encoding an adaptor of 

CUL3-containing E3 ligase complexes) and EEF1A1 (encoding eukaryotic translation 

elongation factor), apart from previously reported CTNNB1, TP53 and ALB genes (26). 

However, given the high heterogeneity of HCC populations due to race, risk factors etc., a 

consensus list of driver genes among different HCC cohorts are yet to be identified. 

Moreover, the impact of driver mutations on HCC phenotypes, such as gene expression, 

have not been adequately investigated.

To address these issues, we have collectively conducted multi-modal meta-analysis on six 

HCC cohorts. The multi-modal data were collected from different approaches, ranging from 

WES/WGS data, RNA-Seq data, microRNA-Seq data to clinical data. We performed 

statistical analysis that combines the results of these cohorts, to derive 10 most significant 

consensus driver genes with significant functional impacts. To examine the association 

between driver mutations and gene expression, we built linear regression models using 

driver mutation and copy number variation (CNV) as predictors, and gene expression and 
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miRNA (miR) expression as responses. Subsequent KEGG pathways and network analysis 

for these genes identified alterations in a broad spectrum of functions ranging from 

metabolic pathways, cell cycle to signaling pathways, as well as functional differences 

among the mutually exclusive driver genes. At the phenotypic level, we observed that 

consensus putative driver genes are predictive of survival differences among patients from 

cohorts with survival data. Some putative driver genes are significantly associated with 

physiological and clinical characteristics such as gender and age. In summary, we present 

the comprehensive picture of the functional relevance of driver genes in HCC, from 

molecular to phenotypic levels.

Materials and Methods

Dataset and processing:

We used public domain HCC data from The Cancer Genome Atlas (TCGA) available at 

Genomic Data Commons (GDC) data portal, as of March 2017. In total, RNA-Seq, CNV 

and miR-Seq data comprise 371, 371 and 369 tumor samples, respectively. We used the R 

package TCGA-Assembler (v2.0) (27) to download the TCGA data. The mRNA-Seq data 

are represented as the normalized gene expression RSEM (RNA-Seq by Expectation 

Maximization) quantification values obtained from Illumina HiSeq assay platform, while 

miR-Seq data include ‘reads per million miR mapped’ (RPM) quantification values from 

Illumina HiSeq assay platform. CNV data represent gene-level copy number values obtained 

by taking the average copy number of genomic regions of a gene from the Affymetrix SNP 

Array 6.0 assay platform. To handle the missing values, we performed three steps. First, we 

removed the biological features (i.e. genes/miRs) if they were missing in more than 20% of 

the samples. Similarly, we removed the samples if they were missing for more than 20% of 

the features. Second, we used k-nearest neighbor based imputation using R impute package 

(28) to fill out the missing values. Last, we removed the genes with very low expression 

values (i.e. with RSEM/RPM<=10 in the remaining samples). For TCGA mutation profile, 

the comprehensive Mutation Annotation File (LIHC-TP.final_analysis_set.maf) was 

downloaded from the FireBrowse portal of the Broad institute. We retrieved 362 samples 

(with HCC histology) having paired tumor and normal adjacent tissue WES data. 

Additionally, we obtained WES data from Liver Cancer (France): LICA-FR (n=236), Liver 

Cancer (NCC, Japan): LINC-JP (n=244) and Liver Cancer (China): LICA-CN (n=163) 

cohorts, and WGS data from Liver Cancer (RIKEN, Japan): LIRI-JP (n=258), all available 

as simple somatic mutation files from the International Cancer Genome Consortium (ICGC) 

web portal (29). These data from ICGC liver cohorts were published in the previous studies 

(16,22,30). Besides ICGC, we obtained another WES dataset (KOREAN (n=231) from the 

early-stage HCCs (patients with surgical resection) with clinical information of patients 

published earlier (18).

Consensus driver genes detection:

To achieve the pool of consensus driver genes among six cohorts, we implemented the 

IntOGen platform (v3.0.6) (31), a comprehensive standalone pipeline for the identification 

of driver genes. The mutation profiles, from six cohorts, were subjected to MutSigCV (v1.4) 

(32) and OncodriveFM (33), both incorporated in the IntOGen pipeline. MutSigCV 
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represents an advanced version of MutSig tool, which seeks to identify genes with 

significant positive selection during tumorigenesis. It calculates the personalized and gene-

specific background random mutation rates, along with the implementation of expression 

levels and replication times as covariate factors. Complementarily, OncodriveFM uncovers 

the significant mutation space by applying the functional impact-based positive selection to 

identify the driver genes. We opted for a two-step screening to identify consensus drivers: a) 

we performed the q-value based screening, and followed by b) combined adjusted p-value 

based screening. For q-value based screening, we identified the genes from each module (i.e. 

