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A mechanism for reversible mesoscopic
aggregation in liquid solutions
Ho Yin Chan1 & Vassiliy Lubchenko 1,2

Solutions of proteins and other molecules exhibit puzzling, mesoscopically sized inclusions of

a solute-rich liquid, well outside the region of stability of the solute-rich phase. This meso-

scopic size is in conflict with existing views on heterophase fluctuations. Here we system-

atically work out a microscopic mechanism by which a metastable solute-rich phase can

readily nucleate in a liquid solution. A requisite component of the mechanism is that the

solute form long-lived complexes with itself or other molecules. After nucleated in this non-

classical fashion, individual droplets grow until becoming mechanically unstable because of

a concomitant drop in the internal pressure, the drop caused by the metastability of the

solute-rich phase. The ensemble of the droplets is steady-state. In a freshly prepared solution,

the ensemble is predicted to evolve in a way similar to the conventional Ostwald ripening,

during which larger droplets grow at the expense of smaller droplets.
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Spatially and chemically heterogeneous systems are of prime
significance in the context of both man-made processes,
such as self-assembly and nano-particle manufacturing, and

naturally occurring systems, such as membrane-less organelles1–4.
Heterophase inhomoneneities, such as those arising during spi-
nodal decomposition, represent an important subclass of those
phenomena. They however become increasingly difficult to pro-
duce away from the conditions for inter-phase equilibrium5. If
appeared, domains of a metastable phase will promptly evaporate
because nucleation of such a phase is an uphill process, free
energy-wise, owing both to the bulk free energy cost and the
mismatch penalty between the majority and minority phase6,7.
Thus in equilibrium, one has essentially a dichotomy: heterophase
inhomogeneities are either of macroscopic dimensions, during a
phase coexistence, or, otherwise, could survive only on molecular
timescales implying correspondingly small lengthscales.

It then comes as a surprise that equilibrated solutions of several
proteins must host mesoscopically sized inclusions of what seems
to be a distinct, protein-rich phase of fluid consistency8–18; these
inclusions are often called “the mesoscopic clusters.” Cluster-
containing solutions are stable on time scales of a few months12.
In systems studied so far, the mesoscopic clusters contain a small
fraction of the solute, less than 10−3, and thus do not affect the
appearance of the solution; common methods of detection
include dynamic light scattering, direct tracking using fluores-
cence, and also atomic force microscopy. In addition to solutions
of many proteins, mesoscopic clusters have been recently
observed in solutions of relatively simple molecules, viz., the
pharmaceutical olanzapine19.

The mesoscopic clusters are important for many reasons: They
serve as essential nucleation sites for solid protein aggregates such as
fibers of sickle cell anemia and tumor suppressor p5318,20,21 and
protein crystals8,14,17,22. Thus by deliberately inducing the forma-
tion of clusters, one can seed formation of solid aggregates of
interest in applications. Equally important is that the clusters form
an ensemble of objects whose size is narrowly distributed around
a steady-state value. This may provide a separate avenue for
making mesoscopically sized particles or gels in industrially
relevant quantities. On the more fundamental side, the existence
of mesoscopic clusters suggests a tantalizing possibility that the
precursors to living cells were not encased in membranes but,
instead, were more like the so called membrane-less organelles.
Differing from the surrounding cytoplasm chemically, membrane-
less organelles1–4 essentially serve as cell’s chemical reactors; the
lack of a membrane provides for ready exchange of reactants and
products with the cytoplasm. In view of the continuously growing
number of cluster sightings, it stands to reason that the clusters are
more common than one might think, but are not detected more
frequently either because they are a kinetic intermediate to a more
stable phase or simply for the lack of trying.

The mesoscopic clusters are not micelle23-like objects. This is
evidenced by the fact that the mole fraction of the clusters
increases gradually with the concentration of the solute, the latter
concentration showing no saturation; the value of the mole
fraction is consistent with estimates of the free energy cost of
creating bulk solute-rich liquid11. At the same time, the typical
size of an individual cluster does not sensitively depend on the
solute concentration. This is in contradistinction to macroscopic
phases, which respond to changing conditions by evolving in size
until the solution is again saturated. Still in one particular way
the clusters in freshly prepared solutions behave similarly to
macroscopic phases: Well before its steady-state value is reached,
the typical cluster size depends on time12 in a way reminiscent
of Ostwald ripening24–27.

The lack of dependence of the steady-state cluster size on the
solute concentration in the bulk solution suggests an additional,

molecular-level process is at work. Pan et al.11 proposed that this
additional process involves the formation and decay of a solute-
containing species, call it the “complex.” The complex could
contain one or more solute molecules. In this mechanism,
the solute-rich phase is assumed to be rich in the complex. The
complex would have to have a relatively long lifetime—of
the order milliseconds for protein solutions. The cluster size R
is essentially determined by the distance the complex can diffuse
before it decays:

R �
ffiffiffiffiffiffiffiffiffiffi
Dc=k

p
: ð1Þ

where k is the decay rate of the complex and Dc its diffusivity. The
lengthscale R emerges self-consistently as a result of solving a set
of reaction-diffusion equations applicable outside the cluster11.
Inside the cluster, the equations become however invalid and,
furthermore, produce unphysical singularities. A good deal of
indirect experimental evidence exists for the “complexation”
scenario11,28,29, direct observation of the complexes complicated
by the small volume fraction of the clusters.

