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Introduction
Sepsis remains a leading cause of  death globally, with estimates of  over 50.9 million cases resulting in 
over 5.3 million deaths each year (1). Although accurate estimates are lacking, the burden of  sepsis may 
be greatest in low- and middle-income countries (2). In Africa, a systematic review and meta-analysis 
estimated that approximately 13.5% of  hospitalized adult patients had a bloodstream infection (3).

Sepsis is defined as “life-threatening organ dysfunction due to a dysregulated host response to infection” 
(4). Underlying this definition is the assumption that the host response to the infectious insult is uniform 

BACKGROUND. Sepsis is a complex clinical syndrome with substantial heterogeneity. We sought to 
identify patterns of serum biomarkers of endothelial activation and dysfunction in individuals with 
sepsis and evaluate subgroup-specific differences in mortality.

METHODS. Adult patients with sepsis (n = 426) were consecutively recruited from 2 hospitals in 
Uganda. Clinical information was collected, and serum concentrations of 11 biomarkers involved 
in the endothelial response to infection were measured in samples from 315 patients. Latent 
variable models were fit to evaluate whether the endothelial response to sepsis consists of one 
unified biologic process or multiple processes and to identify subgroups of patients with distinct 
host-response profiles. Differences in survival at day 28 were evaluated using Kaplan-Meier 
survival curves.

RESULTS. We identified 3 patient subgroups characterized by unique host endothelial response 
profiles. Patients fitting profile 2 had significantly worse survival (log-rank P < 0.001). Four latent 
factors (factors 1–4) were identified, each potentially representing distinct biologic processes for 
the endothelial response to sepsis: factor 1 (CHI3L1, sTREM1, sFLT1), factor 2 (ANGPT1, PF4, VEGF), 
factor 3 (CXCL10, vWF, sICAM1), and factor 4 (ANGPT2, sTEK).

CONCLUSION. Patient profiles based on patterns of circulating biomarkers of endothelial responses 
may provide a clinically meaningful way to categorize patients into homogeneous subgroups and 
may identify patients with a high risk of mortality. Profile 2 may represent dysfunction of the 
endothelial response to infection.
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across pathogens and affected organ systems. However, sepsis is a complex syndrome caused by a wide 
range of  microbial pathogens that results in disturbances of  several organ systems. In the United States, 
common causative bacterial pathogens include E. coli, Staphylococcus aureus, and Streptococcus pneumoniae (5). 
In Africa, additional common sepsis etiologies include nontyphoidal Salmonella and Mycobacterium tubercu-
losis, particularly in HIV-infected persons (3, 6). Sepsis can originate from a range of  infected sites, with the 
respiratory, genitourinary, and gastrointestinal tracts most frequently implicated (7). Moreover, the signs and 
symptoms of  sepsis are highly variable and typically nonspecific, including aberrations in vital signs like 
tachycardia and tachypnea alongside signs of  organ dysfunction, such as altered mental status, hypotension, 
and renal dysfunction, ultimately leading to shock and death. Ultimately, the pathogen, pathogen load, site 
of  infection, and host susceptibility contribute to the clinical presentation and course of  disease.

Failure to develop effective therapeutics and the limited success in developing diagnostic or prognostic 
tests are often attributed to the heterogeneity inherent in sepsis (8, 9). There are currently no US FDA–
approved treatments for sepsis, despite several decades of  clinical trials. Activated protein C was approved 
by the FDA but subsequently removed from the market after further studies failed to demonstrate a treat-
ment effect. Restricting the evaluation of  candidate therapeutics to homogeneous subsets of  patients, such 
as patients with a specific infectious etiology, has been proposed (8, 10). However, despite widespread 
recognition that the pathogenic processes leading to organ failure and death often differ between micro-
organisms and infection source, most clinical trials continue to group together all patients with sepsis (9).

The current sepsis treatment strategies are based on evidence-based guidelines covering multiple 
domains of  sepsis management including hemodynamics, infection, adjunctive therapies, metabolic fac-
tors, and ventilation (11). Early recognition and treatment is considered paramount, as several studies have 
demonstrated an increased risk of  mortality in patients receiving delayed treatment (12, 13). However, early 
recognition of  sepsis is difficult as physiologic derangements such as hypotension may be absent early in 
the course of  illness. Biomarkers to aid in clinical recognition and prognostication are needed, and exten-
sive research in this area is ongoing.

A recent systematic review of  sepsis identified 178 biomarkers that were altered during sepsis in 3370 
clinical and experimental studies (14). The biomarkers encompassed a wide range of  biologic pathways, 
including coagulation, the complement cascade, endothelial activation, inflammation, and apoptosis. The 
authors concluded that none of  the biomarkers with published validity estimates had adequate sensitivity or 
specificity for use in clinical practice, but combinations of  biomarkers should be evaluated in future studies.