MutSigCV and OncodriveFM) which satisfied: (i) q-values less than the threshold cut-off 

(q<0.1) in at least 3 of 6 cohorts, and (ii) mean q-value less than the threshold cut-off 

(q<0.1), across the cohorts. We obtained a set of “common drivers” by taking the 

intersection of the genes found in two modules. We chose the threshold of q-value<0.1 for 

both MutSigCV and OncodriveFM according to earlier studies (32,34). In order to make 

consensus drivers selection more stringent, we calculated the adjusted p-values for both 

MutSigCV-p-values and OncodriveFM-p-values for every cohort. For each of the “common 

drivers” identified in the previous step (q-value based screening) we conducted Fisher’s 

method for combined p-values and identified final “consensus driver genes” having 

significant combined p-values <0.05 for both MutSigCV and OncodriveFM. For 

downstream analyses, we excluded intergenic and intronic mutations.

Determination of mutual exclusivity and co-occurrence:

For each pair of consensus driver genes, we determined their association based on Fisher’s 

exact test with a p-value <0.05. For significant associations, if the log odds ratio was more 

than 0 for a pair of genes, the pair was called “co-occurred”, else “exclusive”. To detect the 

mutational exclusivity among gene sets (i.e. more than two genes), we applied the Dendrix 

algorithm (35) which is specialized to fish out gene sets with high coverage and exclusivity 

across the samples. We used gene set numbers k=4, k=5 and calculated their maximum 

weight with consideration of mutated genes and samples. We ran 100,000 iterations using 

Markov chain Monte Carlo approach to calculate empirical p-values for the top gene sets 

with the maximum weight.

For each cohort, we also used the bipartite graph to represent the mutations in the driver 

genes for each patient, using the patients and the driver genes as the distinct set of nodes. We 

used ForceAtlas2, a graph layout algorithm implemented in Gephi (36), to spatialize the 

graphs for mutual exclusivity. To compute the distances of the different cohorts the approach 

used was as follows: using the bipartite graph of each cohort, we computed the PageRank 

scores, a measure reflecting the connectivity of a node in a network (37), of the 10 driver 

genes. We used these scores as features representing cohorts. We then used Ward’s 

minimum variance method to cluster both the genes and the PageRank scores.

Modeling relationships between consensus driver and gene expression:

We made a binary (1, 0) matrix to indicate the mutation status of consensus driver genes in 

all samples. A value of 1 means the existence of at least one variant within the gene body, in 

the categories of nonsense, missense, inframe indel, frameshift, silent, splice site, 

transcription starting site and nonstop mutation. Otherwise, 0 was assigned to the gene. We 
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made another table of CNV data similarly. We used voom function (limma package in R) to 

transform RSEM data prior to the linear modeling (38), then fit the linear models by 

minimizing generalized least squares similar to others (39). These linear models consider the 

effects of mutations of multiple consensus driver genes (predictors) and their CNVs on 

expression values of individual genes (responses) as follows:

  yg = β0g + ∑
i = 1

n

  (β1iX1i + β2iX2i   ) + ∈ (1)

Where yg is the vector representing expression value of gene g across all the n samples, β0g

is that baseline value of g, X1i and X2i  are the mutation status and CNV of the consensus 

driver gene i (i=1, 2….n),  β1 and  β2  are coefficients associated with the mutation status and 

CNV of the same gene, respectively. We performed multiple hypothesis tests on the 

significance values of the coefficients across all the genes using Benjamin–Hochberg (BH) 

adjustment, to determine the significant association between the driver genes and expression 

of all the genes (BH adjusted p-value <0.05). The accuracy of the applied tests and 

correction schemes was verified using a permutation approach, where each covariate was 

randomly permuted, breaking all correlations between genotype and expression. The 

permutation approach confirmed that the relationship between the pairs were significant, 

rather than being “random”.