Lutsko and Nicolis30 (LN) extended the Pan et al.’s treatment
to explicitly include particle-particle interactions using a standard
approximation of the theory of liquids. These authors concluded
that the resulting reaction-diffusion equations allow for a sta-
tionary solution in the form of stable individual clusters, a star-
tling result indeed. Note such a stationary solution would not
allow for Ostwald-like ripening but, instead, would exhibit sim-
pler, exponential kinetics for the relaxation of cluster size. At the
same time, the only known mechanism for bona fide Ostwald
ripening—which may or may not apply to the clusters—requires
that droplets surrounded by under-saturated solution evaporate
while droplets surrounded by over-saturated solution grow
indefinitely24,25. Perhaps fittingly, Lutsko31 concluded in a sub-
sequent analysis that realistically accounting for the variability of
the kinetics depending on the solute concentration would disrupt
the complexation mechanism put forth in ref. 11, after all.

Here we present a reaction-diffusion treatment applicable
throughout the whole space. It demonstrates that the complexa-
tion scenario can, in fact, lead to the emergence of a metastable
minority phase that is fragmented into inclusions of substantial
yet non-macroscopic size, or “clusters.” In contrast with the
conclusions of the LN study, individual clusters are never stable
in the present mechanism. Once nucleated, the clusters grow
precipitously until they become mechanically unstable and break
apart via necking. Thus in an equilibrated solution, the droplets
nucleate, grow, and decay at a steady rate leading to a steady-
state ensemble of clusters, each of which is not steady-state
individually. The probability distribution for the cluster size can
be centered, within a broad parameter range, at a much larger
size than that suggested by the standard theory of heterophase
fluctuations5,11.

The formation of the transient complexes serves to effectively
provide partial, kinetic stabilization of the minority phase but on
lengthscales comparable to the distance a complex can travel
before it decays; the complexation mechanism requires that the
solute-rich phase be rich in the complex as in ref. 11. Thus the
question of whether the clusters could nucleate is the question of
whether microscopic parameters could conspire to make the
critical size for cluster nucleation shorter than the kinetic length
from Eq. (1). Here we show that, indeed, there is a substantial
range of microscopic parameters for which the answer to this
question is affirmative. At the same time, the cluster size at the
mechanical stability edge does not change much within that
parameter range, which is consistent with the observed behavior
in protein solutions. Non-withstanding the kinetic character of
the effective bulk stabilization of the minority phase, due to the
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complex formation, cluster nucleation shares an important aspect
with nucleation of a stable minority phase: The effective value of
saturated vapor pressure still depends on the cluster size. Thus
one expects the clusters should exhibit Ostwald-like ripening at
sufficiently early times, again consistent with observation. Finally,
many types of solutes exhibit a propensity for the formation of
transient complexes, even if short-lived. Thus we predict meso-
scopic clusters should be observed commonly even if not
universally.

Results
Setup of the calculation. For concreteness, we assume that the
solute-containing complex is a dimer. The coordinate-dependent
concentrations of the solute (“the monomer”) and the complex
(“the dimer”) are denoted with n1 and n2, respectively. The cor-
responding reaction-diffusion scheme is

_n1 ¼ �=j1 � k1n
2
1 þ 2k2n2

_n2 ¼ �=j2 þ 1
2 k1n

2
1 � k2n2;

ð2Þ

where ji is the flux of species i, k1 the (bi-molecular) rate of
binding of the monomer to itself, and k2 the dissociation rate of
the dimer. Strictly speaking, the reaction terms in Eq. (2) should
be written using the activities, not concentrations; we will return
to this notion shortly. In addition, these equations must properly
contain terms that account for thermal noise. The latter terms are
not included in the treatment since we are mostly interested in
the relaxation of the system toward its steady state.

The transport for each species is overdamped at the conditions
of interest and thus obeys the usual Fick’s law26:

ji ¼ �~Di=μi; ð3Þ
where ~Di is the self-diffusivity of species i and μi its chemical
potential. To include off-equilibrium situations in the treatment,
we allow both the chemical potentials and concentrations of the
monomer and dimer to be coordinate-dependent. The local value
of the chemical potential, by construction, is the free energy cost
of adding a particle to the system at the locale in question:

μiðrÞ ¼
δF

δniðrÞ
; ð4Þ

where F is the total free energy of the system and δ/δni is the
functional derivative with respect to ni26,32,33.