The role of  the endothelium has increasingly been recognized as an integral component of  the host 
response to sepsis. Involvement of  the endothelium in sepsis is characterized by microvascular leak, which 
manifests clinically as hypotension, tissue edema, hypoperfusion, and organ dysfunction (15, 16). During 
the course of  infection, the endothelium becomes prone to clots, leukocyte trafficking increases, and the 
vessels become leaky (16). The vascular leak resulting from endothelial activation is thought to contribute 
to the tissue hypoxia and organ dysfunction that are integral to the pathogenesis of  sepsis. Compared with 
ICU controls, the capillaries of  patients with sepsis have decreased or intermittent flow as well as decreased 
vascular density (15). Several mechanisms have been proposed to account for the microcirculatory alter-
ations, including dysfunction of  the endothelium (15).

Patient profiles based on patterns of  circulating biomarkers of  endothelial response may provide a clin-
ically meaningful way to categorize patients into homogeneous subgroups. In this study, we evaluated the 
role of  11 biomarkers for their clinical relevance and role in mechanistic pathways in a cohort of  Ugandan 
adult patients with sepsis. Specifically, we evaluated with latent profile analysis whether patients with sepsis 
can be characterized in patient subgroups, each with distinct endothelial response profiles. We also investi-
gated the clinical relevance of  the observed endothelial response profiles. Lastly, we investigated with latent 
factor analysis whether the host response to any infectious insult is uniform across all patients by exploring 
whether specific endothelial markers were part of  one coordinated process or several distinct processes.

Results
Patient characteristics. A total of  426 patients were enrolled in the PRISM-U2 study, of  whom 315 had 
complete biomarker values and outcome measures available for analysis (Figure 1). The demographic and 
clinical characteristics of  the full sample and the analysis sample were comparable (Table 1). All remain-
ing analyses were conducted using the analysis set (n = 315). The median patient age was 35 years (IQR 
27–40), with approximately equal numbers of  males and females. The majority of  patients had a primary 
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(53%) or secondary (33%) school education and earned less than 50,000 Ugandan shillings per month 
(53%), approximately US$20 per month. The median systolic blood pressure was 86 mmHg (IQR 78–90). 
Most patients were HIV-infected (85%), with a median CD4+ T cell count of  40 cells/mm3 (IQR 11–118). 
Twelve percent (n = 39) had a peripheral blood smear positive for malaria.

Biomarkers. Data on 11 endothelial biomarkers were analyzed: angiopoietin-1 (ANGPT1), ANGPT2, 
soluble TEK receptor tyrosine kinase (sTEK), vascular endothelial growth factor (VEGF), soluble fms-
like tyrosine kinase-1 (sFLT1), soluble intercellular adhesion molecule-1 (sICAM1), soluble triggering 
receptor expressed on myeloid cells 1 (sTREM1), chitinase 3 like 1 (CHI3L1), von Willebrand factor 
(vWF), platelet factor 4 (PF4), and C-X-C motif  chemokine 10 (CXCL10). Biomarker concentrations did 
not differ significantly by sex or age. HIV-infected patients had biomarker concentrations similar to those 
of  uninfected patients (data not shown). Visual inspection of  scatterplots of  the biomarkers suggested a 
positive, linear correlation between ANGPT1 and PF4 as well as between sICAM1 and CXCL10.

Patient subgroups and mortality. Several fit-statistics were evaluated to determine the number of  classes 
(i.e., patient subgroups) (Table 2). The 4-class model had slightly lower log likelihoods, Akaike infor-
mation criterion, and Bayesian information criterion statistics than the 3-class model. However, the 

Figure 1. Flow diagram. The full cohort consisted of 426 subjects. 
The subjects were removed from the analysis if the clinical out-
come was missing (n = 5), or if data were missing on biomarker 
values (n = 106).

Table 1. Demographic and clinical characteristics

Characteristic Full sample, n = 426 Analysis set, n = 315
Demographics
   Age in years [median (IQR)] 34 (27–40) 35 (27–40)
   Female [n (%)] 219 (51) 163 (52)
   Education [n (%)]
None 35 (9) 26 (9)
   Primary school 231 (56) 159 (53)
   Secondary school 127 (31) 98 (33)
   More than secondary school 17 (4) 17 (6)
Income
   <50,000 USH/mo 213 (53) 154 (53)
   50,000–99,999 USH/mo 82 (21) 51 (17)
   100,000–299,999 USH/mo 77 (19) 61 (21)
   ≥300,000 USH/mo 28 (7) 26 (9)
Clinical variables
   SBP, mmHg [median (IQR)] 85 (78–90) 86 (78–90)
   HIV-infected [n (%)] 368 (87) 267 (85)
   CD4+ T count, cells/mm3 [median (IQR)] 63 (15–178) 40 (11–118)

USH, Ugandan shillings; SBP, systolic blood pressure.
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Lo-Mendell-Rubin test indicated there was no improvement in fit for a 4-class versus a 3-class model. 
Furthermore, the entropy of  the 3-class model was higher, suggesting higher classification certainty. 
Based on these results, a 3-class model was selected.

