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Abstract

Speech has long been recognized as “special”. Here, we suggest that one of the reasons for speech 

being special is that our auditory system has evolved to encode it in an efficient, optimal way. The 

theory of efficient neural coding argues that our perceptual systems have evolved to encode 

environmental stimuli in the most efficient way. Mathematically, this can be achieved if the 

optimally efficient codes match the statistics of the signals they represent. Experimental evidence 

suggests that the auditory code is optimal in this mathematical sense: statistical properties of 

speech closely match response properties of the cochlea, the auditory nerve, and the auditory 

cortex. Even more interestingly, these results may be linked to phenomena in auditory and speech 

perception.
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The relevance of efficient neural coding for speech perception

Speech has long been recognized as “special” [1–6]. We prefer it over other sounds from 

birth onwards [6], and we are able to make fine-grained discriminations that allows us to 

convey an infinite amount of messages. The special status of speech has been studied from a 

variety of perspectives. Researchers of social cognition approach it as our species-specific 

communicative signal, and as the basis of learning and cultural transmission [7, 8]. Others 

have claimed that speech is special because it is the only auditory signal that we ‘feel’, in the 

sense of perceiving the movement of our articulators, when producing it [1]. Here, we 

review experimental evidence for the hypothesis that speech is special for another reason – 

i.e, because our auditory system has evolved to encode it in an efficient way.

Organisms need to process the environmental signals they encounter, and the efficiency with 

which they do so may considerably impact their survival. The ability to process 

environmental signals efficiently is, therefore, assumed to be an important principle shaping 
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the evolution of the sensory systems. Specifically, the theory of efficient neural coding [9, 

10] argues that our perceptual systems have evolved to encode environmental stimuli in the 

most efficient way. Information theory provides a mathematically precise and empirically 

testable framework to evaluate this theory. It defines efficient or optimal coding as one that 

transmits the highest fidelity information at the lowest cost, i.e. if the encoding maximally 

reduces the redundancy in the signal. Mathematically, this can be achieved if the optimally 

efficient codes match the statistics of the signals they represent [11].

In the last decades, the hypothesis that the neural code used by the perceptual systems is 

optimal in this mathematical sense has gained considerable empirical and theoretical support 

in vision [12]. More recently, experimental evidence has suggested that the auditory code 

may also be optimal [13–17]. Here, we link these findings to auditory perception, with 

special attention to speech perception. Conceiving of speech as an auditory signal that is 

particularly well suited to match the encoding capabilities of the auditory system may 

contribute to a better understanding of speech perception phenomena and the “special” 

nature of speech. This hypothesis is now gaining momentum [13, 14, 18–20], motivating the 

current Review.

The statistical structure of sounds

To test whether the mammalian auditory system codes sound in a mathematically optimal 

way, it is first necessary to describe the statistical structure of sounds. The space (in the 

mathematical sense) of all potential sounds is vast (Box 1). Within this space, natural sounds 

including speech comprise a compact, yet multi-dimensional subspace. Analyses of 

statistical regularities in natural sounds have identified several prominent features. The 

temporal structure of many natural environmental sounds has a self-similar property: its 

power spectrum scales as 1/f [21], which means that the signals exhibit correlations across 

multiple time scales. These spectral correlations translate into statistical dependencies across 

frequency and time, which can be captured with a histogram of the statistical features of 

sounds in the spectro-temporal domain [22] (Figure 1A). These dependencies can be 

encoded by a neuronal population that processes the inputs at multiple time scales with 

varying degrees of resolution across scales [23, 24]. Scale-invariant dependency occurs not 

just within the amplitude spectrum of sounds, but also across spectral bands: if we consider 

the spectrogram of a natural sound, we observe that the temporal fluctuations occur on a 

faster timescale in higher frequency bands than in lower frequency bands. As result, the 

temporal correlations in the spectrogram are shorter at high than at low frequencies [25, 26].

Interestingly, the relation between frequency and temporal correlations drives differential 

perception of sounds that are generated under this statistical relationship. Varying the value 

of a single statistical parameter that controls the correlation within the temporal structure can 

yield a range of sound percepts, to which both adults and infants exhibit sensitivity [26]. 