It is guaranteed34 that there is a unique free energy density
functional that is optimized by the equilibrium density profiles.
Aside from the use of concentrations in place of activities, Eqs.
(2)–(4) provide an internally consistent, complete description of
transport and inter-conversion of the monomer and dimer.

As a practical matter, one uses an approximate form for the
free energy functional such as the venerable Landau-Ginzburg-
Cahn-Hilliard35 functional, which we employ here as well:

F ¼
Z

κ1
2

∇n1ð Þ2þ κ2
2

∇n2ð Þ2þV n1; n2ð Þ
h i

d3r: ð5Þ

The latter functional affords one a quantitative description not
too close to criticality32. The quantities κi are the standard
coefficients at the square gradient of the order parameter in the
Landau–Ginzburg functional32 and reflect the free energy cost of
spatial inhomogeneity in the order parameter. We assume that
the monomer-dimer-buffer mixture can have two distinct liquid
phases, one monomer-rich and the other dimer-rich. The bulk
portion of the corresponding free energy functional, V n1; n2ð Þ,
thus has two distinct minima, which makes the solution of Eqs.
(2)–(4) difficult in the interfacial region. These difficulties can be
efficiently addressed36, as we detail in the Methods, by adopting
parabolic free energy profiles everywhere within individual

phases. Explicit examples of crossing, nearly-parabolic free energy
surfaces are provided by Talanquer37, who discusses phase
behavior of self-associating fluids; the present setup can be viewed
as a limiting case of that study where the oligomers do not exceed
2 in size. Thus the bulk free energy of the mixture is set, by
construction, at

V n1; n2ð Þ ¼ min
α

gðαÞ þmðαÞ
1

2
n1 � nðαÞ1;b

� �2
þmðαÞ

2

2
n2 � nðαÞ2;b

� �2
" #

;

ð6Þ
where α labels the phase: α =m for the monomer-rich, and α = d

for the dimer-rich solution. The quantity nðαÞi;b denotes the
equilibrium bulk value of the concentration of species i in phase
α. These are connected with the rate constants according to

kðαÞ1 ðnðαÞ1;bÞ2 ¼ 2kðαÞ2 nðαÞ2;b . The coefficients mðαÞ
i reflect the free

energy penalty for density fluctuations and are proportional to
the pertinent inverse osmotic compressibility.

In the present treatment of thermodynamics (κi, mi), transport
ð~DiÞ, and chemical transformation (ki), we are performing a
quadratic expansion around the bulk equilibrium state for each
individual phase. This amounts to our effective use of
concentration-independent coefficients κi, diffusivities ~Di, and
rate coefficients ki, while writing down the kinetic terms in Eq. (2)
in terms of concentrations, not activities. Assumed to be constant
within individual phases, these coefficients generally differ
between distinct phases. Clearly, the variation of the parameters
between the phases, not within individual phases, is the most
important effect. The present approach captures this effect. We
note that the four diffusivities—there are two species and two
phases—are not independent. For internal consistency, one must

set ~DðmÞ
1 =~DðmÞ

2 ¼ ~DðdÞ
1 =~DðdÞ

2 , see Methods for details.
Additional computational difficulties are caused by the

presence of the non-linear term k2n
2
1 in Eq. (2). We have

numerically solved the resulting non-linear differential equations
for several realizations of parameters—to be discussed in due time
—however the majority of the calculations were performed for a
linearized version of Eq. (2) so that the interconversion between
the two species is effectively a first order reaction:

_n1 ¼ �=j1 � k1n1 þ k2n2
_n2 ¼ �=j2 þ k1n1 � k2n2;

ð7Þ

where k1n1;b ¼ k2n2;b in each phase. Note that if one considers
Eq. (7) as a linearized version of Eq. (2), a variable change 2n2 →
n2 is implied. Equations (7) can also be considered on their own
merit: They can approximate a physical situation where species 1
converts into species 2 by binding a third species that is part of
the buffer. If the transport of this third species is fast compared
with the transport of species 1 and 2, then the above equations
apply. This said, we will continue to call species 1 and 2 “the
monomer” and “the dimer,” respectively.

The linearity of the reaction terms in Eq. (7) renders the
problem linear within an individual phase. The chemical
potentials and concentrations can be presented as linear
combinations of Yukawa-like terms r−1e±qr while the differential
equation is thus reduced to an algebraic characteristic equation
for the lengths q−1 that can be solved much more readily than the
original non-linear differential Eq. (2). This circumstance allows
one to readily explore broad ranges of parameters. Once a non-
trivial solution of the 1st order case (7) is found, one may then
attempt to confirm whether a similar solution exists in the more
complicated, 2nd order case from Eq. (2). Throughout, we
consider exclusively the spherically symmetric geometry; such
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solutions are expected to minimize the surface tension between
the two phases during phase coexistence36.