Profile 1 was the most prevalent, comprising 39% of  the patients (n = 122). Thirty-four percent of  the 
patients had a biomarker profile consistent with profile 3 (n = 107) and 27% with profile 2 (n = 86). The 3 
groups were similar in their demographic characteristics (Table 3). Patients fitting profile 2 had a slightly 
lower percentage of  females, but the difference was not statistically significant. A trend toward a higher per-
centage of  patients infected with HIV was observed in the profile 2 group (91%) compared with the profile 
1 (82%) and profile 3 (83%) groups (P = 0.193).

Patients fitting profile 2 had significantly worse survival outcomes than patients with the other 2 
profiles (log-rank P < 0.0001) (Figure 2). The endothelial response profiles (1, 2, and 3) corresponded to 
differences in other frequently used clinical laboratory measures of  patient status, including CD4+ T cell 
counts, white blood cell (WBC) counts, platelet counts, and hemoglobin concentration (Table 4). Con-
trolling for age and sex, the relative risk (RR) of  being categorized in profile 2 compared with profile 
1 nearly doubled with every 1 unit increase in log-transformed WBC count (RR = 1.83, 95% CI: 1.01, 
3.34) and decreased with increasing CD4+ T cell (RR = 0.76, 95% CI: 0.60, 0.97) and platelet counts 
(RR = 0.79, 95% CI: 0.70, 0.90; Table 5). In addition, all 3 groups differed from each other in their 
platelet counts, with decreased risk of  being categorized in profile 2 with increasing platelet counts.

M. tuberculosis infection was significantly associated with the profile 2 subgroup. The RR of  profile 2 
versus 3 was 2.7 times higher for patients with M. tuberculosis bacteremia (95% CI: 1.16, 6.33), controlling 
for age, sex, and CD4+ T cell count. Similarly, the RR of  profile 2 versus 1 was 2.5 times higher for patients 
with M. tuberculosis bacteremia (95% CI: 1.16, 5.39), controlling for age, sex, and CD4+ T cell count.

The RR of  profile 2 versus 3 increased 2.8 times with every 1 unit increase in log-transformed procal-
citonin (PCT) (95% CI: 1.98, 4.03), controlling for age, sex, and CD4+ T cell count. Similarly, the RR of  
profile 2 versus 1 increased 3 times with every 1 unit increase in log-transformed PCT (95% CI: 2.07, 4.50), 
controlling for age, sex, and CD4+ T cell count.

Table 2. Fit statistics for latent profile models with 1–4 classes

Log likelihood AIC BIC Lo-Mendell-Rubin Entropy
1 –4911.1 9866.2 9948.8 – –
2 –4675.5 9440.9 9609.8 <0.001 0.778
3 –4540.7 9217.5 9472.7 0.0148 0.859
4 –4473.7 9129.4 9470.9 0.5827 0.827

Boldface indicates the selected 3-class model. AIC, Akaike information criterion; BIC, Bayesian information criterion.

Table 3. Standardized mean concentrations of biomarkers by class as determined by latent profile 
analysis

Biomarker Profile 1 Profile 2 Profile 3
ANGPT1 –0.576 –0.249 0.867
ANGPT2 –0.230 0.594 –0.199

sTEK –0.199 0.396 –0.080
CHI3L1 –0.339 0.755 –0.199
CXCL10 –0.210 0.944 –0.499

vWF –0.083 0.427 –0.239
PF4 –0.488 –0.529 0.985

sTREM1 –0.291 0.772 –0.268
sICAM1 –0.243 0.753 –0.310
sFLT1 –0.338 1.085 –0.460
VEGF –0.650 0.020 0.741
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Endothelial processes. The principal component analysis parsed the data into 11 components, 4 of  which 
had eigenvalues greater than 1, suggesting that a maximum of  4 latent factors should be retained. The 
fourth component explained 10% of  the variance in the data, and together the 4 components explained 
70% of  the variance. A 4-factor model was also corroborated by the results of  the scree plot and parallel 
analysis. Factor 1 was characterized by high factor loadings for CHI3L1 (0.68), sTREM1 (0.61), and sFLT1 
(0.50; Table 6). ANGPT1 (0.81), PF4 (0.93), and VEGF (0.63) loaded on factor 2. Factor 3 was charac-
terized by high loadings of  CXCL10 (0.48), vWF (0.62), and sICAM1 (0.66). Lastly, high loadings of  
ANGPT2 (0.51) and sTEK (0.81) characterized factor 4. Factors 1 and 3 had a promax rotation correlation 
(rho) of  0.38, and factors 2 and 3 had rho of  0.26. The remaining correlations were negligible.