Pathway enrichment and network analysis:

We conducted pathway enrichment analysis of the genes associated with somatic mutations 

and CNVs, using R package clusterProfiler (40). We used BH adjusted p-value=0.05 as 

threshold to select the over-represented KEGG pathways. We used Gephi (36) based 

bipartite graphs to visualize driver gene-enriched pathways network.

Modeling relationships between consensus drivers and miR expression:

To find the relationship between driver genes (mutation and CNV) and miR expression, we 

implemented the linear model similar to that of equation (1). Here driver genes’ mutation 

and CNV status were treated as independent variables and miR expression as the response 

variable. To narrow down miRs that directly target these 10 drivers, we mined miRDB 

resource (41), which houses the miR-target interactions predicted by MirTarget (42) based 

on CLIP-Ligation experiments.

Survival analysis of driver mutations:

We used the Cox proportional hazards (Cox-PH) model (43) implemented in R survival 
package for the overall survival (OS) analysis of consensus driver genes. We developed Cox-

PH model to fit the overall effect of all 10 driver genes on OS, with or without adjustments 

of clinical and physiological parameters (e.g. age, gender, grade etc.). For this, we used R 

glmnet package (44), since it enables penalization through ridge regression. We performed 

cross-validation to obtain the optimal regularization hyperparameter. The hyperparameter 
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was selected by minimizing the mean cross-validated partial likelihood. To evaluate the 

performance of the survival models (45), we calculated the concordance index (CI) using 

function concordance.index in R survcomp package (46), based on Harrell’s C-statistics 

(47). We dichotomized the samples into high- and low-risk groups based on the median 

prognosis index (PI) score, the fitted survival values of the Cox-PH model (48–50). In the 

case of ties for the median PI, we shuffled the samples and randomly assigned them to either 

risk groups. We plotted the Kaplan-Meier survival curves for the two risk groups and 

calculated the log-rank p-value of the survival difference between them. We performed the 

similar survival analysis by adjusting the Cox-PH model with different physiological and 

clinical factors (e.g. age, gender, grade and tumor stage.

Results

Detection of consensus driver genes

To identify the consensus pool of driver genes among multiple cohorts of diverse 

populations, we used paired tumor-normal tissue of HCC WES data from TCGA as well as 

five other cohorts (WES/WGS). The clinical summary of patients in these 6 cohorts is 

provided (Table S1). We assessed mutation significance and functional impact of protein 

coding genes using MutSigCV and OncodriveFM modules implemented in the IntOGen 

pipeline (see Materials and Methods) (Figure 1A). We identified the driver genes among the 

individual cohorts with the stringent threshold i.e. q-value <0.1 for both MutSigCV and 

OncodriveFM. Among these cohorts, TCGA contains the maximum number of drivers (20), 

while LICA-CN has 3 drivers only. LINC-JP, LIRI-JP, LICA-FR and KOREAN cohorts 

comprise 13, 11, 12 and 7 driver genes, respectively. TP53 and AXIN1 are two the driver 

genes shared by all the 6 cohorts (Figure 1B).

Next, we set out to define the “consensus driver gene”, which satisfied both of the following 

criteria: a) q-value based screening, where the mean q-value of a driver was less than the 

threshold cut-off (q<0.1) across the cohorts, and b) p-value based screening where Fisher’s 

combined adjusted p-value was less than 0.05 (Figure 1A). As a result, we identified 10 out 

of total 29 genes as “consensus driver genes” (Figure 1B). Interestingly, among patients with 

mutations in N consensus drivers (N=0, 1, 2, 3, …, 10), single driver mutation (N=1) is most 

frequently observed in all 5 cohorts, except LICA-CN cohort (Figure S1). Among these 10 

genes, TP53 and CTNNB1 are most significantly mutated and functionally impactful genes 

based on q-values (Figures 1C, 1D), consistent with the earlier observations (18,21). 

However, some low-frequency mutation genes also have significant rankings per MutSigCV 

(Figure 1C). For examples, CDKN2A, NFE2L2 and ACVR2A are all significant (mean q-

values: 4.1e-02, 1.3e-02 and 6.1e-03 respectively), although their average mutation 

frequencies are less than 5% (Figure 1E). Thus, this workflow efficiently detects less 

frequent but consistently important driver genes.