More generally, controlling a small number of statistical parameters for first- and second-

order distributions of the means and variance of spectro-temporal channel components of 

sounds can reproduce “sound textures”, yielding percepts that range from a chorus of insects 

to helicopter sounds [15, 27]. In contrast to environmental sounds, mammalian 
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vocalizations, which often have a strongly harmonic structure, show peaks over their 1/f 

spectra, corresponding to the fundamental frequency and its harmonics [16].

The speech signal shows properties of both environmental sounds and harmonic 

vocalizations. Globally, speech also has a 1/f spectrum [21]. More locally, vowels have a 

harmonic structure, while different consonant classes show acoustic transience to different 

degrees, resulting in systematic variations in the local statistical structure of the speech 

signal. This led to conceptualizing speech as a modulated carrier signal [28, 29]. The carrier 

signal produced by the vocal folds is modulated slowly in amplitude and frequency as a 

result of the dynamic changes of the vocal tract during phonation. The amplitude modulation 

corresponds to the envelope of the speech signal, while the frequency modulation to its 

temporal fine structure. The amplitude and frequency modulations can be obtained using a 

Hilbert transform applied to the speech signal. Based on the modulated carrier signal view of 

speech, powerful analysis and synthesis algorithms have been developed, called vocoders, 

which can selectively manipulate the acoustic components of speech [30]. The amplitude 

and frequency modulation spectra of the speech signal have recently received considerable 

attention. It has been shown that the amplitude modulation spectrum, believed to correspond 

to the percept of speech rhythm, has a peak between 4–5Hz (Figure 2). This temporal 

modulation is found across a wide range of different languages [31, 32], with slight 

variations corresponding to well-established rhythmic and other prosodic differences 

between them [32].

Non-redundant, optimal mathematical models of sounds

According to the efficient coding hypothesis, the brain has evolved to efficiently process and 

respond to stimuli that occur in nature, reducing redundancy in their neural representations 

[9]. This principle posits that the statistical properties of neuronal responses should match 

the statistical structure of natural stimuli, and should maximize the efficiency in 

representation [10, 33]. This is best achieved if neuronal responses constitute a sparse, non-

redundant code, meaning that the code should be as parsimonious as possible, yet capture 

the full range of variability in the signal structure along the relevant dimensions [34].

Following these principles, recent studies have derived sparse codes for different categories 

of sounds, and compared them to the response properties of components of the auditory 

pathway. So far, to our knowledge, two mathematical approaches have been used. The first 

[13, 18, 19, 35] uses independent component analysis (ICA). Imposing a sparsity constraint 

improves the decomposition of sounds into independent components [35] – a statistical 

analysis that identifies the most informative dimensions in the spectro-temporal space of 

sounds. Optimal filter populations derived using ICA [13] for three categories of sounds, i.e. 

environmental sounds, animal vocalizations and speech, differ in their spectro-temporal 

properties, reflecting the statistics of the sounds classes (Figure 1B). Thus the optimal filters 

for animal sounds resemble a Fourier decomposition, in conformity with the harmonic 

structure of these sounds; the filters for environmental sounds approximate wavelets, 

reflecting the fast transients in these sounds; whereas the filters for speech are in between 

these two representations. Importantly, the filters derived for speech as well as for a mix of 

environmental sounds and animal vocalizations, but not for environmental sounds alone or 
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vocalizations alone, very closely match auditory nerve fiber tuning properties. At the more 

local level, filter populations for vowels match the global properties of speech, whereas 

those of different consonant classes vary from Fourier-like to wavelet-like representations. 

Crucially, these filter populations are well aligned with the response properties of cochlear 

nuclei [18]. Interestingly, the filter populations for speech in different languages match well 

the acoustic correlates of the percept of speech rhythm [19]. Furthermore, the basis for 

binaural sounds reproduced sound localization networks with a small number of 

components, suggesting that sound localization can be carried out with reduced 

representation that is optimized to distribution of binaural dependencies in the natural world 

[36].

As a second mathematical approach, sparse coding models have been proposed. Identifying 

a sparse and efficient representation of sounds in terms of spikes, imposing a sparse binary 

code constraint on sound encoding, replicates encoding features observed in the mammalian 

auditory system [15]. Specifically, the spike code representation of speech approximates 

time-domain cochlear filter estimates, and the frequency-bandwidth dependence of auditory 

nerve fibers.