The uniqueness of  most biomarkers (i.e., the proportion of  the variance that was not explained by the 
factors) was moderate, indicating that the variance in the biomarkers was partially explained by the 4 factors 
(Table 6). In particular, the high factor loadings of  all 3 biomarkers constituting factor 2 suggest that this 

Figure 2. Kaplan-Meier survival curves by 
endothelial response profile. Patients fitting 
profile 2 died significantly sooner than patients 
fitting profile 1 or profile 3 (log-rank P < 0.001).

Table 4. Demographic characteristics by class as determined by latent profile analysis

Characteristic Profile 1 (n = 122) Profile 2 (n = 86) Profile 3 (n = 107)
Age in years [median (IQR)] 35 (27–40) 32 (27–38) 34 (29–43)
Female [n (%)] 71 (58) 38 (44) 54 (50)
Education
 None 6 (5) 7 (8) 13 (13)
 Primary school 68 (60) 45 (54) 46 (45)
 Secondary school 38 (33) 25 (30) 35 (34)
 More than secondary school 2 (2) 7 (8) 8 (8)
Income
 <50,000 USH/mo 53 (48) 45 (56) 56 (55)
 50,000–99,999 USH/mo 22 (20) 16 (20) 13 (13)
 100,000–299,999 USH/mo 26 (24) 14 (17) 21 (21)
 ≥300,000 USH/mo 9 (8) 6 (8) 11 (11)
Clinical variables
 SBP, mmHg [median (IQR)] 86 (80–90) 84 (76–92) 88 (80–90)
 HIV-infected [n (%)] 100 (82) 78 (91) 89 (83)
 CD4+ T count, cells/mm3 [median (IQR)] 52 (11–192) 44 (8–119) 93 (16–241)

USH, Ugandan shillings; SBP, systolic blood pressure.
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factor was a strong predictor of  ANGPT1, PF4, and VEGF. Two of  the biomarkers (sFLT1 and vWF) had 
uniqueness values greater than 0.6, suggesting that there was a greater level of  residual variability in these 
biomarkers. Factor 4 was identified by only 2 biomarkers and is, therefore, at risk for misinterpretation.

Patients fitting profile 1 had biomarker concentrations that were below average for all 11 biomarkers 
(Table 3 and Figure 3). The biomarkers identified through the latent factor analysis as belonging to factor 2 
(ANGPT1, PF4, and VEGF) were particularly low in profile 1. Profile 2 was characterized by elevated con-
centrations of  all biomarkers except for those belonging to factor 2. Conversely, profile 3 consisted of  ele-
vated concentrations of  biomarkers belonging to factor 2 and low concentrations of  the other biomarkers.

Discussion
Sepsis is widely recognized as a complex, heterogeneous syndrome (9). A panel of  biomarkers involved 
in the endothelial response to sepsis was rigorously evaluated to better characterize the underlying 
heterogeneity in the pathways of  host response and injury that underlie multiorgan dysfunction and 
mortality in sepsis.

Three subgroups of  patients with sepsis were identified with distinct host endothelial response profiles. 
The patients in the 3 subgroups were similar in their demographic characteristics, yet there were significant 
differences in their clinical laboratory values. This finding suggests that there is clinical relevance to the 3 
endothelial response profiles. Profile 2 was associated with low CD4+ T cell counts, low platelet counts, low 
hemoglobin concentrations, and elevated WBC counts. In contrast, the risk of  being in the profile 3 group 
increased with increasing hemoglobin concentrations and platelet counts.

Patients infected with M. tuberculosis were at approximately 2.5 times higher risk of  being in profile 
2 compared with patients without M. tuberculosis bacteremia, controlling for age, sex, and CD4+ T cell 
count. This finding supports the theory that different pathogens may elicit different endothelial respons-
es. However, only 38% of  patients estimated to be in profile 2 based on most likely class membership 
were infected with M. tuberculosis, suggesting that the endothelial response is not pathogen-specific.  