Analysis of consensus driver genes among cohorts

Next, we explored the mutation exclusivity status among these 10 driver genes across 

different populations (Figure 2A). As mentioned earlier, mutations from a single driver was 

most frequently observed in general (except LICA-CN). For patients with mutations in at 
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least 2 consensus drivers, the fraction varies among cohorts: TCGA (26.5%), LINC-JP 

(42.6%), LIRI-JP (27.5%), LICA-FR (37.3%), KOREAN (16%) and LICA-CN (17.2%) 

(Figure S1). We used colored tiles in the plot to represent the specific type of mutation (e.g. 

missense, silent, frame shift etc.). A similar trend of mutation distribution exists in TCGA, 

three ICGC cohorts with large sample size (i.e. LINC-JP, LIRI-JP and LICA-FR) and the 

KOREAN cohort (Figures 2A (i), (ii), (iii), (iv) and (v)). Worth mentioning, LICA-CN 

cohort (n=163) is most distinct from others and has the lowest CTNNB1 mutation rate 

among all (Figure 2A (vi)). This exception may be attributable to HBV infection in LICA-

CN cohort, as previous studies of HBV patients have reported the rare existence of CTNNB1 
mutations (22,23). In terms of the number of mutations per driver gene, most patients do not 

have too many (>25) mutations, except a very small fraction (Figure S2).

Mutual exclusivity is apparent among some drivers (Figure 2A). For example, CTNNB1 and 

TP53 mutations are mutually exclusive in three of six cohorts, with significant Fisher’s exact 

test p-values in TCGA (P=0.0303), LICA-FR (P= 0.0166) and KOREAN (P=0.006). The 

mutual exclusivity between them was documented earlier (18). To detect mutual exclusivity 

beyond two genes, we used the Dendrix tool (35). Again, we observed significant mutational 

exclusivities (p-value=<0.05) for up to five genes in all 6 cohorts (Figure S3). TP53, 
CTNNB1, RB1 and AXIN1 and another cohort-specific genes are mutually exclusive in all 

five cohorts except LICA-CN. The other cohort-specific driver is CDKN2A (LINC-JP, LIRI-

JP and KOREAN). Compared to the other five cohorts, LICA-CN cohort has most different 

five mutually exclusive drivers: TP53, ACVR2A, ALB, CDKN2A, and RPS6KA3.

We further visualized the relationships among patients, driver genes, and their topologies, 

using bipartite graphs (Figure 2B). The blue nodes and the labeled nodes represent patients 

and driver genes, respectively, and the edges between them indicate the existence of certain 

drivers in a particular patient. Based on the PageRank score that measures the connectivity 

and topologies of the graphs (see Materials and Methods), the similarity between TCGA and 

the other cohort descends in the following order: LINC-JP > LICA-FR > LIRI-JP > 

KOREAN > LICA-CN (Figure S4). KOREAN and LICA-CN cohorts are most distinct from 

other cohorts, with much fewer patients showing mutations in at least two driver genes. 

While KOREAN cohort mostly mutates in TP53 and CTNNB1 (however lacking ALB 
mutations like the other three cohorts), LICA-CN most dominantly mutates in TP53 but not 

in CTNNB1 or ALB (Figures 2B (vi), S4).

The associations between gene expression and consensus driver gene mutation and CNV

To assess the associations between the genetics of consensus drivers and the transcriptome, 

we built generalized linear models using these driver genes’ mutation profile and their CNVs 

as the predictors, whereas gene expression values as the response variables, similar to other 

earlier genome-scale studies (51,52). These genetics based models decently predict gene 

expression values (R2=0.57) (Figure 3A), indicating that albeit the complex genetics and 

epigenetics regulatory mechanisms of gene expression, HCC driver gene mutations still 

convey important functional impacts on gene expression. Overall, our results show that 

around 62.5% (12,837) of genes are significantly associated (BH adjusted p-value <0.05) 

with these consensus driver genes. We list the number of genes significantly associated to 
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each consensus driver gene in these linear models (Figure 3B). The top two mutated genes 

are CTNNB1 and TP53 as expected, associated with over six thousand and nearly four 

thousand genes, respectively. Strikingly, the CNV of ARID1A is ranked 4th and linked to 

expression changes in over 2,800 genes, despite its relatively low mutation rate of <10%.

