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Abstract

The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and 

credibly evaluating chemical safety often with limited or no available toxicity data. The expanding 

number of chemicals found in commerce and the environment, coupled with time and resource 

requirements for traditional toxicity testing and exposure characterization, continue to underscore 

the need for new approaches. In 2005, EPA charted a new course to address this challenge by 

embracing computational toxicology (CompTox) and investing In the technologies and capabilities 

to push the field forward. The return on this Investment has been demonstrated through results and 
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applications across a range of human and environmental health problems, as well as initial 

application to regulatory decision-making within programs such as the EPA’s Endocrine Disruptor 

Screening Program. The CompTox Initiative at EPA is more than a decade old. This manuscript 

presents a blueprint to guide the strategic and operational direction over the next five years. The 

primary goal Is to obtain broader acceptance of the CompTox approaches for application to higher 

tier regulatory decisions, such as chemical assessments. To achieve this goal, the blueprint expands 

and refines the use of high-throughput and computational modeling approaches to transform the 

components in chemical risk assessment, while systematically addressing key challenges that have 

hindered progress. In addition, the blueprint outlines additional investments in cross-cutting efforts 

to characterize uncertainty and variability, develop software and information technology tools, 

provide outreach and training, and establish scientific confidence for application to different public 

health and environmental regulatory decisions.
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computational toxicology; predictive toxicology; high throughput assays; toxicokinetics; exposure; 
risk assessment; ToxCast; ExpoCast; Tox21; cheminformatics; CompTox

Background and History

Human health chemical assessments at the EPA have traditionally relied upon toxicity data 

from animal bioassays and epidemiological studies to inform derivation of non-cancer and 

cancer values. Hazard and exposure-response studies typically measure the impact of 

chemical exposure on apical endpoints (e.g., histological changes) and have historical and 

legal precedent for use in risk assessment and risk management. The strengths of these 

traditional testing approaches are offset by high costs and lengthy test durations, resulting in 

a significant gap between the large number of chemicals in commerce that results in human 

exposure and the small number of well-studied chemicals with available animal or human 

data. This data gap poses a considerable challenge for the EPA, which is mandated to apply 

the best available science to protecting human health and the environment through timely 

and informed chemical safety decisions.

The challenge of “too many chemicals, too little data” for chemical toxicity testing has been 

recognized for over three decades (NRC, 1984). Rapid advances in biotechnology and 

computational modeling were viewed as providing a potential solution to address this 

challenge. The opportunities afforded by these new approaches led to the development and 

release of a strategic plan for EPA’s computational toxicology (CompTox) research program 

(EPA, 2003) and subsequent formation of the National Center for Computational Toxicology 

(NCCT). Shortly after its formation, NCCT launched the Toxicity Forecaster (ToxCast) 

project for in vitro high-throughput screening (HTS) of environmental chemicals relevant to 

the Agency’s mission (Dix et al., 2007). In the first phase of ToxCast, EPA screened 310 

data-rich chemicals, predominantly pesticides, across ~700 assay endpoints (Kavlock et al., 
2012). In the second phase, EPA expanded the ToxCast library to ~1,000 chemicals and 

tested the chemicals across a set of ~900 assay endpoints (Richard et al., 2016). The assays 

in the initial ToxCast portfolio were primarily repurposed from pharmaceutical screening 
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efforts, but were selected for potential relevance to assessing chemical impacts on human 

health, including cytotoxicity, genotoxicity, cell growth, cell differentiation, cell signaling, 

and transcriptional regulation (Kavlock, et al., 2012).

As part of the CompTox strategic initiative, EPA, in collaboration with the National 

Toxicology Program (NTP), funded the formation of an expert committee by the U.S. 

National Academies of Science and National Research Council (NRC) to provide 

recommendations to advance the field in this area. The committee’s deliberations resulted in 

the 2007 Report “Toxicity Testing in the 21st Century” (NRC, 2007). The report supported a 

fundamental shift from chemical safety decisions based on apical animal endpoints towards 

broader application of in vitro testing and predictive toxicology methods. The shift in 

approach relies on quantifying the disruption of molecular events and cellular pathways 

using higher throughput, in vitro assays and integrating results across diverse chemistries 

and biological endpoints using computational modeling. The shift in approach goes hand-in-

hand with rapid data generation, reduced cost to generate toxicity data, and more directed 

and hypothesis-driven toxicity and epidemiological studies. In response to the NRC report, 

EPA partnered with two National Institute of Health organizations, the National Center for 

Advancing Translational Sciences (NCATS) and NTP, to form a federal partnership in 2008 

(Collins et al., 2008; Kavlock et al., 2009). This partnership, named Tox21, aimed to develop 

and pilot high-throughput in vitro screening technology for application to toxicity testing. In 

2010, the U.S. Food & Drug Administration (FDA) joined the partnership. The Tox21 

federal partners contributed to a combined library of over 8,500 chemicals and screened 

those chemicals across more than 80 assay endpoints (Thomas et al., 2018; Tice et al., 
2013).

ToxCast and Tox21 typically perform automated screens in concentration-response format. 

The result is thousands of concentration-response curves per assay. Automated data analysis 

workflows have been developed to normalize the data and estimate potency and efficacy 

values for each chemical-assay endpoint combination. The ToxCast data analysis pipeline 

has evolved over time, and the current iteration includes a robust curve-fitting algorithm, 

active and inactive responses based on baseline noise and efficacy criteria, and data quality 

flags to indicate concerns with noisy data, artifacts, and systematic assay errors (Filer et al., 
2016). To facilitate transparency and Increase scientific confidence, the Tox21 data are 

available through PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the ToxCast data are 

available in raw and processed form from the ToxCast data download site (https://

www.epa.gov/chemical-research/toxicitv-forecaster-toxcasttm-data) as well as through 

EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard). The Tox21 

and ToxCast chemical structure libraries are available for download in multiple formats, in 

addition, major portions of the Tox21 and ToxCast chemical sample libraries have been 

characterized using analytical methods to confirm chemical Identity, as well as to establish 

purity and concentration (https://tripod.nih.gov/tox21/samples). Finally, an owner’s manual 

for ToxCast Is available detailing chemical library management, including procurement, 

curation and quality control, as well as documenting assay annotations, data analysis 

procedures, and assay performance characteristics (https://www.epa.gov/chemical-research/

toxcast-owners-manual-guidance-exploring-data).
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Computational modeling approaches are essential for interpreting and applying HTS data to 

predicting toxicity. Published models to date have been diverse in form and function, and 

include statistical and dynamic models, as well as empirical and biologically-based models. 