Table 5. Risk ratios for endothelial class membership

Characteristic Profile 2 (vs. profile 1)  Profile 3 (vs. profile 1) Profile 2 (vs. profile 3)
Age in years 0.99 (0.94, 1.04) 1.00 (0.96, 1.03) 0.99 (0.93, 1.05)
Female 0.51 (0.23, 1.09) 0.64 (0.33, 1.26) 0.79 (0.31, 1.96)
Ln CD4+ T cells 0.76 (0.60, 0.97)A  0.90 (0.73, 1.12) 0.84 (0.66, 1.07)
Ln WBCs 1.83 (1.01, 3.34)A 1.33 (0.80, 2.20) 1.38 (0.64, 2.98)
Hemoglobin 0.87 (0.74, 1.02) 1.19 (1.02, 1.39)A 0.73 (0.59, 0.90)A

Sqrt platelets 0.79 (0.70, 0.90)A 1.22 (1.07, 1.39)A 0.65 (0.53, 0.79)A

AStatistically significant differences; Wald χ2, P < 0.05. Ln, natural logarithm; Sqrt, square root.

Table 6. Rotated factor pattern (promax rotation)

Biomarker Factor 1 Factor 2 Factor 3 Factor 4 Uniqueness
ANGPT1 –0.0257 0.8061 –0.0120 0.1859 0.3070
ANGPT2 0.4548 –0.0958 –0.1203 0.5088 0.4739

sTEK –0.0488 0.0326 0.0950 0.8099 0.3252
CHI3L1 0.6819 0.0603 0.1063 –0.0285 0.4862
CXCL10 0.3127 –0.1107 0.4830 –0.0653 0.5215

vWF –0.0931 0.1015 0.6180 0.1059 0.6427
PF4 –0.0985 0.9275 0.0772 –0.0925 0.1365

sTREM1 0.6129 –0.0303 0.1176 0.0227 0.5415
sICAM1 0.2247 0.0425 0.6611 0.0411 0.3993
sFLT1 0.4979 –0.1312 0.1539 –0.0703 0.6408
VEGF 0.3332 0.6262 –0.0964 –0.0950 0.5299

Boldface indicates high factor loadings.
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Few studies have specifically investigated endothelial activation in patients with M. tuberculosis. Ragno 
et al. examined changes in gene expression in macrophages infected with M. tuberculosis and found 
upregulation of  genes encoding VEGF and its receptor sFLT1, among other genes thought to be 
involved in immunoregulation (17). VEGF (18, 19) and sICAM1 (20) concentrations were also found to 
be higher in patients with active than inactive pulmonary tuberculosis. Patients with active pulmonary 
tuberculosis had significantly higher concentrations of  PF4 than control patients (21, 22), and one study 
found PF4 levels correlated with the extent of  pulmonary lesions on chest radiography (22). In a study 
of  patients with pleural effusions, vWF levels were significantly higher in patients with tuberculosis 
than other etiologies (23). Among patients with pulmonary M. tuberculosis, a sTREM1 concentration of  
≥128 pg/ml was associated with 6-month mortality and the presence of  disseminated tuberculosis (24), 
but did not differentiate tuberculosis from pneumonia caused by extracellular bacteria (25). Although 
the evidence for the contribution of  endothelial dysfunction to M. tuberculosis pathogenesis is limited, 
further investigation may be warranted, particularly as most studies focused on pulmonary (rather than 
extrapulmonary) tuberculosis.

The impact of  infectious etiology on the relationship between markers of  the inflammatory and endo-
thelial responses and mortality risk was recently investigated in a cohort of  subjects with bloodstream 
infections meeting at least 2 SIRS criteria and admitted to the ICU at an academic medical center in the 
United States (26). Multivariate analysis of  plasma biomarkers identified statistically significant associa-
tions between ANGPT2 and the ANGPT2/ANGPT1 ratio and 28-day mortality. Subjects infected with 
Gram-negative bacilli infections (predominantly E. coli) had similar biomarker concentration profiles to 
patients infected with Gram-positive cocci, with the exception of  ANGPT2/ANGPT1 concentration 
ratios. However, bacterial class was not associated with 28-day mortality. The investigators concluded that 
the inflammatory and endothelial marker concentrations did not differ significantly by Gram-positive or 
Gram-negative infections, and 28-day mortality did not differ by bacterial class (26).