These non-redundant codes stand in contrast to more traditional representations of sound in 

terms of a waveform over different spectral bands, such as a spectrogram or cochleogram. 

These traditional representations require a large number of parameters to fit the sound 

waveform. The assumption of sparsity in acoustic signals reduces the number of parameters 

required to represent a sound waveform.

Sounds with naturalistic statistics are special for the mammalian auditory 

system

According to the efficient coding hypothesis, identifying the statistical dependencies in the 

structure of sounds yields insight into the structure of the neuronal code. This was tested by 

constructing artificial codes that were optimized according to some set of constraints to best 

represent natural sounds, and then compared to experimental measurements of responses of 

neurons in the auditory pathway. Such advanced mathematical models were, for instance, 

used to better understand the structure of receptive fields of auditory neurons. The 

assumption of sparsity responses in conjunction with analysis of a library of sounds yields 

spectro-temporal filters with different spectro-temporal relations that capture the diversity 

observed in the auditory pathway [24]. Using independent component analysis on a library 

of natural and speech sounds furthermore yielded a correlation between the bandwidth and 

center frequency of tuning, and predicted overrepresentation of the frequency of an 

overexposed tone. Such a relationship was identified experimentally for primary auditory 

cortical neurons [37]. Imposing a sparse coding constraint on natural sounds yielded single 

and multi-peaked frequency response units, such as found in the primate A1 [38]. Enforcing 

sparseness and a specific form of scaling of inputs, termed divisive normalization, in a 

network of neurons, reproduced the set of auditory features within the auditory processing 

pathway [39]. Extending this code by adding a layer of neuronal connectivity captured the 
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non-uniform distribution of spatial tuning that was observed experimentally in mammals 

[40].

Natural sounds, or sounds that exhibit naturalistic statistics, evoke enhanced responses 

throughout the auditory system. Neurons throughout the auditory pathway represent 

complex sounds as a population that integrates across neurons tuned to different spectro-

temporal features of sounds. These can be described through the spectro-temporal receptive 

fields of neurons (STRF) [41, 42]. The STRF of neurons indicates the range of frequencies 

and transformations in time in the stimulus amplitude that evoke a strong response and can 

predict the ability of neurons to represent and discriminate between complex sounds [43, 

44]. STRFs are typically determined from a set of randomized sounds that obey certain 

statistical constraints. Modifying those statistical constraints to capture statistics of natural 

sounds, such as con-specific vocalizations, amplifies cortical responses [43, 45–47] (Figure 

3). Furthermore, modifying the stimulus to exhibit a 1/f frequency spectrum yields tuned 

responses [48–50]. Indeed, such dependence is consistent with the 1/f structure of responses 

within the cochlea [51], and the enhanced information transmission at the level of auditory 

primary afferents [17] for naturalistic stimuli.

Particularly relevant to auditory communication are con-specific vocalizations. In many 

species, auditory cortical neurons exhibit enhanced tuning for natural vocalizations [52–56]. 

Vocalizations are encoded at higher information rate when their statistics are unperturbed 

[57]. Furthermore, predictive models for auditory processing were able to predict activity 

more accurately in the primary auditory cortex when the stimulus was comprised of sounds 

with the statistical structure of con-specific vocalizations [46]. Interestingly, the responses of 

cortical neurons in mammals to speech can approach estimates for perceptual speech 

discrimination [58], and neuronal responses to phonetic features of speech sounds can be 

related to their spectrotemporal tuning properties [59, 60].

Can efficient coding explain perception?

