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Strategic-tuning of radiative excitons for efficient
and stable fluorescent white organic light-emitting
diodes
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Chuluo Yang 3, Hans Kleemann2, Karl Leo2 & Dongge Ma1

The emerging thermally activated delayed fluorescence materials have great potential for

efficiencies in organic light-emitting diodes by optimizing molecular structures of the emitter

system. However, it is still challenging in the device structural design to achieve high effi-

ciency and stable device operation in white organic light-emitting diodes. Here we propose a

universal design strategy for thermally activated delayed fluorescence emitter-based fluor-

escent white organic light-emitting diodes, establishing an advanced system of “orange

thermally activated delayed fluorescence emitter sensitized by blue thermally activated

delayed fluorescence host” combined with an effective exciton-confined emissive layer.

Compared to reference single-layer and double-layer emissive devices, the external quantum

efficiency improves by 31 and 45%, respectively, and device operational stability also shows

nearly fivefold increase. Additionally, a detailed optical simulation for the present structure is

made, indicating the validity of the design strategy in the fluorescent white organic light-

emitting diodes.
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White organic light-emitting diodes (WOLEDs) have
attracted substantial attention nowadays due to their
promising merits in solid-state lighting sources and

full-color displays1–3. Enormous efforts have been devoted to
efficient WOLEDs, such as employing the precise doping con-
centration regulation strategy4–8, eliminating the inserting layer
between fluorescent and phosphorescent emissive regions9, uti-
lizing exciplex systems10,11; p–i–n junctions12; tandem
structure13,14; down-conversion15; exciton-confining structures16,
and introducing the external heavy-atom effect17. According to
the spin statistics, the singlet and triplet excitons can be generated
by a 1:3 ratio in organic materials when the holes and electrons
recombine18,19. As seen, the key to realize highly efficient
WOLEDs is that all electrically generated excitons need to be
effectively used for emission. For all phosphorescent WOLEDs,
owing to the strong spin–orbit coupling, all singlet and triplet
excitons can be harvested, achieving unity exciton utilization
efficiency, thus the phosphorescent WOLEDs have been con-
sidered as the most promising device architecture during the past
years20. But there is still a bottleneck to simultaneously realize
high efficiency and long device lifetime in phosphorescent
WOLEDs, which is restricted by the absence of the efficient and
stable blue phosphorescent emitters. Then, hybrid WOLEDs
combining the stable blue fluorophores and efficient long-
wavelength phosphores can likewise harvest all generated exci-
tons by the “triplet harvesting” strategy, yielding the compatibility
of good stability and high efficiency21–24.

Recently, E-type delayed fluorescence25, i.e., thermally acti-
vated delayed fluorescence (TADF) without the metal–organic
complexes has aroused researchers’ interest, which has been
widely considered as a promising route to harvest nonradiative
triplet excitons in OLEDs26. Because the energy gap between the
singlet excited state and triplet excited state is sufficiently small in
TADF processes, the generated nonradiative triplet excitons can
be efficiently upconverted into the radiative singlet excitons by
the reverse intersystem crossing (RISC) process27–31. TADF-
based monochrome OLEDs employing pure organic aromatic
compounds as emitters have realized nearly 100% exciton pro-
duction efficiency and the maximum external quantum efficiency
(EQE) has reached beyond 30%, and meanwhile the operational
stability has improved so much32,33, but it is still unsatisfactory in
the development of TADF-based WOLEDs. Several preliminary
studies have been reported on the all-fluorescent WOLEDs.
Adachi’s group34 pioneered TADF emitter-based fluorescent
WOLEDs with a maximum EQE of 6.7% and current efficiency
(CE) of 16.7 cd A−1. Then, they introduced a high-energy-level
blue TADF molecule as the common host and conventional red/
green fluorescent molecules as dopants, a maximum EQE of
12.1% was realized35. Zhao et al.36 demonstrated fluorescent
WOLEDs composed of a blue TADF host and an orange
fluorescent dopant with the maximum EQE of 7.48%, CE of 20.2
cd A−1, power efficiency (PE) of 15.9 lmW−1. Lee et al.37 doped
two conventional fluorescent emitters into a TADF host to form a
single-emitting layer (EML) fluorescent white device with a
maximum EQE of 14.0% and a maximum PE of 36.2 lmW−1.
Recently, Su et al. designed an efficient yellow TADF emitter
combined with a blue TADF emitter (3,6-2TPA-TX). They
achieved a maximum EQE of 20.4% in their fluorescent WOLED
using common multi-EML structures38. Despite of these progress,
efficient and stable TADF-based WOLEDs have not ever been
achieved by adequate utilization of triplet excitons and tailored
device design. Actually, it is really challenging to develop efficient
and stable device design strategies for all-fluorescent WOLEDs
that can render various channels to harvest all singlet and triplet
excitons and achieve balanced charge injection as well as effective
exciton and charge carrier confinement.