To investigate the biological processes that these 12,837 genes are involved in, we conducted 

KEGG pathway enrichment analysis and detected 86 significantly (BH adjusted p-values 

<0.05) associated pathways (Figure 3C). We further categorized these pathways into 6 super 

groups according to the KEGG pathway organization, namely: cellular processes, 

environmental information processing, genetic information processing, metabolism, human 

diseases, and organismal systems (53). It is not surprising that the pathway super-group, 

affected most by the consensus driver genes, belongs to metabolic pathways. Among the 

driver genes, TP53, CTNNB1, and ARID1A are most densely connected to enriched 

pathways, due to the associations with gene expression changes. Some signaling pathways in 

the environmental information processing group are significantly influenced by driver genes, 

especially CTNNB1, which is associated with PI3K-Akt pathway, Wnt pathway and CGMP-

PKG signaling pathway.

The association network between driver genes and pathways provide further support for 

mutual exclusivities observed earlier, at least partially, in that certain pathways are 

commonly associated by two mutually exclusive drivers. Between the well-known mutually 

exclusive TP53 and CTNNB1, multiple pathways such as “bile secretion” and 

“proteoglycans in cancer” are shared. TP53 and ARID1A are both involved in amino acid, 

carbon and fatty acid metabolism pathways. Heatmap of driver genes and six pathways 

classes (Figure 3C, insert) shows that TP53 is associated with the maximum number of 

pathways related to Metabolism and Diseases, followed by CTNNB1 and ARID1A.

We extended the linear modeling approach described earlier to examine the association 

between consensus driver genes and miRNA (miR) expression. Contrary to the vast 

prevalence of correlations between mRNAs and consensus drivers, we only found 167 miRs 

that are significantly associated with these drivers. Among them, 127 miRs are associated 

with driver gene CNV-level changes, 90 miRs are associated with the driver mutations, and 

50 miRs are associated with both of them (Figure S5). This suggests that the major 

associations to protein coding genes are from driver mutations, not from non-coding 

regulatory elements miRs. The detailed association analysis between miR expression and 

consensus driver gene mutation/CNV is described in the supporting information 

(Supplementary File S1).

Associations between consensus driver genes and survival outcome

In order to test survival associations from all the driver mutations, we built multivariate Cox-

PH models on overall survival in each of the four cohorts that have survival data (TCGA, 

LINC-JP, LIRI-JP and LICA-FR). We used the median prognostic index (PI) score generated 

from the Cox-PH model as the threshold (50), and divided samples into high and low risk 

groups accordingly (ties were assigned randomly to either risk group). The Kaplan-Meier 

survival curves of the two risk groups are presented for four cohorts (Figure S6). For all the 

cohorts with survival data, the log-rank P-values between the Kaplan-Meier curves are 
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significant (TCGA: P=7e-03, C-index-0.58; LINC-JP: P=5.3e-03, C-index=0.67; LIRI-JP: 

P=1.3e-02, C-index=0.64 and LICA-FR: P=3.4e-03, C-index=0.61). To avoid potential 

confounding from age, gender, grade, stage in all 4 cohorts, we adjusted the Cox-PH model 

by these variables accordingly. Still, we identified significantly or almost significantly 

different survival groups (TCGA: P=8e-03, LINC-JP: P=2e-02, LIRI-JP: P=7e-02 and 

LICA-FR: P=4e-02) (Figure S7). All together, these results show that the driver genes’ 

mutational status is associated with HCC patients’ overall survival.

Associations of consensus driver genes with health disparities

Previous studies have revealed aspects of disparities in HCC, such as preferable incidents in 

males (6,54). To reveal the possible link between these driver genes and gender/age, we 

conducted Fisher’s exact tests for gender, and Mann-Whitney-Wilcoxon tests for the 

continuous age variable. We found some significant associations of driver genes with gender 

and age (Figure S8). To directly illustrate differences between categories, we calculated the 

relative risk (RR) of each category for the mutated genes vs. wild type genes. For age, RR 

was calculated after dichotomizing the samples based on mean age in the respective cohort.