Two examples of pathway-based models for the estrogen and androgen receptors combine 

data from multiple assays to reduce noise and compensate for technological deficiencies 

(Judson et al., 2015; Kleinstreuer et al., 2016). Statistical models have also been developed 

to predict toxicological hazards such as hepatotoxicity (Liu et al., 2015), Identify mode-of-

action (MOA) based on cancer pathways (Kleinstreuer et al., 2013a), and estimate 

toxicological ‘tipping points’ associated with the concentration-dependent transition from 

cellular adaptation to adversity (Frank et al., 2018; Shah et al., 2016b). Lastly, HTS assays 

have been used in dynamic computational modeling of biological processes to understand 

the potential mechanistic consequences of chemically-related perturbations. Examples 

include vascular angiogenesis (Kleinstreuer et al., 2013b), palatal fusion (Hutson et al., 
2017), and genital tubercle development (Leung et al., 2016).

An Important recommendation In the 2007 NRC report was the need to place in vitro HTS 

results into a dose and exposure context to support chemical safety decisions. To provide a 

dose context, EPA and the Hamner Institutes for Health Sciences collaborated to modify 

approaches developed in the pharmaceutical industry that parameterize toxicokinetic models 

using in vitro assay measurements (Rotroff et al., 2010; Wetmore et al., 2015b; Wetmore et 
al., 2012a). These methods relied on in vitro measurements of plasma protein binding using 

equilibrium dialysis and measurements of intrinsic hepatic clearance using primary 

hepatocytes. In vitro-to-in vivo extrapolation (IVIVE) approaches are used to scale the 

experimental data and subsequently develop toxicokinetic models that estimate steady-state 

blood concentrations associated with a given administered dose. The development and 

application of the methods to convert potency values for hundreds of chemicals from the 

ToxCast and Tox21 HTS assays Into administered dose equivalents have led to the term 

high-throughput toxicokinetics (HTTK). Many of the HTTK models are publicly available 

as an R package (Pearce et al., 2017b).

In parallel with the generation of HTS data, legacy in vivo toxicity studies were curated and 

stored in a computable format together with relevant metadata in the Toxicity Reference 

Database (ToxRefDB). The Initial objective in compiling ToxRefDB was to provide a 

resource to compare with HTS data. As a result, the Initial chemicals in ToxRefDB were 

chosen to maximize overlap with ToxCast Phase I (Richard, et al., 2016). The Initial release 

of the ToxRefDB data in 2009 covered chronic non-cancer, cancer, developmental, and 

reproductive studies for over 300 chemicals (Knudsen et al., 2009; Martin et al., 2009a; 

Martin et al., 2009b). The ToxRefDB has been Improved Iteratively with the addition of 

more study sources, increased numbers of chemicals, and refinements in the data provided. 

Curation of the legacy in vivo toxicity studies has enabled the examination of a range of 

toxicological questions and facilitated comparisons of in vivo, in vitro, and computational 

modeling outcomes, including development of computational models to quantitatively 

predict in vivo dose response (Truong et al., 2017), identifying chemicals associated with a 

particular endpoint of concern (Al-Eryani et al., 2015), examination of cross-species 

concordance In chemical responses (Judson et al., 2017), associating mechanistic and 

pathway-level responses with organ and tissue outcomes (Kleinstreuer et al., 2011; Shah et 
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al., 2011), and retrospective analyses to assess the value of a particular endpoint or study for 

safety-decisions (Theunissen et al., 2014).

The data landscape for chemical exposures is even more sparse than that for chemical 

toxicity (Egeghy et al., 2012), yet is equally critical for establishing risk. To address this 

challenge, EPA began a parallel research effort to ToxCast called the Exposure Forecaster 

(ExpoCast) (Cohen Hubal et al., 2010). The intent of this effort was to develop 

computationally based exposure predictions for thousands of chemicals based on limited 

data. To obtain these exposure predictions, the Systematic Empirical Evaluation of Models 

(SEEM) framework was developed to allow for the calibration and evaluation of multiple 

exposure models using chemical concentrations from biomonitoring studies (Wambaugh et 
al., 2013). The SEEM framework provides calibrated exposure estimates for thousands of 

chemicals, as well as uncertainty around those predictions. In the first application of the 

SEEM framework, a combination of traditional chemical fate and transport model estimates, 

production volume, and a binary indicator of whether a chemical was used in the indoor 

environment provided marginal predictivity of biomonitoring data from the US National 

Health and Nutrition Examination Survey (NHANES) (Wambaugh, et al., 2013). The SEEM 

approach was subsequently improved with the next version using production volume and a 

combination of chemical use indicators to predict exposure for the general population to 

nearly 8,000 chemicals (Wambaugh et al., 2014). The latest iteration uses chemical structure 

and physicochemical properties to predict the likely exposure pathway for a chemical 

followed by consensus exposure predictions from thirteen different exposure models (Ring 

et al., 2018). The consensus model predicts median intake rate and credible interval for 

median intake rate, and credible interval for 479,926 chemicals (Ring, et al., 2018).

Initial Successes and Application to Decision Making

The success of the ToxCast and Tox21 efforts in the context of EPA’s CompTox program 

has been demonstrated across a range of human and environmental health applications. 

Within EPA, the data have been used for identifying modes-of-action (MOAs) for industrial 

and environmental chemicals (Kleinstreuer et al., 2014; Shah, et al., 2011), rapid testing of 

chemicals in emergency response situations (Judson et al., 2010), prioritizing chemicals for 

analytical chemistry suspect screening analysis (Newton et al., 2018; Rager et al., 2016), and 

building adverse outcome pathways (AOPs) (Bell et al., 2016; Oki et al., 2016). In addition, 

the data have been used to inform analog selection in read-across (Shah et al., 2016a), build 

predictive models for pathway activity and toxicological hazard (Judson, et al., 2015; 

Kleinstreuer, et al., 2016), and identify priority contaminants for environmental surveillance 

and monitoring (Blackwell et al., 2017; Li et al., 2017; Newton, et al., 2018; Schroeder et 
al., 2016).

Initial translation of the developments in CompToxto regulatory decision-making have 

occurred primarily within the EPA’s Endocrine Disruptor Screening Program (EDSP). In a 

series of Science Advisory Panel (SAP) meetings, the application of HTS assays (EPA, 

2012), development of HTTK and exposure models for dose and exposure context (EPA, 

2014b), and the integration of the information using computational modeling (EPA, 2014a) 

were peer reviewed. Following the SAP meetings, EPA announced its intent to use the high-
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throughput and computational approaches for predicting estrogen receptor activity to replace 

specific in vitro and in vivo tests in the Tier 1 EDSP battery and to prioritize chemicals for 

further evaluation (EPA, 2015). Further applications of CompTox tools and data have been 

outlined in the recent release of the strategic plan to promote the development and 

application of alternative methods in the Toxic Substances Control Act (TSCA) program 

(EPA, 2018) and selecting candidates for prioritization in TSCA (https://www.epa.gov/

assessing-and-managing-chemicals-under-tsca/identifying-existing-chemicals-prioritization-

under-tsca).