Here, we show an efficient and stable strategy using an orange
TADF emitter sensitized by a high-energy-level blue TADF host.
The key point is doping an orange TADF emitter with an ultralow
concentration into a blue TADF emissive host, forming a double-
dopant system combined with an effective exciton-confined
emissive layer architecture to fully utilize all electrically generated
excitons. Using this approach, extremely high-efficiency fluor-
escent WOLEDs with nearly 100% exciton utilization efficiency
can be realized. The resulting WOLED exhibits excellent elec-
troluminescence (EL) performance with the maximum EQE, CE,
and PE of 20.5%, 51.3 cd A−1, and 59.6 lmW−1, respectively,
which should be among the highest values for all-fluorescent
WOLEDs. The device also shows very impressive operational
stability by the proposed strategy. We also present a compre-
hensive optical simulation for our WOLEDs. These results indi-
cate that proper device architecture facilitates highly effective
harvesting of all generated singlet and triplet excitons in TADF-
based fluorescent WOLEDs.

Results
Construction of the device structure. To illustrate our device
design strategy, the selection of emitting dopants is a primary
consideration. When the TADF-emitting dopants with a very
small energy gap between S1 and T1 are used to fabricate OLEDs,
the internal quantum efficiency (IQE) can be expressed as,

ηIQE ¼ 0:25þ
0:25ϕISC;D þ 0:75

� �
ϕRISC

1� ϕISC;DϕRISC

2
4

3
5ϕPL;D ð1Þ

where ϕISC,D is the ISC efficiency, ϕRISC is the RISC efficiency, ϕPL,
D is the PL quantum yield of the dopants. Therein, ϕISC,D and
ϕRISC can be calculated as follows,

ϕISC;D ¼ κISC
κISC þ κr þ κnr

ð2Þ

ϕRISC ¼ κRISC
κRISC þ κTnr

ð3Þ
where κnr is the nonradiative decay rate of the singlets and κnrT is
the rate for the triplet decay processes, except for RISC. As can be
seen, the ϕRISC/ϕISC,D and ϕPL of the dopants determine IQE.
Thus, TADF materials with high ϕRISC/ϕISC,D and ϕPL values as
the emitters are necessary to realize efficient fluorescent
WOLEDs. In this work, bis[4-(9,9-dimethyl-9,10-dihy-
droacridine)phenyl]sulfone (DMAC-DPS) for blue emission39

and 10-(7-fluoro-2,3-diphenylquinoxalin-6-yl)-10H-phenoxazine
(FDQPXZ) for orange emission with high ϕRISC/ϕISC,D and ϕPL
values40 are selected as the emitting dopants. Bis(2-(diphenyl-
phosphino)phenyl)ether oxide (DPEPO) with a high T1 level of
3.30 eV acts as the host of DMAC-DPS. The well-known ambi-
polar material 4,4′-bis(N-carbazolyl)biphenyl (CBP) is utilized as
the host for the orange emitter. To minimize the working voltage
and improve the charge balance, 20 wt% hexaazatriphenylene
hexacarbonitrile (HATCN) doped into 1,1′-bis[4-(di-p-tolyla-
mino)phenyl]cyclohexane (TAPC) and 3 wt% lithium carbonate
(Li2CO3) doped into 1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene
(BmPyPB) are used as the hole-transporting and electron-
transporting layers, respectively.