Few studies to date have directly addressed whether efficient coding principles can account 

for auditory percepts. Among these, one series of studies [25, 26, 61] tested how human 

adults, infants and newborns perceive water sounds generated by a mathematical model 

(Figure 4) that consisted of a population of randomly spaced gamma tone chirps from a wide 

range of frequencies [25]. This model generated scale-invariant sounds when the temporal 

structure of the chirps scaled relative to their center frequency, and variable-scale sounds 

when chirps in different spectral bands varied in their temporal structure relative to their 

center frequency. Adults rated the scale-invariant sounds generated by the model as natural, 

and qualitatively described them as water sounds (e.g. rain, shower, ocean etc.), whereas 

they rated the variable scale sounds as unnatural and qualitatively described them as noise or 

machine-like sounds [25], suggesting that scale-invariance is indeed a statistical property 

underlying the percept of naturalness in sounds. Similarly, when habituated with the same 

scale-invariant water sounds, 5-month-old infants readily dishabituated to the variable-scale 

sounds, suggesting that they formed a perceptual category for the scale-invariant sounds 

during habituation. If, however, they were habituated to the variable-scale sounds, they did 

not dishabituate when hearing the scale-invariant ones, indicating that they did not perceive 
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the variable-scale sounds as constituting a well-formed perceptual category [26]. The 

perceptual advantage of scale-invariant sounds appears to be present even earlier in human 

development: The newborn brain also discriminates between the scale-invariant and 

variable-scale water sounds [61].

Speech perception may also obey efficient coding principles. When speech is degraded by 

preserving only 6 frequency bands in a noise vocoder, adult listeners’ speech recognition 

performance is better if the vocoder uses mathematically derived efficient filters rather than 

linear or cochleotopic filters [14]. Speech perception also shows scale-invariance in time: 

adult [62–66], child [67, 68] and even newborn [20] listeners readily adapt to time-

compressed speech in their native language as well as in rhythmically similar non-native 

languages. This indicates that adaptation happens at the auditory, rather than at the abstract 

linguistic level, confirming the auditory system’s ability to encode scale-invariance in time. 

It needs to be noted, however, that listeners can only adapt to speech compressed maximally 

to about 30% of its original duration. Beyond that, adaptation breaks down. Some 

researchers thus interpret adaptation to time-compressed speech not as a manifestation of 

scale-invariant processing [69]. Rather, it is taken as evidence in favor of the multi-time 

scale model of speech perception [70–72], which posits that speech is simultaneously 

processed at a few privileged time-scales, roughly corresponding to the linguistic units of 

(sub)phonemes, syllables and phrases, sustained in the brain by a hierarchy of embedded 

neural oscillations in the low gamma (25–35Hz), theta (4–8Hz) and delta (1–2Hz) bands. 

This model predicts that speech perception is not fully scale-invariant in time. Rather 

adaptation to compression is only possible if the rhythm of the signal remains within these 

privileged frequency ranges, and the lower limit on listeners’ ability to adapt to compression 

is seen as an indication that the theta rhythm is no longer maintained, making speech 

perception impossible.

Concluding remarks and Future Perspectives

The research findings discussed in this Review suggest that auditory perception may obey 

the principles of efficient neural coding, relying on the information theoretical notion of 

optimality. The existing studies demonstrate that the approaches for understanding the 

mathematical structure of sounds can yield predictions about neuronal encoding throughout 

the auditory pathway. The correspondence between neuronal responses and model 

predictions, conversely, is consistent with the notion that the neuronal representation of 

sounds is optimized for the statistical features of sounds found in nature. The auditory neural 

code appears to be particularly well matched to the statistical properties of speech.

The efficient neural coding approach opens up an interesting perspective on auditory and 

speech perception. Nevertheless, a number of issues remain unresolved (see Outstanding 

Questions). First, efficient coding assumes that neural representations are optimal. This 

stands in apparent contrast to the redundancy that is well attested in biological systems. 

Since both signals and the computing units (neurons) are noisy, and can be damaged, a 

certain amount of redundancy is necessary and even desirable to make auditory 

representations robust and resilient. Future models of efficient auditory coding will need to 

take into account the need for resilience in the face of noise or damage.
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Second, the general mathematical principle of coding efficiency does not specify the aspects 

of the signal that need to be encoded, nor the neural structures that are involved. The theory 

leaves underspecified whether efficient coding principles should operate at the level of 

individual neurons, neuronal assemblies or even larger structures. For a better understanding 

of these issues, efficient coding models need to be integrated with anatomical and 

neurophysiological as well as acoustic and linguistic accounts.