The public release of the ToxCast and Tox21 data, with supporting documentation and 

applications, has facilitated and promoted its use across the broader scientific and regulatory 

communities. Examples include identifying MOAs for specific industrial and environmental 

chemicals (Leet et al., 2014; Wills et al., 2015); mechanistic support in cancer hazard 

assessments by international bodies (Smith et al., 2016); assessment of chemical alternatives 

(Chen et al., 2016; NRC, 2014); prioritizing chemicals for biomonitoring (Krowech et al., 
2016); and building training sets for Quantitative Structure-Activity Relationship (QSAR) 

modeling (Mansouri et al., 2016a; Norinder et al., 2016; Sedykh et al., 2011). In addition, 

the external community has used the data across a wide range of applications including 

providing mechanistic support for chemical hazard In pesticide risk assessments (CalEPA, 

2016); screening for substances of high concern (ECHA, 2017); regulatory and economic 

impact assessments (EC, 2016); prediction of toxicological hazard (Bhhatarai et al., 2015); a 

key component In a tiered toxicity testing framework (Thomas et al., 2013); and 

identification of potential toxicological liabilities for pharmaceuticals (Shah et al., 2014). 

Health Canada has also outlined a plan that uses CompTox data in identifying priorities for 

risk assessment within their Chemicals Management Plan (http://www.ec.gc.ca/ese-ees/

default.asp?lang=En&n=172614CE-1). The diversity of external organizations utilizing the 

ToxCast and Tox21 data supports the continued development and public release of toxicity 

and exposure data. Implementation and application of CompTox tools and approaches can 

be expanded and this is one of the challenges and goals of this blueprint.

A Blueprint for the Future

The mission of the CompTox research efforts across EPA is to integrate advances in 

chemical, biomedical, computational, and informatics sciences to efficiently and 

economically evaluate the safety of chemicals. To date, the CompTox effort has been 

successful in developing and applying new approaches to chemical characterization, toxicity 

testing, toxicokinetics, and exposure modeling. The resulting data streams enable a shift 

away from evaluating the toxicity of small numbers of chemicals based on apical endpoints 

in animal studies to evaluating thousands of chemicals based on disruption of molecular 

events and cellular pathways using high-throughput and computational approaches. Despite 

the progress, the shift to predictive approaches and reliance on pathway perturbations is not 

complete. The primary goal for this blueprint is to obtain broader acceptance of the 

CompTox approaches for application to higher tier regulatory decisions, such as chemical 

assessments. A blueprint for the next five years requires expanding the scope of existing 

CompTox efforts, systematically addressing key challenges that have limited progress to 

date, and additional investments in important cross-cutting areas. The emphasis for the 
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CompTox efforts continues to be the use of computational modeling and high-throughput 

approaches to transform components used to understand potential health risks of chemicals - 

chemical characterization, hazard evaluation, toxicokinetics, and exposure assessment (Fig. 

1). Surrounding these components are cross-cutting efforts in characterizing uncertainty and 

variability; development of software and information technology tools that facilitate 

translation, outreach and training activities; and establishing scientific confidence for 

different regulatory decisions.

Chemical Characterization

The foundation of toxicology, toxicokinetics, and exposure is embedded in the physics and 

chemistry of chemical-biological Interactions. The accurate characterization of chemical 

structure linked to commonly used identifiers, such as names and Chemical Abstracts 

Service Registry Numbers (CASRNs), is essential to support both predictive modeling of the 

data as well as dissemination and application of the data for chemical safety decisions. 

Through earlier efforts, EPA built the Distributed Structure-Searchable Toxicity (DSSTox) 

database to serve as a central resource for curated chemical structure information, as well as 

to provide the cheminformatics foundation for the ToxCast, Tox21 and ExpoCast initiatives 

(Richard, 2004). The original DSSTox database consisted of a manually curated set of 

approximately 20.0 chemicals spanning a dozen lists of high interest to EPA and the 

toxicology and QSAR modeling communities (Richard, 2004).

Over the past several years, EPA has updated and expanded DSSTox to include state-of-the-

art cheminformatics tools for managing chemical and list registration through manual and 

automated curation into several quality bin levels. DSSTox currently provides structures, 

nomenclature and IDs, list associations and physicochemical property and environmental 

fate and transport data for more than 760.0 substances, encompassing not only all chemicals 

evaluated in the ToxCast and Tox21 testing programs (Richard, et al., 2016), but also a much 

broader landscape of chemicals of interest for CompTox and ExpoCast research efforts. The 

EPA CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/) provides a 

portal for EPA researchers, the public, and the scientific community to access DSSTox 

chemistry data (Williams et al., 2017). As an integral part of the blueprint, chemical curation 

efforts will continue to expand into areas of high priority interest to provide a 

comprehensive, harmonized source of quality chemical information for support of CompTox 

research.

Another important component of the CompTox chemical characterization effort is a robust 

chemical management infrastructure that can support all the Agency’s chemical screening 

programs. EPA has developed an information management system (IMS) for documenting 

and tracking all aspects of the physical chemical sample library supporting ToxCast and 

Tox21. The IMS includes inventory tracking, supplier information, and analytical quality 

control information for both the neat materials and HTS assays as well as plate, shipment, 

and sample identifiers used in HTS assays. EPA’s ToxCast chemical library has been used 

for high-throughput in vitro bioactivity screening, in vitro and in vivo toxicokinetic studies, 

and as analytical standards for exposure characterization across a range of media and 

methods (Sobus et al., 2019). In addition, through collaborative agreements with external 
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stakeholders, EPA has provided portions of the ToxCast chemical library to over 130 

academic, industry, and governmental collaborators in exchange for results that can be 

incorporated into EPA’s databases and publicly released. Apart from supporting library 

management activities, the cheminformatics infrastructure is being upgraded to support non-

targeted and suspect screening analysis (McEachran et al., 2018; McEachran et al., 2017). 

EPA investments in non-targeted and suspect screening analysis are aimed at a broad range 

of research activities, including environmental monitoring in a broad range of media [e.g., 

(Strynar et al., 2015)], exposure characterization (Sobus, et al., 2019), metabolite 

identification, and biomonitoring.