Stationary droplet solution. We specifically inquire whether
long-lived inclusions of the dimer-rich phase could form inside
the monomer-rich phase, when the dimer-rich phase is in fact
metastable:

Δg � gðdÞ � gðmÞ>0: ð8Þ
Such long-lived inclusions, if any, could represent a metastable

state and/or nucleate in an activated fashion. In either case, we
must look for stationary droplet-like solutions of Eqs. (3)–(7):
_ni ¼ 0, where the minority and majority phase are the dimer-rich
and monomer-rich liquids, respectively.

Such non-trivial stationary solutions do indeed exist as we
exemplify in Fig. 1. There we show the coordinate dependences
of the (local) chemical potentials and concentrations of the two
species, and the hydrostatic pressure. (The coordinate-dependent
pressure was computed as in ref. 36, see Methods.) The length R
denotes the radius of the spherical region occupied by the dimer-
rich phase. The value of R is determined self-consistently as a
result of solving the equations. We will use R as the nominal
cluster radius but note that it is a lower bound on the cluster
size because the concentrations reach their bulk values at r > R,
as should be clear from Fig. 1. In Fig. 2, we show a parametric
plot of the concentrations of the monomer and dimer, the
parameter being the distance from the droplet center. The
parametric plot is superimposed on the contour plot of the bulk
free energy V from Eq. (6).

As anticipated by Pan et al.11, the net particle exchange for
each individual species, between the droplet and the bulk
solution, drops exponentially fast into the bulk: The solutions q

of the aforementioned characteristic equation are independent of
the droplet radius R, see Methods. Now, nearer to the droplet,
there is significant influx of the monomer toward the droplet and
outflaw of the dimer, accompanied by a net decay of the dimer
into the monomer. At the same time, the total flux of the solute,
i.e., the quantity

P
i
~Di=μi, is identically zero in steady state.

The situation inside the droplet is drastically different from
that anticipated in ref. 11 in that it largely mirrors the transport
pattern on the outside: For the most part, the monomer
flows from the center to the boundary while the dimer does
the opposite. Figures 1 and 2 highlight a peculiar nature of the
stationary solution at Δg > 0: The chemical potentials, the
concentration of the monomer, and the pressure all exhibit non-
monotonic dependences on the radial coordinate r. In contrast,
such dependences are expected to be monotonic during
conventional nucleation, so as to minimize the surface tension
between the minority and majority phases36. (Furthermore, the
chemical potentials are strictly spatially uniform when the droplet
is critical26,36!) We show separately the quantity n � n1 þ 2n2,
which is the total concentration of the solute, irrespective of
whether it is in the form of monomer or dimer. According to
Fig. 1, there a small pile up of the solute at the droplet boundary.

The apparent decrease in the pressure toward the center
of the droplet is expected because the pressure difference between
the bulk dimer-rich and monomer-rich phases is the negative
of the bulk free energy difference36:

pðdÞbulk � pðmÞ
bulk ¼ �Δg: ð9Þ

We have derived earlier the following expression for the
pressure differential in the Landau-Ginzburg liquid free energy
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Fig. 1 Stationary droplet solution, 1st order reaction case. Shown are the radial-coordinate dependences of the local chemical potentials μi (i = 1, 2),
concentrations ni (i = 1, 2), and pressure p for a stationary, spherically symmetric cluster of radius R, as obtained by solving the reaction-diffusion scheme
in Eq. (7). The inset shows the r-dependence of the total amount of the solute, n � n1 þ 2n2. The following parameter values are employed:
κðdÞ1 ¼ κðdÞ2 ¼ κðmÞ

1 ¼ κðmÞ
2 ¼ 40, mðdÞ

1 ¼ mðmÞ
1 ¼ 52:36, mðdÞ

2 ¼ mðmÞ
2 ¼ 500, nðdÞ1 ¼ 0:01, nðdÞ2 ¼ 0:12, nðmÞ

1 ¼ 0:02, nðmÞ
2 ¼ 0:01, DðdÞ

1 ¼ 0:33, DðdÞ
2 ¼ 0:25,

DðmÞ
1 ¼ 1, DðmÞ

2 ¼ 0:76, kðdÞ1 ¼ 0:001, kðdÞ2 ¼ 0:000077, kðmÞ
1 ¼ 0:000038, kðmÞ

2 ¼ 0:000077, Δg = 0.01, kz1 ¼ 0:00005, kz2 ¼ 0:00003. The units are
arbitrary; the unit of length can be thought of as roughly comparable to molecular dimensions and the unit of energy to kBT. The values for the rate
coefficients and diffusivities were chosen to yield values for the cluster size comparable to those seen in protein solutions
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for a liquid mixture, in spherical geometry36:

p2 � p1 ¼ �2
Z 2

1

dr
r

X
i

κiðdni=drÞ2 þ
X
i

Z 2

1
nidμi: ð10Þ

The first term on the r.h.s. represents the excess pressure due
to the curvature of the interface and would give the venerable
Laplace expression 2σ/R in the limit of a thin interface with
surface tension coefficient σ36. The second term is of bulk
character (i.e., independent of interface curvature) and, if in
steady-state, stems exclusively from the presence of chemical
conversion. According to Eq. (10), the rate at which pressure
saturates, as one moves away from the interface, is determined
by the largest of the aforementioned decay lengths q−1 for the
spatially inhomogeneous parts of the concentrations and the
chemical potential. This notion, together with Eqs. (8)–(10),
implies that in a sufficiently large droplet, pressure on the inside
will be lower than that in the bulk solution. This situation is in
stark contrast with the common case of nucleating a stable
minority phase. In the latter case, the inside pressure is always
higher—consistent with the minority being the stable phase—
and, furthermore, precisely matches the Laplace pressure when
the nucleus is critical. Direct illustration of the latter notion can
be found in ref. 36.