Device structure and performance. Figure 1 shows illustrated
energy-level diagram and chemical structures of the used mate-
rials. It is noteworthy that TAPC and BmPyPB can effectively
confine holes and electrons within the exciton recombination
zone. On the one hand, the utilization of TAPC could prevent
electrons transporting across the emissive layer, thus, sub-
stantially minimizing the electron leakage from the emissive layer
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because of the smaller lowest unoccupied molecular orbital
(LUMO) of TAPC than that of CBP and FDQPXZ. On the other
hand, we also notice that there is the energy offset (0.3 eV) of the
highest unoccupied molecular orbital (HOMO) between BmPyPB
and DPEPO, which will prevent the injected hole transport into
the nonradiative layer, thus, effectively confines well the holes in
the emissive layer. The detailed design produces an energetic
well-like emissive zone. When the injected charges or generated
excitons enter into the emissive region, they would not leak out or
get back, increasing the likelihood that singlet and triplet excitons
will radiatively decay within the emissive zone.

After optimizing the doping concentration and emissive layer
thickness, our final structure is ITO/HATCN (10 nm)/TAPC: 20
wt% HATCN (50 nm)/TAPC (20 nm)/CBP: 3 wt% FDQPXZ (10
nm)/DPEPO: 30 wt% DMAC-DPS: 0.5 wt% FDQPXZ (6 nm)/
DPEPO (10 nm)/BmPyPB: 3 wt% Li2CO3 (50 nm)/Li2CO3 (1
nm)/Al (100 nm). Figure 2a illustrates the proposed exciton
energy-transfer processes within the emissive zone (also shown in
Supplementary Fig. 1), which will be proved below. Due to the
electron-transporting property of DPEPO and the superior
ambipolar-transporting characteristics of CBP41, it can be
expected that the main recombination zone should be across
the interface of CBP:3% FDQPXZ and DPEPO:30% DMAC-
DPS:0.5% FDQPXZ, and the broadening exciton recombination
zone also benefits the improvement of efficiency roll-off. On the
basis of this structural engineering via an orange TADF emitter
sensitized by a high-energy-level blue TADF host, the resulting
WOLED exhibits very impressive EL performances, as shown in
Fig. 2b and Supplementary Fig. 2. The maximum forward-
viewing EQE, CE, and PE reach 20.5%, 51.3 cd A−1, and 59.6 lm
W−1, respectively. At a typical display luminance of 100 cd m−2,
they remain as high as 18.8%, 46.5 cd A−1, and 52.4 lmW−1. All

the results are obtained in the forward direction without any out-
coupling techniques. Table 1 summarizes key performance
parameters of the resulting WOLEDs. Figure 2c reveals a low
turn-on voltage of 2.6 V and a rather low-driving voltage of 3.2 V
at the brightness of 1000 cd m−2. In addition, the EL spectra
cover all wavelengths from 400 to 780 nm (see the inset of
Fig. 2b), and the CRI is calculated to reach 72. Notably,
this WOLED exhibits high stability of the EL spectra.
Varying the brightness from 100 to 5000 cd m−2 (corresponding
to the driving voltage of 3–4.2 V), the WOLED shows negligible
alteration of the 1931 Commission Internationale de L’Eclairage
(CIE) coordinates, CIE x= 0.323–0.330 and CIE y= 0.411–0.416,
thus revealing superior chromatic stability.

To compare with WOLEDs with conventional emissive
structures, we also optimized fluorescent WOLEDs using the
conventional single-emissive layer and double-emissive layer
structure as the reference devices. The single-emissive layer
fluorescent WOLED is ITO/HATCN (10 nm)/TAPC:20 wt%
HATCN (50 nm)/TAPC (20 nm)/DPEPO:25 wt% DMAC-DPS:1
wt% FDQPXZ (20 nm)/DPEPO (10 nm)/BmPyPB:3 wt% Li2CO3