Latent factor analysis of the correlation structure of the biomarkers identified patterns suggesting that 
the biomarkers are involved in 4 distinct processes. Factor 1 was loaded highly by the biomarkers CHI3L1, 
sTREM1, and sFLT1. All three are involved in the monocyte response to infection. sTREM1 and sFLT1 are 
receptors expressed on monocytes, which lead to secretion of proinflammatory mediators when activated. Fac-
tor 1 could, therefore, be interpreted as an inflammatory process. sTREM1 amplifies the inflammatory response 
in extracellular bacterial and fungal infections (27). Once activated, the cellular receptors are shed from the cell 

Figure 3. Heatmap of standardized mean biomarker 
concentrations by patient profile. The 3 patient 
profiles have distinct biomarker patterns. Patients 
in profile 1 have below-average biomarker concen-
trations of all 11 biomarkers, particularly biomarkers 
belonging to factor 2. Patients in profile 2 have 
above-average concentrations of all biomarkers 
except those in factor 2. Profile 3 was characterized 
by elevated concentrations of biomarkers in factor 2, 
and below-average biomarker concentrations of the 
other biomarkers.
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surface. Activated macrophages and neutrophils secrete CHI3L1, which has a proinflammatory effect. While 
the biologic activity of CHI3L1 is not completely understood, it is associated with inflammatory conditions such 
as rheumatoid arthritis and has been shown to upregulate VEGF expression and promote angiogenesis (28).

ANGPT1, PF4, and VEGF loaded on factor 2, which could be interpreted as a vessel stabilization 
process. All 3 molecules are involved in angiogenesis, the formation of  blood vessels from preexisting blood 
vessels. Prior investigation of  the biologic relationship between ANGPT1 and VEGF found that ANGPT1 
prevents VEGF from disrupting endothelial cell-to-cell contacts, thus stabilizing blood vessels and prevent-
ing vascular leak (29). PF4 has several biologic functions and inhibits the angiogenic effects of  VEGF (30). 
Furthermore, a murine model of  sepsis-induced acute lung injury demonstrated that disruption of  PF4 
prevented lung edema and tissue damage (31). Given the biologic functions of  the constituent biomarkers, 
this factor likely plays a protective role in sepsis pathogenesis.

Factor 3 was characterized by high loadings of  CXCL10, vWF, and sICAM1, and could be interpret-
ed as a leukocyte recruitment process. Transendothelial migration of  leukocytes to sites of  inflammation 
occurs in a multistep process involving rolling across the endothelium, integrin activation to stop leukocyte 
motility, and adhesion and transmigration of  the cell across the endothelium. The processes of  leukocyte 
rolling and leukocyte adhesion have both been shown to be dependent on the presence of  vWF in inflamed 
veins (32). CXCL10 is a chemokine that is produced at high levels by activated endothelial cells and is 
involved in leukocyte transmigration (33). The firm adhesion of  leukocytes to the endothelial cell is medi-
ated by sICAM1, an adhesion molecule expressed on endothelial cells.

Lastly, high loadings of  ANGPT2 and sTEK characterized factor 4, which could be interpreted as 
endothelial vessel instability. ANGPT2 competes with ANG-1 for their receptor, sTEK. When bound to 
sTEK, ANGPT2 primes the endothelium to respond to proinflammatory and angiogenic (e.g., VEGF) 
stimuli, propagating further endothelial activation and destabilizing the endothelial vasculature (34). Endo-
thelial barrier integrity is tightly regulated and is altered during sepsis. ANGPT2 and sTEK signaling plays 
a critical role in disrupting the endothelial barrier, resulting in net extravasation of  fluid from the vascular 
space into the tissues (35).

The 4-factor model explained the variability in most of  the biomarkers; however, sFLT1 and vWF had 
high uniqueness values. It is possible that these biomarkers are involved in other relevant processes not cap-
tured in this analysis. Alternatively, these biomarkers may be more difficult to accurately measure. Factor 4 
(vessel instability) was identified by only 2 biomarkers and is therefore at risk for misinterpretation. Howev-
er, there has been extensive study on the relationship between ANGPT2 and its receptor, sTEK, supporting 
the interpretation of  this factor as vessel instability.

Interpretation of  the endothelial response profiles is complex. Patients fitting profile 1 had below-av-
erage concentrations of  all 11 biomarkers, suggesting a quiescent phenotype. In particular, biomarkers 
belonging to factor 2 (ANGPT1, PF4, and VEGF), interpreted as the vessel stabilization factor, were par-
ticularly low in profile 1. Profile 2 was characterized by elevated concentrations of  all biomarkers except 
for those belonging to the vessel stabilization factor (factor 2). Profile 2 could be interpreted as endothelial 
dysfunction. Conversely, profile 3 consisted of  elevated concentrations of  biomarkers belonging to factor 
2 and low concentrations of  the other biomarkers, perhaps suggesting that these patients fit an endothelial 
repair profile. The cytokine responses for patients with sepsis were summarized in a review to typically 
follow 1 of  3 patterns: (a) rapid production of  both proinflammatory and antiinflammatory cytokines; 
(b) predominance of  antiinflammatory cytokines; or (c) globally depressed production of  cytokines (36). 
Future studies could investigate whether the 3 cytokine patterns described in the review correspond to the 
endothelial response profiles identified in this study.