The finite width of the interface also implies that sufficiently
large clusters can be regarded as possessing a thin interface. We
note the solution shown in Fig. 1 represents a modestly-sized
cluster so that the width of the cluster-bulk interface is not small
compared with the cluster radius. Thus, although the pressure
does show a trend toward lower values deeper into the droplet, it
does not reach its bulk value for the minority phase even at r = 0.
In Fig. 3, we exemplify a contrasting solution for a sufficiently
large droplet such that the quantity Δp � pðr ¼ 0Þ � pðr ¼ 1Þ is
indeed numerically close to −Δg.

Droplet growth and decay, and the ripening of the cluster
ensemble. We next ask whether the above droplet solution
represents a metastable entity or a transition state configuration.
To answer this question, we do not attempt to solve the full-
blown time dependent problem. Instead, we first artificially

constrain the values of the concentrations at the droplet boundary
and the droplet radius R away from their stationary values. We
then use the resulting profiles of the chemical potentials to
determine the fluxes of the monomer and dimer at the cluster
boundary. In turn, these fluxes are used to estimate the value of
the time derivatives _R and _nz1, where n

z
1 is the concentration of the

monomer at the boundary; this is detailed in the Methods. (nz2 is
specified automatically because the boundary is a line in the
ðnz1; nz2Þ plane.) Finally, we make a flow chart corresponding to
the vector ð _R; _nz1Þ in the ðR; nz1Þ plane, as shown in Fig. 4. This
flow chart demonstrates that the stationary solution is, in fact, a
critical point beyond which the droplet will grow indefinitely but
evaporate otherwise. At the same time, we note the free energy of
the droplet is a monotonically increasing function of the droplet
radius, as we show in the inset of Fig. 4. When combined, these
two notions would seem to indicate the droplet will grow inde-
finitely despite its free energy increasing in the process. This
would seem to contradict the second law of thermodynamics.

This situation is, however, simply a formal consequence of the
present treatment being incomplete as it does not account for
thermal noise, see the remark following Eq. (2). In actuality,
thermal noise will eventually cause the droplet to decay toward
the stable, bulk phase and in fact do so in an activated fashion.
Indeed, we first observe that similarly to conventional nucleation,
the presently found droplet solutions exhibit a well defined
interface tension. This could be seen from the rapid onset of the
“Laplace”pressure due to the interface curvature, see Figs. 1 and 3,
and the first term on the r.h.s. of Eq. (10). Because of this
interface tension, the droplet will be stable against modest
fluctuations in shape. Consequently, the droplet’s decay will be
subject to a free energy barrier.

We have not succeeded in finding spherically symmetric
stationary solutions for the problem of reverse nucleation, i.e.,
the nucleation of the bulk phase inside the minority phase
in situations where the forward nucleation of the minority
phase does exhibit such stationary solutions. If such reverse
solutions do not exist—something we can not demonstrate with
complete certainty at present—the situation is the opposite to
that arising during regular nucleation. In the latter case,
spherically symmetric stationary solutions exist for nucleating
a stable minority phase but not the other way around.

Thus the activated droplet decay must involve non-spherically
symmetric geometries as its transition state configurations. A clue as
to how such geometries could arise can be obtained by plotting
the (local) pressure in the center of the sphere relative to its value
in the solution bulk, Δp � pðr ¼ 0Þ � pðr ¼ 1Þ, as a function of
the droplet radius R for a spherical droplet, see Fig. 5a. Clearly, the
pressure differential between the inside and outside of the droplet
becomes negative for a sufficiently large droplet potentially
signaling a mechanical instability. This is particularly straightfor-
ward to see in the limit of a thin interface. Hereby, the pressure
inside the droplet quickly reaches the bulk value for the minority
phase already right under the surface of the droplet. Under these
circumstances, the metastability of the minority phase implies, by
Eq. (9), that the pressure on the inside is less than on the outside.
In turn, this means the droplet is mechanically unstable. Indeed,
because of shape fluctuations, some parts of the boundary will
acquire curvature less than 2/R. The local pressure in the adjacent
regions, inside the droplet, will become negative, relative to the bulk,
leading to a caving of the interface. In turn, this will lead to a further
decrease in (the Laplace contribution to) the inner pressure, by
Eq. (10), and so on. The interface will thus buckle leading to a
necking of the cluster; this is illustrated in Fig. 5b.