(50 nm)/Li2CO3 (1 nm)/Al (100 nm), and the conventional
double-emissive layer with separated blue and orange emissive
layers has the structure of ITO/HATCN (10 nm)/TAPC:20 wt%
HATCN (50 nm)/TAPC (20 nm)/CBP:3 wt% FDQPXZ (10 nm)/
DPEPO:25 wt% DMAC-DPS (10 nm)/DPEPO (10 nm)/
BmPyPB:3 wt% Li2CO3 (50 nm)/Li2CO3 (1 nm)/Al (100 nm).
Their EL performance was shown in Fig. 3 and Supplementary
Fig. 2. The single-emissive layer and double-emissive layer
fluorescent WOLEDs realized the maximum EQEs of 14.1%
and 15.7%, CEs of 39.4 cd A−1 and 39.1 cd A−1, PEs of 45.8 lm
W−1 and 41.0 lmW−1, respectively. Obviously, we can see that
our proposed emissive layer with the orange TADF emitter
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sensitized by a blue TADF host shows much higher device
performance, the maximum EQEs improve by 45 and 31%,
respectively. Although the reference device with the single-
emissive layer also exhibits this sensitized effect, the generated
excitons in the EML can leak into the adjacent TAPC layer
without the effective exciton limitation owing to the high-energy
level of DPEPO, resulting in the low exciton utilization efficiency.
Besides, the main exciton recombination zone in the reference
device locates in a very narrow region near the interface of TAPC/
EML because of the strong unipolar electron-transporting
property of DPEPO, which would lead to the severe exciton
quenching at high current density.

Our design strategy provides not only obvious increase of device
efficiency but also a significant enhancement of operational stability
in the present WOLEDs. For example, the normalized luminance of
the fluorescent WOLEDs as a function of operation time at initial
luminance are presented in Fig. 2e, the lifetime (T50), defined as the
elapsed operation time at which the luminance drops to 50% of the
initial value, is about 300 h for our present device at initial luminance
of 3300 cdm−2. To predict T50 at L0= 1000 cdm−2, an acceleration
factor of 1.7 for each device from the lifetime measurements can be
obtained. According to (L0)n × T50= constant42,43, T50= 2283 h for
our present device, 382 h for single W1 and 487 h for double W2 at
the initial luminance of 1000 cdm−2. As seen, the lifetime of our
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device is almost sixfold longer than that of single W1 and nearly
fivefold times longer than that of double W2, which can be attributed
to more efficient exciton utilization and mitigated exciton quenching
in a broadened emissive layer compared with the reference
conventional devices.

Remarkably, according to our device design strategy, the
performance of the optimized WOLEDs in this work significantly
exceeds that of other reported all-fluorescent WOLEDs, especially
for the PEs that are strongly enhanced. Supplementary Table 1
summaries the EL performances (without any out-coupling
techniques) of representative fluorescent WOLEDs reported.
However, like most TADF-based WOLEDs, the efficiencies still
have much room that can be further improved compared with
the state-of-the-art phosphorescent WOLEDs. We also notice

that the orange TADF emitter in this work is not efficient enough
because the photoluminescence quantum yield has not reached
unity. To fully exploit the potential of our design concept, the
introduction of efficient and stable ambipolar host materials for
blue TADF emitters and more efficient orange/red TADF
molecules with shorter excitation-state lifetime would be helpful.

Working mechanism. To study the working mechanism in the
sensitized system, the transient photoluminescence (PL) beha-
viors and charge carrier-trapping effect were examined (see
Fig. 4). We tested the transient PL of films consisting of
DPEPO:30% DMAC-DPS (film 1), DPEPO:30% DMAC-
DPS:0.5% FDQPXZ (film 2), DPEPO:30% DMAC-DPS:1%
FDQPXZ (film 3). Clearly the film 1 illustrates obvious prompt

Table 1 Summary of device performances

Device Von
a (V) Max

EQEb [%]
Max CEb

[cd A-1]
Max PEb

[lm W-1]
CRIc CIEc (x, y) Performance at the brightness of

100/1000 cdm−2

EQE [%] CE [cd A-1] PE [lm W-1]