Latent factor analysis (LFA) and latent profile analysis (LPA) offer a novel approach to understanding 
the host-response profiles in patients with sepsis. LFA provides information on the correlation structure of  
the biomarkers, where correlated biomarkers can be conceptualized as being part of  a biologic process. LPA 
identifies subgroups of  patients with similar host-response profiles. The use of  both approaches in parallel 
provides insight into the biologic processes underlying the patient subgroups. In contrast, other methods often 
used in biomarker studies, such as logistic regression, provide information on the relationship between indi-
vidual analytes and the outcome. In complex diseases such as sepsis, however, the outcome is likely a result 
of  disruption in multiple biologic processes, which may not be well represented by individual analytes. Fur-
thermore, traditional methods do not account for subgroups of  patients that differ in their biomarker profiles 
and their risk of  the outcome. However, LFA and LPA do have limitations. The decisions regarding both the 
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number of  factors and the number of  subgroups were guided by several well-established criteria but are ulti-
mately somewhat arbitrary. In the LFA, we chose a 4-factor model, but an argument could also be made for a 
3-factor solution. Selection of  too few or too many factors has consequences for the interpretation of  the data. 
Specifying too many factors could lead to inclusion of  minor factors but was considered more acceptable 
than potentially losing important information by specifying too few factors. Furthermore, the fourth factor 
was composed of  ANG-2 and its receptor sTEK, which is conceptually consistent with the known biology 
of  the 2 molecules. In the LPA, the log-likelihood and Bayesian information criterion were marginally better 
for the 4-class solution. However, simulation studies suggest that the Lo-Mendell-Rubin test is more accurate 
for selecting the correct number of  classes. In addition, the entropy statistic suggested that the 3-class solution 
formed more distinct groups.

While our study had a number of  strengths, it also had limitations, including that it was a single-coun-
try study that enrolled patients who were predominantly people living with HIV. We hypothesize that the 
biologic processes we observed in patients with sepsis in Uganda will be conserved across other patient 
populations; however, additional prospective confirmatory studies are required in geographically diverse 
areas to establish the generalizability of  our findings. In this study, we focused on endothelial and immune 
activation during sepsis. Future research is also needed to examine the relative importance of  other bio-
logic processes implicated in the pathobiology of  sepsis, including immune exhaustion, coagulopathy, and 
altered glucose and protein metabolism.

Patients in profile 2 had significantly worse survival outcomes than patients in the other subgroups. 
Profiling patients based on their endothelial response may have important implications for clinical manage-
ment, as patients with endothelial dysfunction may benefit from targeted treatment strategies. Endothelial 
response profiles may also prove useful in future clinical trials where selection of  homogeneous study pop-
ulations is needed to detect potential treatment effects. Further research is needed to establish the clinical 
relevance of  the endothelial response profiles and determine whether similar subgroups are found in popu-
lations with different pathogens, host genetics, and patient comorbidities.

Methods
Study population. The primary cohort from which these biomarker data were collected has been described 
elsewhere (37). In brief, 426 adult patients admitted with sepsis to the medical wards of  2 Ugandan hospitals 
were enrolled in an intervention study of  fluid resuscitation conducted between May 2008 and May 2009.

Data collection. The primary outcome of  interest was 28-day mortality, measured in days from study 
enrollment. Demographic, clinical history, and patient management data were systematically recorded 
in the evaluation. Double data entry was conducted for quality control using EpiData (The EpiData 
Association, Odense, Denmark).

Laboratory testing. Blood samples were collected at the time of  enrollment for complete blood counts, 
electrolytes, CD4+ T cell (CD4) counts, HIV serology, malaria blood smears, and blood cultures (both 
aerobic and mycobacterial).

All biomarker assays were conducted at the University of  Toronto using blood drawn at study 
enrollment. The clinical samples were centrifuged at the hospital, and serum was stored at –20°C. Com-
mercial ELISAs were used to measure biomarker levels (ANGPT1, ANGPT2, sICAM1, sTREM1, 
CHI3L1, PF4, CXCL10, sFLT1, sTEK, VEGF: R&D Systems; vWF: antibody from Dako, standard 
from American Diagnostica) (38). All assays were conducted in duplicate. The biomarker results were 
reported on a continuous scale, measured in either picograms or nanograms per milliliter. The upper 
and lower limits of  detection for each assay were: ANGPT1, 0.039–20 ng/ml; ANGPT2, 0.016–8 ng/
ml; sICAM, 0.078–4 ng/ml; sTREM1, 93.8–6000 pg/ml; CHI3L1, 31.2–2000 pg/ml; PF4, 15.6–1000 
pg/ml; CXCL10, 31.2–2000 pg/ml; sFLT1, 125–8000 pg/ml; sTEK, 156–10,000 pg/ml; VEGF, 31.2–
2000 pg/ml; vWF, 1.95–2000 ng/ml.