Beyond structural curation and chemical management, a high-quality, structure-based 

cheminformatics platform is essential for supporting computational chemistry and structure-

based modeling activities. (Q)SAR models have been built and provided through the EPA 

CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/) for a range of 

physicochemical properties, toxicity, and environmental fate endpoints (Mansouri et al., 
2018; Mansouri et al., 2016b). Embedded in the “Predictions” tab of the Dashboard is the 

ability to predict hazard and physicochemical properties using the Toxicity Estimation 

Software Tool (TEST) suite of QSAR models (https://www.epa.gov/chemical-research/

toxicity-estimation-software-tool-test). Other QSAR models will be added in the future.

Systematic read-across approaches also utilize the chemical structure information to predict 

a range of hazard-related effects for data-poor chemicals (Shah, et al., 2016a). In traditional 

read-across, chemical structure together with expert judgment based on physicochemical 

properties, metabolism considerations, and toxicological mechanisms, when available, are 

used to identify appropriate analogs, which are then used to infer the effects of a target 

chemical (Wang et al., 2012; Wu et al., 2010). The reliance on expert judgment to address 

uncertainties has hindered its use for regulatory decision-making (Patlewicz et al., 2018; 

Patlewicz et al., 2016). The investment in systematic read-across approaches attempts to 

quantify the uncertainty and provides a benchmark to assess whether other contexts of 

similarity (e.g., physicochemical, metabolic or biological as assessed using HTS data) 

reduce the uncertainty (Helman et al., 2018). Finally, chemical structural descriptors are 

being used for systematic chemical categorization and prediction of hazard and exposure-

related properties. ToxPrint chemotypes have been used to identify structure-activity 

enrichments in HTS assays related to neurotoxicity (Strickland et al., 2018) and hepatic 

steatosis (Nelms et al., 2018), while these and other structural descriptors have been used to 

predict functional use and weight fractions in personal care products (Isaacs et al., 2016). In 

the blueprint for the future, EPA will continue to invest in computational chemistry and 

structure-based approaches with the goal of leveraging chemical information to associate 

chemical structures with hazard, toxicokinetic, and exposure characteristics as well as to 

resolve biological associations within the HTS data landscape.

Hazard Evaluation

Toxicity testing aims to identify all the potential hazards that a chemical can elicit in an 

organism, while attempting to characterize the dose-response relationships for those hazards. 

Consistent with the recommendations by the NRC (NRC, 2007, 2017), the ToxCast program 
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used in vitro HTS technologies to identify potential cellular pathways and processes 

disrupted by chemicals. Throughout the development and execution of ToxCast and Tox21, 

key limitations of the current suite of HTS assays have been identified (Tice, et al., 2013). 

The limitations include inadequate coverage of biological targets and pathways, reduced or 

distinct xenobiotic metabolism compared to in vivo, and limited evaluation of volatiles and 

chemicals insoluble in dimethyl sulfoxide. Apart from these technical limitations, 

application of in vitro test systems in toxicology has also been hampered by the inability to 

translate perturbations at the molecular level to possible tissue-, organ-, and organism-level 

effects. In moving forward, the CompTox effort is taking a new approach to hazard 

identification and characterization that directly addresses many of these challenges, as well 

as integrates multiple technologies and cheminformatic approaches into a tiered testing 

framework that will require multi-disciplinary partnership between experimental and 

computational investigators.

The first tier of testing casts the broadest net possible for capturing the potential hazards 

associated with chemical treatment as well as groups them based on similarity in the 

potential hazards (Fig. 2). The grouping of chemicals can be based on both chemical 

structure considerations as well as experimental data. The use of chemical structural 

descriptors to inform hazard and identify potential analogs was described in the preceding 

section. For experimental hazard characterization, two approaches were selected and 

developed to provide the most robust and comprehensive evaluation of chemical disruption 

of molecular events and biological processes. The first approach uses RNA-seq-based 

multiplexed read-outs of gene expression to interrogate the effects of chemical treatment 

across the entire transcriptome. EPA is applying new technologies that are automatable, 

high-throughput, and capable of measuring transcriptomic changes directly from cell lysates 

in 384-well format (Yeakley et al., 2017). This approach, termed high-throughput 

transcriptomics (HTTr), allows for cost-efficient screening of thousands of chemicals in 

concentration-response format. Although other ‘omic technologies, such as metabolomics 

and proteomics, can be used to interrogate other aspects of biological pathway perturbations, 

the costs and amount of biological material required per sample currently exceed available 

resources and preclude their use in high throughput screening applications.

The second approach uses high-content imaging of cultured cells labeled with multiple 

fluorescent probes to measure the effects of chemical treatment on subcellular organelles 

and structural features (e.g., mitochondria, endoplasmic reticulum, nuclear morphology) 

(Bray et al., 2016). Image analysis algorithms are used to quantify a broad range of shape, 

compartmental, spatial, and intensity-related characteristics associated with the probes in an 

approach referred to as phenotypic profiling (Feng et al., 2009). EPA is applying a high-

throughput version of this approach in an automatable, 384-well format to measure changes 

in hundreds of phenotypic parameters per cell. This approach, termed high-throughput 

phenotypic profiling (HTPP), also allows for cost-efficient screening of thousands of 

chemicals in concentration-response format. Over the next several years, the HTTr and 

HTPP approaches will be applied to multiple cell types, which will provide broad, 

complementary coverage of molecular and phenotypic responses across a much larger swath 

of biological space than the existing ToxCast and Tox21 assay portfolios. Statistical methods 

that characterize diversity in basal gene expression across many different cell types are being 
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used to identify maximally diverse sets of cell types for use in both HTTr and HTPP 

screening. While diversity in basal gene expression may not fully reflect the diversity in 

chemical-induced changes in gene expression (i.e., responses) across cell types, these 

methods are a data driven approach for selecting cell-based screening models with diverse 

expression in potential biological targets and pathways.

The resulting data will be compared with large databases of reference chemicals and genetic 

perturbations (e.g., RNAi knockdown and cDNA overexpression) to associate patterns of 

transcriptional (De Abrew et al., 2016; Lamb et al., 2006) and phenotypic changes (Bray et 
al., 2017) with a potential biological target or MOA. For chemicals without a close match to 

a reference chemical or genetic perturbation, a potency estimate for the most sensitive 

pathway or phenotypic effect will be estimated (Thomas et al., 2011; Thomas, et al., 2013). 

Previous studies have suggested that most environmental and industrial chemicals are 

biologically promiscuous and the most sensitive pathway or biological response provides a 

conservative estimate of the point-of-departure for adverse in vivo effects (Thomas, et al., 

2013; Wetmore et al., 2013). Likewise, methods for defining predictive points-of-departure 

from in vitro high content imaging-based assays are in the early stages of development 

(Shah, et al., 2016b; Wink et al., 2018). Chemicals with a close match to a reference 

chemical or genetic perturbation move to a second tier of testing.