The interface is however not thin. For instance, the configura-
tion shown in Fig. 1 exhibits an interface whose width is a
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Fig. 2 Bulk portion of the free energy. Shown is the contour plot of the
presently employed bulk free energy density Vðn1; n2Þ, see Eq. (6), as a
function of the concentrations n1 and n2 of the components. The two
paraboloids correspond with the free energies of the two pure phases,
respectively; the paraboloids intersect at the “dividing surface” shown in
the plot by the dashed yelow line. The upper-left minimum corresponds to
the dimer-rich solution, which is the minority phase. The curve connecting
the two minima is the parametric plot of the concentrations n1 and n2 from
Fig. 1, the parameter being the radial coordinate r
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substantial fraction of the cluster radius. Under such circum-
stances, the pressure on the inside does not reach its bulk value
for the minority phase even in the center of the droplet. In
addition, the said buckling instability would be further offset for
thick slabs38. Thus we conclude that the droplet radius Rmax

beyond which Δp � pðr ¼ 0Þ � pðr ¼ 1Þ<0 likely represents a
lower bound on the size where the mechanical instability sets in.

The following microscopic picture thus emerges: In a steady-
state solution, clusters continuously nucleate, grow, and ulti-
mately decay because of a mechanical instability. The latter
instability ultimately stems from the dimer-rich phase being

thermodynamically metastable. For each nucleating cluster, there
is a decaying one, in steady-state, and so there is no net entropy
production or consumption. The monotonic increase of the free
energy of an individual droplet with the droplet size drives
home the notion that the clusters are stabilized kinetically, not
thermodynamically. The stabilization comes about because once
formed, as a result of density fluctuations, a dimer-rich region will
extend at least for the distance dimers will typically travel before
they decay back into monomers.

One may further elaborate on the above notions of kinetic
stabilization. The reaction terms in Eqs. (2) and (7) are local and
thus the kinetic stabilization, if any, would be of bulk character. On
the other hand, such stabilization can operate only on lengths not
exceeding the kinetic lengths of the type in Eq. (1). Thus we
conclude that for the present scenario to be viable, the parameter
values should be such that the critical size R‡ for nucleation is less
than the pertinent kinetic length. We can check this notion, even if
somewhat indirectly, by computing the critical size for a range of
Δg values. Larger values of Δg should imply less overall stabilization
—thermodynamic plus kinetic—and, consequently, larger values
for the critical radius. This is borne out by the results in Fig. 6a. In
that Figure, we also show the dependence of the threshold value
of the droplet radius Rmax at which the pressure differential Δp in
the center of the droplet would vanish. We observe that, indeed,
there is an upper limit on the bulk free energy excess of the dimer-
rich phase beyond which already sub-critical clusters would be
mechanically unstable and, thus, could not emerge in the first
place. We reiterate that Rmax shown in Fig. 6a is likely a lower
bound on the actual size where the mechanical instability sets in.
Because the characteristic equations are complicated, it is difficult
to see the explicit dependence of the lengths in Fig. 6a on the
kinetic coefficients. We have checked that for specific values of
parameters, the critical radius R‡ does decrease with the decay rate
k2 of the dimer, consistent with the heuristic arguments of Pan
et al.11; the corresponding data can be found in Methods.

Figure 6a indicates the range of possible values for the cluster
size. Indeed, because sub-critical clusters would rapidly evaporate,
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one should readily observe clusters only within the size range
specified by the critical size R‡ and the threshold size Rmax (if
Rz<Rmax). According to Fig. 6a, this range is relatively modest,
consistent with the apparent weak dependence of the cluster size
on the concentration of the solute.

Next, we address the question of the ripening of the clusters in a
freshly prepared solution. According to refs. 24–27, conventional
Ostwald ripening comes about for the following reason: If the
typical size of the minority phase is sub-macroscopic, the solution
of the pertinent species in the majority phase is over-saturated, the
degree of supersaturation decreasing with the typical droplet size
according to the usual Gibbs–Thomson relation7. At a given value
of supersaturation, droplets smaller than the corresponding critical
size will evaporate, while droplets that are bigger than the critical
size will grow. As a result, the average droplet size will grow until
the minority phase reaches macroscopic dimensions while the
supersaturation peters out. Within the Gibbs–Thomson approx-
imation and in the limit of diffusion controlled droplet growth, the
volumetric rate of droplet growth, R2 _R happens to scale linearly
with the deviation ðR� RzÞ of the droplet radius from the critical
radius, see Methods. This is shown by the dashed line in Fig. 6b.
The corresponding dependence for the present clusters is shown
in that Figure with symbols. Although different from a strict linear
form, the quantity R2 _R for kinetically stabilized clusters is still a
monotonically increasing function of R vanishing at R ¼ Rz. As
detailed in Methods, the data in Fig. 6b imply that well before the

steady-state cluster is reached, clusters grow according to a power-
law Rz /¼ t0:32± 0:01. This is quite close to if not somewhat faster
than the dependence t0.26±0.03 observed by Ye Li et al.12. For
comparison, the Lifshitz-Slyozov-Wagner24,25 (LSW) mechanism of
conventional Oswald ripening predicts Rz /¼ t1=3.