With regard to gender, CTNNB1, a proto-oncogene, shows the most consistent evidence of 

preferred mutations in males, with an average RR=1.2 in 5 cohorts (Figures S8A-S8E). Its 

strongest association comes from the TCGA cohort, based on significance level (P-

value=1.5e-05) and relative risk (RR=1.4) (Figure S8A). Interestingly, AXIN1 shows 

opposite and higher relative risks in females in 2 cohorts LIRI-JP (RR=2.2) and KOREAN 

(RR=2.2) (Figures S8C, S8E) and the overall average RR=1.6 in 6 cohorts. Other drivers, 

such as ALB and TP53, are also preferred in males from 3 and 2 cohorts, respectively. For 

age, again CTNNB1 is the driver gene with the strongest positive associations, for both 

relative risks (average RR=1.2) and the number of cohorts (4 out of 6) (Figures S8H-S8M). 

Interestingly, RB1 is the driver gene significantly and preferably prevalent in younger 

patients (3 out of 6 cohorts) (Figures S8H, S8J and S8L). However, AXIN1 shows 

controversial associations with age between LINC-JP and LICA-FR cohorts, which may 

have to do with the different ethnicities between the two.

Additionally, TCGA and KOREAN cohort have information on risk factors of HCC (Figures 

S8F, S8G). The analysis shows that association between driver gene and risk factor is 

dependent on the cohort. In TCGA, ACVR2A shows significant higher RR among patients 

with fatty liver disease, alcohol users, and alcohol + HCV affected patients (Figure S8F). 

However, in KOREAN cohort, CTNNB1 is the driver that shows significant associations in 

patients with HCV virus infection or no virus infection; however lower RR in patients with 

HBV infection (Figure S8H). Such difference in driver genes may be attributed to other 

factors, such as ethnicities or life styles. In terms of associations with race, TP53 and 

CDKN2A both show higher RRs in Asians but lower RR in white (Figure S8N). For African 

Americans, RR for TP53 is very high (RR=2.2) however extremely low for CDKN2A.

Discussion

In this study, we have pushed forward our understanding of the molecular and clinical 

associations of HCC drivers using multiple cohorts. Despite the heterogeneity among the 
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datasets, we identified ten consensus driver genes derived from HCC WES/WGS data. 

Anchoring on these consensus driver genes, we investigated in-depth their transcriptomic 

and phenotypic associations, and prognostic values at the systems level. Detailed molecular 

mechanisms for each consensus drivers, although of interest to follow up, are not the focus 

of this multi-modal meta-analysis report.

A major contribution of this study is to associate the drivers with transcriptomic changes, 

which was previously unknown. The mutations and CNV of these consensus driver genes 

are correlated to around 63% mRNA transcriptome. These associated genes are involved in 

various pathways in cell cycle and DNA repair, metabolism, and signaling transduction. 

Interestingly, network analysis results show that mutually exclusively mutated genes have 

effects on some common biological processes, which may explain why mutations in both 

genes do not usually co-occur within the same patient. Surprisingly, only about 9% of miRs 

are associated with the consensus drivers globally, suggesting the major and direct role of 

driver mutations is on protein coding genes rather than regulatory components such as miRs. 

The survival plots based on the 10 consensus drivers’ mutation status alone show significant 

prognostic values, although not better than gene expression or protein expression as 

prognostic markers. In Pathology Atlas, the signatures are at the protein level, downstream 

of the phenotype (gene expression) that we consider here (55). The protein level change is 

the “output” reflective of many levels of regulations, from genetics, epigenetics, 

transcriptional and post-transcriptional modifications. Thus they are much closer prognostic 

biomarker for clinical phenotypes (such as survival) than driver mutations. For the purpose 

of optimizing prognostic biomarkers for HCC, we have recently reported another 

computational method based on deep learning (56) which takes the idea of integrating multi-

omics datasets (57).

Our analysis reveals some unusual findings on genes with low mutation frequencies. One of 

them is that the CNV of ARID1A is one of the most “effective” events in the driver genes, 

prevalently associated with transcriptomic changes of 2,857 genes. ARID1A is a chromatin 

remodeller which is involved in transcriptional activation and considered as tumor 

suppressor (58). Previously, this gene is reported to be frequently deleted in HCC (20,59). 