Third, it remains open how the efficient neural coding account relates to other theories of 

auditory perception. As discussed above, the temporal scale-invariance prediction of the 

efficient coding of speech stand in (apparent) contradiction with the multiple time scale 

model of speech perception [70]. Whether these models may be integrated, and if so how, 

remains an important question for future research.
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Box 1:

The efficient auditory coding hypothesis

The potential space (in the abstract, mathematical sense) of all possible sounds is vast, 

but environmental sounds, animal vocalizations, and speech, occupy specific subspaces. 

These subspaces are determined by the spectro-temporal statistics of the acoustic 

properties of sounds from different groups (Figure I–A). It is, however, difficult to 

identify the relevant dimensions in the sound space. Research in exploring the space of 

environmental, vocalization and speech sounds has focused on complementary 

approaches (Figure I–B): (i) by shaping random noise according to some statistical 

constraints to generate sounds from different groups, or (ii) by using recorded sounds, 

and applying directed perturbations to these sounds along specific dimensions within this 

complex space to produce distorted sounds. The first approach allows to test whether a 

particular statistical constraint is sufficient to define a sound category. The second 

approach tests whether the particular statistical constraint is required to define a sound 

category. We propose that throughout evolutionary history and during human 

development, transformations in the constraints over the perceived sounds produce an 

auditory code that encodes speech in an efficient fashion (Figure I–C).
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Figure I: 
Framework for understanding the development of speech selectivity. A. Diagram of the 

spectro-temporal statistical space of different types of sounds projected on a subset of 

dimensions, including d1, Spectro-temporal correlation; d2, frequency modulation (FM); 

d3, Frequency; d4, scale-invariant coefficient; dn -- other components to be identified. B. 

Diagram of complementary methods to identify the relevant dimension. C. Speech 

statistics are shapes throughout evolution and development.
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Figure 1. 
Spectrotemporal characteristics of different types of sounds. (A) The time-frequency 

histogram of a speech signal shows that speech shares characteristics with both animal 

vocalizations and environmental sounds [adapted from 22]; (B) The spectro-temporal 

characteristics of mathematically computed optimal filters also suggest that speech 

resembles both vocalizations and environmental sounds [adapted from 13].
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Figure 2. 
The amplitude modulation spectra of speech in different languages. A. The amplitude 

modulation spectra of speech in 10 different languages from a database of clearly 

articulated, well-controlled recordings show both a strong similarity with a modulation peak 

at around 4Hz as well as slight differences across languages in the strength and rate of 

modulation [adapted from 32]. B. The amplitude modulation spectra of speech in 9 different 

languages from large corpora with a wide range of different speech styles and registers show 

the same ~4Hz modulation peak, but not the smaller cross-linguistic differences [adapted 

from 31].
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Figure 3. 
Predictive model for neuronal responses to a sequence of con-specific vocalizations in 

awake rat A1 is improved through low-dimensional parametrization of the stimulus [adapted 

from 46]. A. stimulus waveform, which consisted of rat ultra-sonic-vocalizations, 

concatenated at the naturalistic rate of production of 10 Hz. B, E. Representation of the 

stimulus in: (B) a 2-dimensional space of frequency modulation and amplitude or (E) as a 

spectrogram. C, F. Linear filters for responses of the neuron for the two models. D, G. 

Instantaneous non-linearities used for the two models. H. Firing rate (black), and model 
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prediction based on 2-parameter generalized linear model (GLNM, red) and on the full 

spectrogram linear-non-linear model (STRF LNM, green).

Gervain and Geffen Page 16

Trends Neurosci. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
The mathematical model of water sounds [25]. A scale-invariant or variable-scale random 

sound was constructed as superposition of gammatone chirps with the same time and 

frequency. Left: The onset timing and center frequency of each gammatone used for both 

scale-invariant and variable scale sounds. Right insets: two representative gammatones for 

either sound: Scale invariant gammatones had a constant cycle constant of decay, whereas 

variable scale sounds had a constant time constant of delay; as result, scale-invariant sounds 

differed in duration across frequencies, whereas variable scale sounds did not. In perceptual 

judgement experiments, adult subjects rated scale-invariant, but not variable-scale sounds as 

natural for a wide range of parameters.
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