This notion suggests that an Ostwald-like ripening could take
place in cluster-containing solutions. Indeed, according to Fig. 6a,
the critical radius increases with Δg, as already mentioned. On the
other hand, Δg increases with lowering of the concentration of

the solute in the bulk solution gð1Þ � ln n1;b
� �

. In a freshly

prepared solution, the typical cluster size is less than its value in
equilibrium, resulting in an excess solute to compensate for the
excess curvature of the cluster surface. As the average cluster
size increases, the amount of this excess solute will decrease
leading to an increase in Δg, and, consequently an increase in the
critical radius. The increase of the critical radius with time is
similar to what happens during conventional Ostwald ripening.
In contrast with the conventional Ostwald ripening, however,
the supersaturation due to the finite curvature increases, not
decreases with time. This is because the minority phase here is
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thermodynamically metastable in the first place. Yet as in the case
of growth of an individual droplet, the seemingly “positive-
feedback loop” for Δg does not lead to a runaway growth of the
droplets because of the mechanical instability discussed earlier.
Furthermore, as Δg approaches its limiting value, where
Rz ¼ Rmax, the time dependence of the typical cluster size must
stop following the Ostwald-like t1/3 and, instead, level off at the
equilibrium value of Rmax.

It is interesting to ask how long it would take the system to
reach this stationary state. Existing experimental studies of cluster
ripening in lysozyme solutions12 indicate ripening times of the
order hours, while noting that the LSW treatment would predict
seconds. Consistent with this (hitherto unexplained) discrepancy,
the presently predicted scaling of the time dependence of the
cluster radius the detailed _R vs. R dependence is quite distinct
from that on which the LSW theory is predicated. In the absence
of actual treatment, which is work in progress, we provide here
only a qualitative estimate using the LSW formalism. Hereby,
one may linearize the R2 _R dependence on R in Fig. 6b, near the
critical value of the latter, to connect the rate of cluster growth
with its radius, see Methods. In agreement with conclusions of
ref. 12, we obtain that the LSW-based time needed to reach the
size Rmax is about 2 s, for the parameter values in Fig. 6 and the
diffusivity of lysozyme molecule reported in ref. 11.

Finally, we note that there may be additional processes present
within the dimer-rich phase, such as gelation seen in lysozyme-
rich liquid, both macroscopic39 and mesoscopic17. Such addi-
tional processes may further stabilize the clusters.

The second-order case. Here we present, in Fig. 7, the stationary
solution corresponding to the original second-order reaction
setup from Eq. (2). This solution was obtained using the finite
element method40 and requires much more effort than the first-
order case, both in terms of implementation and computation

proper; see Methods for details. Note that both in the 1st order
and 2nd order kinetics case, we assumed that the decay rate
of the dimer has the same value in both phases. This is to reflect
the expectation that, in contrast with the binding rate for the
monomer, the decay rate of the complex would not be very
sensitive to the composition of the solution. We have obtained
stationary solutions for other values of the parameters as well. In
any event, we observe that the non-linearity in the reaction terms
does not destroy the kinetic stabilization observed in the case of
first order kinetics; the two cases produce qualitatively similar
results. At the same time, we note introducing the non-linearity
in the reaction kinetics does have substantial quantitative effects.
For instance, for the same values of the parameters that yield a
droplet solution when the complexation reaction is second order,
the corresponding linearized case may not exhibit a droplet
solution altogether, steady-state or not.

Methods
Boundary conditions and the non-stationary case. To describe phase coexistence
we employ a double-minimum bulk free energy density V n1; n2ð Þ. The latter free
energy corresponds with the grand-canonical ensemble and is straightforwardly
related to the Helmholtz free energy density f36:

V n1; n2ð Þ ¼ f n1; n2ð Þ � μ1;bn1 � μ2;bn2: ð11Þ

where μi,b is the chemical potential of species i in the bulk.
A smooth surface exhibiting two minima has to be a quartic polynomial or a

more complicated function, which renders even the otherwise linear differential Eq.
(7) highly non-linear and difficult to solve even numerically. To circumvent this
difficulty, we employ a bulk free energy which is not smooth but, instead, consists
of two intersecting paraboloids, see Eq. (6) and Fig. 2. The resulting free energy
surface exhibits a singularity, in the form of a discontinuous gradient, where the
two paraboloids from Eq. (6), α = m and α = d, intersect. The singularity is
however confined to a region of measure zero, the latter region corresponding to
the phase boundary. In each individual phase, the transport part of the problem
reduces to linear differential equations. The respective solutions must be patched
together where the bulk free energy is singular, i.e., at the phase boundary. Patching
such solutions for mixtures, as opposed to systems described by only one order
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1 ¼ 0:019, nðmÞ
2 ¼ 0:005, DðdÞ
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1 ¼ 1, DðmÞ
2 ¼ 0:38, kðdÞ1 ¼ 0:026, kðdÞ2 ¼ 0:000019, kðmÞ
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parameter, presents some subtlety and has been worked out earlier by us36.