For the second tier of testing, EPA is restructuring its portfolio of ToxCast assays to allow 

small sets of chemicals to be run in specific orthogonal in vitro assays to confirm the 

interaction with the biological target or MOA identified in the first tier (Fig. 2). For example, 

if the global transcriptomic evaluation for an environmental chemical shows a close match 

with a reference chemical that is a known inhibitor of a specific enzyme or an agonist of a 

particular receptor, a targeted biochemical or cell-based assay will be run to confirm the 

interaction. The portfolio of assays for orthogonal confirmation may include existing 

ToxCast assays as well as new assays not in the current portfolio. Computational modeling 

will integrate the results from the first and second tiers of testing to develop consensus 

predictions of the biological target or MOA and estimate the potency for the interaction with 

the biological target or pathway.

In the third tier of testing, chemicals with a verified interaction with a biological target or 

pathway will be linked with a likely adverse outcome using the AOP framework (Ankley et 
al., 2010)(Fig. 2). For those chemicals that interact with a molecular initiating event or key 

event in a known AOP, the remaining key events in the pathway will be evaluated in more 

complex organotypic cell culture models or microphysiological systems. Evaluation using 

the more complex cell culture models will enable translation of target and pathway 

perturbations to possible tissue- and organ-level effects. These can be tailored with human 

pluripotent stem cells to address the cellular and biomechanical features of a tissue for 

evaluating key events leading from molecular perturbation to a phenotypic outcome. If the 

biological target or pathway perturbed by the chemical is not associated with an existing 

AOP, knowledge of the target or pathway will be used to guide development of both new 

AOPs and culture models of the adverse outcome, where possible, or additional research as 

needed. Previous efforts have used crowd-sourcing (https://aopwiki.org/) and computational 

approaches (Oki, et al., 2016) for AOP development. Virtual tissue models can also be 
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constructed to organize the key event relationships and allow quantitative predictions of the 

dose and temporal responses associated with the magnitude of perturbation as it propagates 

across different levels of biological organization. Biologically-inspired, agent-based, cellular 

systems models, for example, reconstruct tissues in silico cell-by-cell and interaction-by-

interaction and can execute tissue dynamical simulations that advance through critical 

determinants of an adverse phenotype (Hutson, et al., 2017; Kleinstreuer, et al., 2013b; 

Leung, et al., 2016). Current models focus primarily on developmental responses; however, 

the portfolio of models can be extended to organ and tissue responses in the adult. By 

simulating in vitro data under various in vivo exposure scenarios - dose or stage response, 

critical pathways, non-chemical stressors - these computer models return a probabilistic 

rendering of where, when and how a defect might occur under different exposure scenarios 

to yield a potency estimate for the interaction with the biological target or pathway and 

likely adverse response.

Apart from the development of the tiered testing framework, EPA is systematically 

addressing other technical limitations that have been associated with the current ToxCast and 

Tox21 efforts. To diversify the chemical space evaluated in the HTS assays, EPA is 

assembling a library of DMSO-insoluble, but water-soluble chemicals that is currently being 

tested. In addition, novel air-liquid interface exposure systems are being used to expose cells 

in concentration response to volatile chemicals, albeit in lower throughput than the existing 

assays in the ToxCast portfolio (Zavala et al., 2018). The water library and volatile chemical 

exposures are being paired with the HTTr platform as part of the tiered testing framework.

The challenges associated with the lack of metabolic competence for many of the current 

assays are also being addressed using a two-part strategy broken into ‘extracellular’ and 

‘intracellular’ approaches (Fig. 3). In the ‘extracellular’ approach, chemical metabolism will 

occur in the media of cell-based assays or the buffer of cell-free assays. This part of the 

strategy is intended to model first-pass metabolism by the liver and exposure of distal target 

tissues to circulating metabolites. Multiple technologies and approaches are being evaluated 

to provide the relevant metabolic activity to the assay media or buffer. However, it is likely 

that multiple technological solutions will be required given the diversity of the assay 

platforms in the existing ToxCast and Tox21 assay portfolio and the new assays in the tiered 

testing framework. One promising approach is to embed S9 or microsomal fractions within 

an alginate matrix and attach the matrix to plastic protrusions on custom designed multi-well 

plate lids. The protrusions extend down into the well of the plates to allow chemical 

metabolism to occur without the S9 or microsomal fractions interfering with the assay 

readouts or causing cytotoxicity. Proof-of-concept experiments have been performed and 

show bioactivation of known reference chemicals. In the ‘intracellular’ strategy, chemical 

metabolism will occur inside the cell. This part of the strategy is intended to model the 

effects of target tissue metabolism. In one approach, chemically-modified mRNAs 

corresponding to different xenobiotic metabolizing enzymes are synthesized and transfected 

into target cell types singly or in multiplexed ratios that mimic specific target tissues (e.g., 

liver) (DeGroot et al., 2018). The approach has shown promise for endowing a range of 

different cell types with metabolic activity at or near the levels associated with primary cells 

over a fixed time frame. As part of the blueprint, both the extra cellular and intra-cellular 
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approaches will be applied to retrofit multiple in vitro assays in the first and second tier of 

the new testing framework.

Toxicokinetics and In Vitro Disposition

Dosimetry is an essential component for translating in vitro concentration metrics into 

equivalent external exposures. Previous EPA efforts in this area have been relatively simple 

in that they model all chemicals uniformly, with chemical-specific information accounting 

for only a small number of factors affecting the toxicokinetics of chemicals, and assume 

complete absorption and steady-state conditions. In a previous analysis of 349 chemicals, the 

relatively simple and uniform approach produced estimates of steady-state blood 

concentrations that were within a factor of three of the reported literature value for ~60% of 

chemicals (~90% were within a factor of ten) where experimental measurements of protein 

binding and liver metabolism were successful (Wambaugh et al., 2015). In the future, EPA 

will examine the domain of applicability of the HTTK models across a broader range of 

environmental chemicals as well as incorporate additional assays and in silico tools that 

address known limitations in existing approaches. For example, EPA has performed high-

throughput bioavailability measurements using the Caco-2 model (Hilgers et al., 1990). 

Comparisons of the HTTK models with in vivo toxicokinetic studies have suggested that 

bioavailability can be a significant contributor to the lack of correlation for some chemicals 

(Wambaugh et al., 2018).