Single-EML 2.7 14.1 39.4 45.8 64 (0.342, 0.453) 12.2/9.7 33.5/27.3 34.0/19.5
Double-EML 2.8 15.7 39.1 41.0 70 (0.322, 0.414) 12.3/9.3 30.4/23.0 28.4/17.3
Proposed EML 2.6 20.5 51.3 59.6 72 (0.326, 0.413) 18.8/13.0 46.5/31.9 52.4/31.7

aTurn-on voltages at 1.0 cd m−2; bmaximum external quantum efficiency, maximum power efficiency; cCommission Internationale de L’Eclairage (CIE), color rendering index (CRI) at the brightness of
1000 cdm−2
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exhibits the normalized electroluminescence spectra at different luminance, and the respective CIE and CRI
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and delayed parts in the PL decay curves, which is the classical
characteristics of TADF (see Fig. 4a). When the orange TADF
emitter doped into the blue-emitting layer, the lifetime and ratio
of the delayed part of DMAC-DPS obviously decrease because of
the efficient energy-transfer process from DMAC-DPS molecules
to FDQPXZ, exhibiting the effect of orange TADF emitter sen-
sitized by the high-energy-level blue TADF. Furthermore, to
study the charge carrier-trapping effect of the orange TADF
emitter in the system, we fabricated hole-only devices with the
structure of ITO/HATCN (10 nm)/TAPC:20 wt% HATCN (50
nm)/TAPC (20 nm)/DPEPO:25 wt% DMAC-DPS (20 nm) or
DPEPO:25 wt% DMAC-DPS:1.0 wt% FDQPXZ (20 nm)/TAPC
(20 nm)/TAPC:20 wt% HATCN (50 nm)/HATCN (10 nm)/Al.
When doping the orange FDQPXZ emitter into the DPEPO:25%
DMAC-DPS layer, the hole current decreases obviously, indi-
cating that FDQPXZ molecule possesses the effective hole carrier-
trapping effect. This trapping effect is caused by the very large
HOMO offset of 0.9 eV between the DMAC-DPS/DPEPO and
FDQPXZ molecules, which will be beneficial for improving the
performance because it can decrease the polaron density and thus
reduce the exciton–polaron quenching especially at the low cur-
rent density7,9,12. Thus, in the sensitized system, there are two
parallel working mechanisms, one is the efficient energy transfer
from the blue DMAC-DPS to orange FDQPXZ, the other is the
charge carrier trapping of orange-emitter molecules. These two
parallel channels cooperatively let the present WOLED utilize all

of the generated singlet and triplet excitons within the exciton
recombination zone.

Optical simulation. Due to the determination of EQE parameters
and the implementation of optical effects in a microcavity model,
all individual light loss channels in OLEDs could be quantitatively
demonstrated in detail44,45. Here, we provide a detailed optical
simulation for our optimized WOLED to prove the nearly unitary
exciton utilization efficiency. In general, to model the emissive
characteristics of an OLED, it is assumed that the emissive zone
contains an ensemble of mutually incoherent dipole radiators
with distributions in the dipole orientations, locations, and fre-
quencies. The electrical losses are ignored and the nonradiative
losses exhibit only small variation because of the limited Purcell
effect for highly efficient emitting materials46.

The detailed simulation parameters and process are also
depicted in the Supplementary Figs. 3–5 and Supplementary
Note 1. The radiation characteristics of OLEDs are then obtained
by the contributions over these distributions. Accordingly, Fig. 5a
illustrates the relative photon distribution, i.e., the distributed
quantum efficiencies of all channels in dependence of the
electron-transporting layer (ETL) thickness. A theoretical max-
imum outcoupled EQE of 21.7% at the thickness of 60 nm can be
predicted in our device structure, which is very close to the
actually obtained value (20.5%). It is worth to note that around
24.0% of generated photons is restricted in the substrate mode,
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and these photons could be extracted by simple out-coupling
techniques such as the introduction of half sphere, indicating
potentially 46.0% EQE could be reached in our device structure.
Figure 5b shows the calculated coupling efficiency as a function of
the hole transport and electron transport layer thickness. Without
considering the electrical balance in real devices, a maximum
value of 22.7% can be predicted at the ETL thickness of 65 nm
and hole-transporting layer (HTL) of 50 nm, which is also very
close to the value of 21.7% at the ETL thickness of 60 nm in our
electrically balanced device structure. Figure 5c gives the
simulated spectrum at perpendicular direction with the photon
contribution from blue and orange of 46 and 54%, respectively,
agreeing with experiment results. Figure 5d describes the angle-
distributed spectra. The spectra are also quite stable with the
angle changing, promising for large angle demanding application
(see Supplementary Fig. 6). From these simulated results, it is
believed that nearly unity exciton utilization efficiency has been
realized in our proposed emissive layer architecture.