ARID1A, a tumor suppressor gene, is depleted in advanced HCC and hence promotes 

angiogenesis via angiopoietin-2 (Ang2). ARID1A-deficient HCCs have been suggested as a 

good target for anti-angiogenesis therapies e.g. using sorafenib (60). ARID1A mutations in 

HCC have been reported to be associated HCC progression and metastasis in HBV- and 

alcohol-related HCC (23,61). Other infrequently mutated genes such as ACVR2A have also 

been reported in individual studies (16,30). Our stringent criteria for selection of consensus 

driver genes among 6 HCC cohorts highlights these low-mutated genes with consensus, 

reflecting that these may play a crucial role in HCC etiology. Along with TP53 and 

CTNNB1, ARID1A stands out with densely connected sub networks.

Most interestingly, we have found evidence that some driver mutations are associated with 

gender and age disparities among HCC patients. CTNNB1 is more prevalent in males, and it 

increases with age. Additionally, TP53 and ALB are also more frequently mutated in males. 

Oppositely, AXIN1 is more mutated in females. AXIN1 encodes tumor suppressor gene 

axin-1, which is part of the beta-catenin destruction complex required for regulating 
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CTNNB1 levels through phosphorylation and ubiquitination (62). The opposite trend of 

gender association between AXIN1 and CTNNB1 can be explained by their antagonism 

relationship. Unexpectedly, we found that driver gene RB1 is reversely related to ages of 

HCC patients. We do not know the etiology of such reversal age dependency of RB1 in 

HCC. However, it has been well known that mutations in both alleles of the RB1 gene are 

essential for retinoblastoma, which is often diagnosed in neonates (63). Additionally, drivers 

TP53 and CDKN2A driver genes show such high RR in Asians but lower RR in White in 

TCGA data. However, the extrapolation of this observation as a general conclusion awaits 

for confirmations from more cohort studies having multiple races.

Unfortunately, the driver mutations in HCC are not yet designed as drug targets. Patients 

with advanced HCC have currently only two options of chemo-therapy: Sorafenib as the first 

line treatment and Regorafenib as the second line treatment (64). Both have very limited 

life-span extension, and both are multi-kinase inhibitors mainly targeting BRAF, which is 

not one of the consensus drivers we found. Therefore, we anticipate that this study presented 

here will motivate the development of therapeutic strategies that antagonize the most 

prevalent genetic mutations in HCC, by targeting genes including TP53, CTNNB1 and 

ARID1A. In addition, other potential targets might be biological pathways that are enriched 

with driver mutations, such as Wnt/Beta-catenin pathway (with CTNNB1) and P53/cell-

cycle pathway (with TP53 and RB1 drivers).

In summary, we have identified a consensus list of 10 driver genes in HCC, as well as their 

associations with downstream transcriptome and patient outcomes, such as survival, age and 

gender. Albeit the heterogeneity and complexity of HCC, the driver genes have broad and 

significant associations with global gene expression and molecular pathway functions, 

suggesting that HCC are genetically dominated diseases. Thus, this study provides an 

important and refined reference list for driver genes, which may serve as candidates for 

targeted therapies currently severely lacking in HCC.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Consensus driver genes in 6 HCC cohorts.
(A) IntOGen pipeline to identify consensus driver genes. (B) Driver genes from individual 

cohorts. Genes with asterisks represent consensus drivers. (C) Final 10 genes with mean q-

value <0.1 from MutSigCV module. (D) Same 10 genes with mean q-value <0.1 from 

OncodriveFM module. (E) Percentage of sample coverage of driver gene mutations.
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Figure 2: Mutual exclusivity among different driver genes in 6 HCC cohorts.
(A) Co-mutation plots for the 6 HCC cohorts, where each colored tile represents one of the 

mutation types (i.e. frame shift, in-frame indel, missense, exonic, nonsense, splice site, silent 

or mixture of mutations) (i) TCGA (ii) LINC-JP (iii) LIRI-JP (iv) LICA-FR (v) KOREAN 

(vi) LICA-CN cohorts. (B) Bipartite graphs for mutual exclusivity of the same cohorts in 

(A). Blue nodes represent the patients and the other labeled nodes represent consensus driver 

genes, whose size is proportional to their degree.
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Figure 3: Associations of consensus driver genes with mRNA expression.
(A) Correlation between observed and predicted gene expression. (B) The number of genes 

whose expression values are significantly associated with the driver gene mutation/CNV 

statuses. (C) Enriched KEGG pathways network among significant genes as shown in (B). 

The thickness of edges is proportional to the -log10 adjusted p-value. r
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