To address the assumption of steady state kinetics, EPA is investing in the refinement and 

development of computational chemistry and structure-based modeling of tissue partitioning 

and volume of distribution. The computational chemistry approaches extend previous efforts 

in the pharmaceutical industry to estimate tissue partition coefficients using physicochemical 

properties (Pearce et al., 2017a; Schmitt, 2008) to capture a broader range of chemical space 

(Wambaugh, et al., 2018). The development of dynamic toxicokinetic and physiologically 

based toxicokinetic (PBTK) models are necessary to calculate important aspects of 

toxicokinetics, such as the time needed to reach steady state; whereas most ToxCast 

chemicals analyzed to date reach steady state within weeks, some environmental and 

industrial chemicals may require decades or more. PBTK models also allow for dosimetric 

anchoring of toxicokinetic studies, and modeling of tissue dosimetry (e.g., maximal and/or 

time-integrated concentration) in critical time windows under non-steady state conditions 

(e.g., windows of developmental susceptibility).

While in vitro toxicokinetic methods provide significantly faster alternatives to traditional 

toxicokinetic testing, these methods still require the time-consuming and sometimes difficult 

development of chemical-specific methods for chemical concentration analysis. For this 

reason, in silico approaches based upon chemical structure features and physico-chemical 

properties are being developed to predict in vitro toxicokinetic data (Ingle et al., 2016). 

These new in silico models allow toxicokinetics, exposure, and hazard to be combined for 

large screening libraries such as Tox21 (Sipes et al., 2017), whereas methods limited to in 
vitro-measured toxicokinetics deal with hundreds of chemicals at a time (Wetmore et al., 
2015a; Wetmore et al., 2012b).
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Apart from the need to understand and predict in vivo toxicokinetic behavior, the shift to in 
vitro models for hazard characterization has necessitated an understanding of in vitro 
disposition (i.e., the fate and movement of a chemical within an in vitro assay) (Blaauboer, 

2010; Fischer et al., 2018; Fischer et al., 2017; Zhang et al., 2018). Previous EPA efforts 

have generally relied on nominal concentrations as the basis for estimates of in vitro 
potency; however, for some chemicals, taking into account binding to plastic, intracellular 

transport, and lipid association can result in a significantly different biologically effective 

concentration for a chemical (Croom et al., 2015; Groothuis et al., 2015; Kramer et al., 
2015; Meacham et al., 2005; Mundy et al., 2004). To overcome this challenge, EPA is 

collaborating with NTP under the Tox21 consortium to empirically measure differences 

between nominal and cellular concentrations for a set of chemicals to determine whether in 
vitro disposition can be modeled using computational approaches, thereby providing a 

means to identify the appropriate in vitro dose metric (Thomas, et al., 2018).

Exposure Assessment

Exposure data are essential to providing a risk context for doses that result in a particular 

hazard. To estimate exposure for a broad range of chemicals, relatively simple computational 

models have been used to predict median exposure rates for the total U.S. population 

(Wambaugh, et al., 2014). However, the uncertainty around the exposure predictions is 

relatively large. Although more complex exposure models may reduce uncertainty, they 

require detailed parameterization of the weight fraction and off-gassing of the chemical in 

hundreds of products in conjunction with detailed human activity characterization, which is 

difficult to scale to thousands of chemicals (Isaacs et al., 2014). Based on the finding that 

consumer product usage was a significant source of exposure (Wallace et al., 1987; 

Wambaugh, et al., 2013), EPA is increasing its effort to develop new databases of chemicals 

known to be in consumer products in order to allow for parameterization of more complex 

exposure models and to reduce uncertainty in exposure predictions (Isaacs, et al., 2016). The 

updated database will include new sources of data from Safety Data Sheets and reported 

chemical functional uses (Dionisio et al., 2018). In addition to the data mining and curation 

activities, EPA is developing computational models that can predict likely uses for a 

chemical based on structure and is validating the results with chemicals having known uses 

and function (Philips et al., 2017). In addition, there is a key behavioral economics piece to 

this puzzle, i.e. what consumer products are being purchased, brought into the home, how 

used, frequency of use, and in what combination (Egeghy et al., 2016). Portions of this 

information are routinely collected by retailers and market research firms for business 

purposes; however, this information is generally not available for ExpoCast applications. 

Future efforts will focus on acquiring these data to evaluate current and ongoing population-

level consumer product use patterns. The ultimate goal of these efforts is predict screening-

level rates of exposure for any chemical structure by integrating formulation science, 

behavioral economics, and mechanistic fate and transport modeling to delineate linkages 

among inherent properties, functional role, product formulation, use scenarios, and 

environmental and biological concentrations (Egeghy, et al., 2016).

To provide experimental data on chemicals in the indoor environment, new analytical 

chemistry methods, such as non-targeted analysis (NTA) and suspect screening analysis 
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(SSA), are being used to characterize the chemical composition of indoor media, such as 

house dust (Rager, et al., 2016), and various items people frequently encounter (e.g., 

household products and articles of commerce) (Phillips et al., 2018) and drinking water 

point-of-use water filters (Newton, et al., 2018). The new analytical methods have identified 

many chemicals not previously known to be present in those items and can provide semi-

quantitative estimates of concentration of their relative mass fraction. The NTA and SSA 

efforts are supported by the work on the cheminformatics infrastructure, while the strengths 

and limitations of the technology are being evaluated through activities such as the EPA 

Non-Targeted Analysis Collaborative Trial (ENTACT)(Sobus, et al., 2019; Sobus et al., 
2018; Ulrich et al., 2019). As an important part of the blueprint, the high-throughput 

exposure modeling activities and non-targeted and suspect screening analysis efforts will 

converge to expand the domain of applicability of the models and reduce the overall 

uncertainty.

Databases and new measurements of chemical occurrence in the human environment 

provide necessary but insufficient information to predict human exposure. Off-gassing of a 

chemical from whatever matrix it is found in must also be characterized. New, high-

throughput models of chemical emissivity are being developed using existing data (e.g., 

chemical migration from packaging into food (Biryol et al., 2017) and new data are being 

collected in the hopes of building chemical emissivity models relevant to consumer 

products.

Finally, advances in exposure sciences are being used to address chemical mixtures. From a 

toxicological standpoint, testing all mixture permutations of even a hundred chemicals is 

prohibitively expensive. However, exposure monitoring and modeling combined with 

advanced data mining methods can identify certain prevalent mixtures of chemicals that 

either occur frequently in the environment (Tornero-Velez et al., 2012) or within 

biomonitoring data (Kapraun et al., 2017). In the future, a few prevalent mixtures out of the 

trillions of possible combinations will be evaluated using high-throughput toxicity testing 

approaches, enabling a more efficient and focused approach to the problem.