Exciton distribution. As seen, in the single-emissive W1 device,
the blue emission intensity is low compared with the orange
emission. The blue emission is effectively quenched by the
orange emitter, but there is no happening in our present device.
This effect should be due to following reasons: first, we broadened
the exciton recombination zone, and meanwhile decreased the
doping concentration of the orange emitter (FDQPXZ) and
added the concentration of blue emitter (DMAC-DPS), sup-
pressing the quenching effect. Second, we used the effective

exciton-confined structure, the excitons can be effectively con-
fined in the present device, but in a single W1 device the gen-
erated excitons in emissive layer will leak into the adjacent hole-
transporting layer because of the high triplet and singlet energy
level of DMAC-DPS, which has been proved by the experiment of
inserting sensing materials. Third, we introduced the efficient
sensitized effect, the generated nonradiative triplet excitons will
be converted into the radiative singlet excitons by the efficient
reverse intercrossing process of DMAC-DPS. To prove these, we
studied the exciton recombination distribution in the emitting
layer of our present WOLED and the reference single W1. The
detailed information has been shown in the Supplementary
Information (see Supplementary Figs. 7–11 and Supplementary
Notes 2, 3).

Discussion
Here, we demonstrate a universal approach to significantly
improve the EL efficiencies of all-fluorescent WOLEDs based on
TADF emitters. This design strategy can improve the charge
balance, broaden the exciton recombination zone, and achieve the
extreme utilization of singlet and triplet excitons within the EML,
rendering extremely high efficiency together with good color
stability, indicating their great potential for commercialization.
The optical simulation shows the nearly unity exciton utilization
efficiency. It is believed that our device design strategy can pro-
vide a new avenue for realizing high-performance all-fluorescent
WOLEDs using TADF emitters.
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Methods
Fabrication process of WOLEDs. Clean glass substrates pre-coated indium tin
oxide (ITO) with a sheet resistance of 10Ω per square can be commercially bought,
and all devices are fabricated on these substrates. First, the ITO surface is cleaned
using the detergents, and washed out with the deionized water. Then they are
transferred into an oven for being dried at 120 °C for 4 h. After that, these sub-
strates are treated with ultraviolet plasma for 20 min to decrease the ITO work
function, then loaded into a deposition chamber. All functional layers are thermally
evaporated grown in succession without breaking the vacuum (∼5 × 10−6 mbar).
The detailed typical evaporated rates of the organic materials, Li2CO3, and Al are
1–2, 0.1–0.2, and 10–20 Å/s, respectively. The effective emissive area was up to
0.4 × 0.4 cm2, determined by the overlap between the Al and ITO electrodes.

Electroluminescence performance characteristics of WOLEDs. Keithley source
measurement unit (Keithley 2400 and Keithley 2000) combined with a calibrated
silicon photodiode are used for measuring the current–voltage–brightness char-
acteristics. The external quantum efficiency is calculated from the EL spectra,
luminance and current density assuming a Lambertian distribution. All above EL
performance measurements are carried out at room temperature under ambient
conditions. The device lifetime measurement is performed in the glovebox filled
with N2 at room temperature.

Transient photoluminescence (PL) measurement. The measured films are
grown on the quartz substrates. Edinburg FLS920 as the transient spectrometer and
a picosecond pulsed UV-LASTER (LASTER 377) as the excitation source are used
for the transient PL decay.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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