Statistics. The analysis set included the 426 patients enrolled in the prospective study (the “full sample”), 
excluding patients whose mortality data (5 patients) or any biomarker values (106 patients) were miss-
ing. Ninety-three of  the missing biomarker values were due to loss of  a shipment of  samples, suggesting 
the data were missing completely at random. The final analysis set included 315 patients. The biomarker 
variables were plotted to identify outliers and evaluate normality. The natural logarithms of  the biomarker 
concentrations were used for all biomarkers except sTEK and CXCL10, which better approximated a nor-
mal distribution with a square root transformation as determined by visual inspection of  the distributions.  
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There were no extreme outliers (3 times the IQR below the 25th percentile or above the 75th percentile) 
after the transformations. The transformed variables were standardized to have a mean of  0 and stan-
dard deviation of  1.

Latent profile analysis (LPA) is a method to ascertain subgroups of patients conforming to a particular pat-
tern of indicators from an otherwise heterogeneous population. In LPA, subgroups of individuals are formed 
such that individuals within the subgroup have common response probabilities. In turn, the fitted model can 
be used to classify patients with different biomarker patterns into different subgroups. LPA provides a useful 
means of identifying subgroups of patients with homogeneous biomarker patterns, thus reducing the heteroge-
neity in the study population. LPA is similar to latent class analysis but allows for continuous indicators.

A series of  latent profile models was evaluated to determine the number of  latent subgroups. Several 
criteria were used to determine the best-fitting model, including the Bayesian information criterion (39, 
40), the log likelihood, the Lo-Mendell-Rubin test (41), entropy (42), and clinical interpretability (43). 
Once the optimal number of  classes was determined, subjects were assigned to the most-likely class based 
on the posterior probability of  class membership. Multinomial logistic regression using a 3-step approach 
was used to investigate the demographic and clinical characteristics of  the latent subgroups. These mod-
els provide the risk of  membership in a given latent class versus a reference latent class, with the corre-
sponding confidence interval. The 3-step approach was used to account for the measurement error in the 
classification of  patients into their most-likely class (44). Age, sex, and the natural logarithm of  the CD4+ 
T cell count were included in the models as potential confounders. M-plus v7 (Muthén and Muthén, Los 
Angeles, California, USA) was used to identify the best-fitting LPA model and for multinomial logistic 
regression analysis. Kaplan-Meier survival curves were generated for each latent class, and the log-rank 
test was used to test whether the survival curves were significantly different. All statistical tests were 
2-tailed, with a P value less than 0.05 considered significant.

To evaluate whether the endothelial response to sepsis consisted of  one unified biologic process 
or multiple processes, LFA was used to analyze the correlation structure of  the biomarkers. LFA is a 
multivariate statistical method for determining the number and nature of  patterns of  an observed cor-
relation structure. In this study, each factor represented an underlying biologic process comprising a set 
of  correlated biomarkers. Principal component analysis was used to estimate the number of  dimensions 
of  shared variation. The number of  components was determined using several criteria, including the 
proportion of  variance explained by the component (45); having an eigenvalue greater than 1 (46); scree 
plots analysis (47); and parallel analysis (PA) (48). The criterion of  an eigenvalue greater than 1 was used 
as an upper bound for the number of  factors to retain (45). In PA, 1000 data sets were simulated with the 
same number of  observations and variables as the study data set. As the generated data were random, 
any correlation in the indicators was due to sampling error. Components corresponding to eigenvalues 
greater than the random eigenvalues obtained from the PA were retained. Components corresponding 
to eigenvalues less than or equal to the random eigenvalues were considered to be due to sampling 
error (45). The iterated principal factor method was then used to estimate factor model loadings for the 
selected number of  factor dimensions. Since correlation among biomarkers within the biologic processes 
was expected, a promax rotation was used (49). Factor rotations simplify the factor structure and inter-
pretability. The rotated factor pattern matrix was used to interpret the meaning of  the factors. The rotat-
ed factor loadings in this matrix were standardized regression coefficients, representing the correlation 
between a biomarker and the factor, holding other factors constant. The LFA was conducted using Stata 
(StataCorp 2009, Stata Statistical Software, release 11).

Study approval. Informed consent was obtained from the patient or a surrogate if  the patient was unable 
to provide written consent. Institutional review board (IRB) approval was obtained from the University of  
Virginia, Makerere University, Mulago Hospital, the Infectious Disease Institute, and the Uganda National 
Council of  Science and Technology. The Johns Hopkins Bloomberg School of  Public Health IRB deemed 
the secondary data analysis not human subjects research.
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