Uncertainty and Variability

A critical piece of any chemical assessment or prioritization activity is an understanding of 

the uncertainty and variability surrounding each component used in the process. In this 

context, uncertainty is defined as a lack of knowledge, while variability measures the 

differences across a population. For decades, the uncertainty and variability in traditional 

animal studies were most often addressed in risk assessments using standardized adjustment 

factors called “uncertainty/variability factors”(EPA, 2002). In contrast, efforts to 

characterize uncertainty and variability in high-throughput hazard, toxicokinetic, and 

exposure data have generally focused on chemical-specific methods. This focus helps 

identify where in the process additional data may be useful for reducing uncertainty in 

evidence that informs risk decisions.

In HTS assays, statistical methods are being developed and evaluated to establish 

uncertainty bounds around the measured potency and efficacy values (Watt et al., 2018). 

These approaches involve resampling the data and refitting the concentration response 
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curves thousands of times to quantitatively estimate the uncertainty in potency and efficacy. 

For inter-individual variability, the Tox21 consortium is working to integrate cells derived 

from induced pluripotent stem cells (iPSCs) into different HTS assays to evaluate the range 

of responses from genetically diverse Individuals (Thomas, et al., 2018).

In toxicokinetic modeling, the experimental uncertainty in the plasma protein binding and 

hepatic metabolism is being propagated to the toxicokinetic models that estimate steady-

state blood concentrations from a given administered dose. Inter-Individual variability is 

incorporated into toxicokinetic models using Monte Carlo methods that vary physiological 

parameters (such as age and bodyweight) based on a population distribution (Ring et al., 
2017). Finally, the ExpoCast SEEM analysis provides a statistical framework that assigns 

quantitative estimates of uncertainty, along with the ability to describe median exposure 

predictions for a range of demographic groups within the U.S. population. For future efforts, 

characterization of the uncertainty and variability for each component Involving hazard, 

toxicokinetics, and exposure will be integrated to provide an overall estimate of the 

associated confidence bounds In a chemical-specific manner.

In parallel with characterizing the uncertainty and variability of high-throughput and 

computational approaches, hundreds of legacy in vivo toxicity studies have been curated by 

the EPA through the CompTox efforts and released using ToxRefDB (Knudsen, et al., 2009; 

Martin, et al., 2009a; Martin, et al., 2009b). Over the past four years, the digitization and 

curation efforts have been expanded to capture quantitative dose response data, study quality 

scoring, and explicit evaluation of negative study endpoints. In the blueprint for the future, 

the updated data will be evaluated to qualitatively and quantitatively assess the variability 

and uncertainty of the legacy in vivo toxicity studies that have underpinned regulatory 

decisions on hazard classification, labeling, and quantitative risk assessment. The 

characterization of variability and uncertainty in the traditional models has taken on 

additional importance given the mandate in the amended Toxic Substances Control Act 

(TSCA) legislation that states that alternative approaches need to provide “information of 

equivalent or better scientific quality and relevance...” (https://www.congress.gov/114/plaws/

publ182/PLAW-114publ182.pdf).

Software Applications, Tools, and Information Technology Support

In addition to advancing the science in fields that inform chemical safety, achieving the goal 

of application of high-throughput and computationally-derived data to regulatory decisions 

requires a parallel investment in myriad translational activities. The development of 

dashboards, software applications, databases, and models provides an efficient means to 

assemble, integrate and deliver computational toxicology data to inform the assessment of 

health and ecological risks. The existing portfolio of computational toxicology dashboards is 

being upgraded and expanded to provide a broader range of data and capabilities related to 

chemistry, toxicology, toxicokinetics, and exposure. The data contained in the dashboards is 

integrated from a variety of internal and external sources. To ensure reliability, procedures 

are being put in place to verify the quality of the data and attribution to the correct source. 

This process is transitioning the dashboards from a research endeavor to the reliability 

necessary for regulatory application.
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In addition to the data-delivery dashboards, new decision-support software applications will 

be released to support EPA regulatory activities. The decision support applications will 

contain a selection of guided workflows focused on providing support for specific regulatory 

decisions. For example, a chemical prioritization workflow is being built to allow the 

flexible integration of experimental and computational data related to toxicity, exposure, 

persistence, and bioaccumulation. The workflow will allow the data to be transformed in 

multiple ways, with user defined scoring and weighting as well as options to deal with 

missing data. The workflow is intended to transparently show the prioritization process and 

allow users to flexibly explore the relative impact of incorporating different data and 

approaches. Another workflow under development will focus on estimating human health 

values for data poor chemicals. The workflow assembles all available traditional and 

alternative hazard data on a chemical and guides the user through a stepwise approach to 

select a critical effect and identify effect levels from dose response. In providing a complete 

picture of available data, the user can evaluate and estimate corresponding uncertainty. To 

support efficient delivery of tools, software applications and dashboards, key investments are 

needed in the areas of data integration, software development, and building scalable 

information technology infrastructure.

Outreach and Training

Together with investments in information technology tools, another important piece of 

research translation is an increase in outreach and training activities to engage the scientific 

community, organizations responsible for regulatory decisions, and other stakeholder groups 

(e.g., U.S. Congress, industry, non-governmental organizations). The initial focus of 

outreach was to solicit suggestions from the scientific community for ideas on analyzing and 

interpreting CompTox and high-throughput data. These outreach and training efforts have 

continued and include activities such as the Computational Toxicology Communities of 

Practice webinars, coordinated presentations and demonstrations at scientific conferences, 

organizing workshops on relevant topics in the field, and collaborative research efforts with 

organizations that have an interest in using CompTox data and approaches.

As the science has advanced towards application to regulatory decisions, outreach efforts are 

expanding to engage organizations that make regulatory decisions about chemicals as well 

as other stakeholder groups. Since the decision-context for using the data differs across 

organizations (e.g., chemicals found in water, Superfund sites), a customized and 

collaborative approach is being undertaken to encourage decision-makers to provide an 

overview of their specific decision context, while researchers tailor the development of the 

tools and research to meet these needs. The collaborative approach typically involves 

numerous webinars, one-on-one meetings and exchanges of relevant chemical information. 

In addition to these activities, outreach and training are being augmented through the 

development of training videos and customized online tutorials.

It is anticipated that as EPA’s CompTox effort continues to expand and mature, the need for 

outreach activities and training for regulatory, regulated, and broader scientific communities 

will continue. Given the increased focus on regulatory applications, additional targeted 

sessions for regulators will also be included, including state, federal, and international 
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entities. The education and training will cover both use and interpretation of the data, as well 

as use of the specific tools, such as the dashboards and workflows currently under 

development. To aid in the education and training process, EPA has released a ToxCast 

Owner’s Manual that covers in detail all aspects of the ToxCast screening effort from 

chemical procurement, assay annotation and performance characteristics, data analysis, and 

data availability (https://www.epa.gov/chemical-research/toxcast-owners-manual-guidance-

exploring-data).

The use of computational toxicology data for supporting regulatory decisions requires 

transparency and focus on data quality and quality control procedures. To ensure 

transparency, EPA will continue to release the raw and processed data, as well as the 

computational models, databases and tools that underpin the research and ensure 

reproducibility. In the past, EPA has delivered data and models through a combination of its 

own data download site, supplemental files for scientific publications, and public 

repositories. Going forward, the amount of raw and processed data generated by many of the 

new approaches will dramatically Increase (e.g., HTTr and HTPP will produce hundreds of 

terabytes of data), posing challenges for data availability. Nonetheless, EPA remains 

committed to making the data and models publicly available to the stakeholder community 

and will be implementing a defined process to establish consistent procedures for release of 

this information.

To encourage broader acceptance of new approaches to testing and assessment, EPA is also 

moving to describe the assays and data in internationally accepted reporting formats. For 

example, the ToxCast assays related to endocrine endpoints have been described using a 

format consistent with Organization for Economic Cooperation and Development (OECD) 

Guidance Document 211, which is posted on the ToxCast data download site (https://

www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data) and integrated into the 

bioactivity summary data table in the EPA CompTox Chemicals dashboard. For quality 

control and assurance, EPA is Implementing standardized processes to verify data quality, 

ensure reproducibility, and flag suspect data.

Establishing Scientific Confidence

A final element for application of CompTox data, and perhaps the most critical, is 

establishing scientific confidence in the results. Traditional approaches to instill confidence 

in alternative methods, including in vitro assays and computational models, involve lengthy 

and resource-intensive validation procedures that typically focused on a one-for-one 

replacement of regulatory endpoints of interest (Patlewicz et al., 2015; Stephens et al., 
2013). In the future, EPA, through its involvement in the Tox21 consortium, will be 

developing a generalizable and scalable evaluation framework for performance standards for 

many of the new approach methods (Thomas, et al., 2018). The framework will provide 

guidelines to ensure the reproducibility and performance of the methods, which will be 

necessary for acceptance in the regulatory community. In addition to performance standards, 

establishing scientific confidence will require collaborative partnerships with regulators on 

evaluating alternative methods for regulatory application and performing case studies to 

examine the application of CompTox data and tools to a variety of regulatory applications 
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and decision scenarios. The EPA has released a strategy for application of new approach 

methods to TSCA (https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/

strategic-plan-reduce-use-vertebrate-animals-chemical). As an important component of the 

strategy, EPA researchers and regulators will be directly engaged to ensure the methods and 

data are applicable to regulatory decisions. On an international level, participation in 

regulatory case studies has already begun under the umbrella of a multi-national series of 

workshops focused on advancing progress in chemical risk assessment (Kavlock, 2016; 

Kavlock et al., 2018) as well as at the OECD.

Conclusions

The rapid advances in computational toxicology and alternative testing have moved the field 

from a nascent research effort to the beginning stages of public health and environmental 

regulatory application. This blueprint for the EPA CompTox effort aims to solidify the 

research and translational gains and obtain broader acceptance of the alternative approaches 

and application to higher tier regulatory decisions. The new blueprint incorporates a 

broadening of the scientific scope beyond its initial focus on HTS, data generation, and 

computational modeling, to research activities in multiple areas critical to rapidly and 

efficiently inform chemical safety decisions. The additional research activities cover the 

remaining components of the vision outlined in the 2007 NRC Report “Toxicity Testing in 

the 21st Century” for chemical characterization, dose and extrapolation modeling, and 

exposure (NRC, 2007) and are consistent with a risk-based tiered testing framework that 

account for the biological promiscuity of environmental and Industrial chemicals (Thomas, 

et al., 2013). In each area, the challenges inhibiting progress or contributing the greatest 

uncertainty are being systematically addressed. In addition to the research activities, the new 

blueprint includes parallel investments in translational tools, training and outreach, 

transparency, and establishing scientific confidence. These parallel investments are 

necessary to facilitate the application of computational toxicology data to a broader 

continuum of regulatory decisions. The CompTox blueprint for the future is built on lessons 

learned from past successes and is designed to address 21st Century public health and 

environmental decision-making with new scientific approaches to advance the safety 

evaluation of chemicals.
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Figure 1. 
Key elements of the EPA CompTox blueprint to obtain broader acceptance of the new 

approaches and application to higher tier regulatory decisions. The CompTox efforts will 

continue to emphasize the use of computational modeling and high-throughput approaches 

to connect and transform the traditional components in chemical risk assessment. Cross-

cutting efforts in characterizing uncertainty and variability, development of software and 

information technology tools, outreach and training, and establishing scientific confidence 

enable translation to regulatory decision making.
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Figure 2. 
Tiered testing framework for hazard characterization. Tier 1 uses both chemical structure 

and broad coverage, high content assays across multiple cell types for comprehensively 

evaluating the potential effects of chemicals and grouping them based on similarity in 

potential hazards. For chemicals from Tier 1 without a defined biological target/pathway, a 

quantitative point-of-departure for hazard is estimated based on the absence of biological 

pathway or cellular phenotype perturbation. Chemicals from Tier 1 with a predicted 

biological target or pathway are evaluated Tier 2 using targeted follow-up assays. In Tier 3, 

the likely tissue, organ, or organism-level effects are considered based on either existing 

adverse outcome pathways (AOP) or more complex culture systems. Quantitative points-of-

departure for hazard are estimated based on the AOP or responses in the complex culture 

system.
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Figure 3. 
Integrated strategy to model in vivo bioactivation and detoxification in a diverse range of in 
vitro assays. The extracellular approach generates metabolites in the media or buffer of in 
vitro assays and models the effects of hepatic metabolism on peripheral tissues. The 

intracellular approach generates metabolites inside the cell and models the effects of target 

tissue metabolism.

Thomas et al. Page 29

Toxicol Sci. Author manuscript; available in PMC 2020 June 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript


	Abstract
	Background and History
	Initial Successes and Application to Decision Making
	A Blueprint for the Future
	Chemical Characterization
	Hazard Evaluation
	Toxicokinetics and In Vitro Disposition
	Exposure Assessment
	Uncertainty and Variability
	Software Applications, Tools, and Information Technology Support
	Outreach and Training
	Establishing Scientific Confidence

	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.