niðRþÞ ¼ niðR�Þ � nzi ð12Þ

μiðR�Þ ¼ μiðRþÞ ð13Þ
X
i

κið∂ni=∂rÞ2
��Rþ

R�¼ 0: ð14Þ
While Eqs. (12) and (13) are intuitive, the constraint in Eq. (14) is less obvious

and comes about because the hydrostatic pressure is continuous across the
boundary:

pðrÞjRþ
R�¼ 0: ð15Þ

The pressure for the Landau-Ginzburg functional is computed according to36:

pðrÞ ¼ �V þ
X
i

μini þ
X
i

κi
2

dni
dr

� �2

: ð16Þ

In the stationary case, _R ¼ 0, the fluxes for each component must be continuous
as well:

~Di
∂μi
∂r

� �����
Rþ

R�
¼ 0 ð17Þ

Note we must separately specify the reaction rates at the boundary, which we
denote with kzi . For the 1st order reaction case, the kinetic equations at the
boundary read

_nz1 ¼ �kz1n
z
1 þ kz2n

z
2 ð18Þ

_nz2 ¼ kz1n
z
1 � kz2n

z
2 ð19Þ

and analogously for more complicated reaction schemes.
The above equations form a complete set of equations that allow one to

determine, self-consistently, the stationary value of the droplet radius R. This setup
is over-defined in the sense that not all parameters are independent. Clearly, the
reaction rates and equilibrium concentrations are not independent:

kðαÞ1 ðnðαÞ1;b Þ2 ¼ 2kðαÞ2 nðαÞ2;b ð20Þ
for the 2nd order reaction and for the 1st order case:

k1n
ðαÞ
1;b ¼ k2n

ðαÞ
2;b : ð21Þ

Here α labels the phase. A more subtle constraint on the parameters comes
about because of particle conservation. Indeed, adding together the two equations
in Eq. (7) and using Eq. (3) yields

∇2ð~D1μ1 þ ~D2μ2Þ ¼ 0 ð22Þ
In equilibrium, this equation is solved by by ~D1μ1 þ ~D2μ2 ¼ 0, since μiðr ¼

1Þ ¼ 0 by construction. Thus one obtains

~D1μ1 ¼ �~D2μ2: ð23Þ
Combining this with the boundary condition (13) yields

~DðmÞ
1 =~DðmÞ

2 ¼ ~DðdÞ
1 =~DðdÞ

2 : ð24Þ
It is straightforward to see that the same constraint must be satisfied in the 2nd-

order kinetics case.
To approach non-stationary situations, we make additional assumptions. First,

we specify for concreteness that a droplet of the minority phase be a vapor bubble
with respect to the monomer, but a liquid droplet with respect to the complex:

nðdÞ1;b < nðmÞ
1;b

nðdÞ2;b > nðmÞ
2;b ;

ð25Þ

while assuming the monomer is the primary species in the majority phase:

nðmÞ
1;b >n

ðmÞ
2;b : ð26Þ

Next we make the usual approximation26 by which the interface is assumed to
move on timescales that are much longer than the diffusion times scales R2/D. (D is
the regular diffusivity, see below.) And so for each value of R, we solve the
stationary equations _nzi ¼ 0 while relaxing the constraint (17) that the fluxes of
the components on the opposite sides of the boundary be equal. Using these
assumptions, we (approximately) infer the sign of the rate of change of the droplet
radius away from steady state26:

_R� �1
nðmÞ
1;b �nðdÞ1;b

~D1
∂μ1
∂r

� ����Rþ

R�

¼ �1
nðmÞ
2;b �nðdÞ2;b

~D2
∂μ2
∂r

� ����Rþ

R�

ð27Þ

Note Eq. (27) represents an additional constraint. Thus pegging R and ny1 away
from their stationary values allows one to find self-consistently to determine the
values of _R and, for instance, _ny1. The corresponding flow chart is shown as Fig. 4

and demonstrates that the stationary solution in fact represents a transition state,
not a metastable configuration.

First order reaction. When the monomer-dimer conversion is a first order reac-
tion, the problem reduces to a set of two linear, fourth-order differential equations,
for each individual phase:

_n1 ¼ ~D1∇2ð�κ1∇2n1 þm1n1Þ � k1n1 þ k2n2;

_n2 ¼ ~D2∇2ð�κ2∇2n2 þm2n2Þ þ k1n1 � k2n2:
ð28Þ

subject to the the patching conditions discussed above and the boundary condi-
tions in the center of the droplet, r = 0, and in the bulk, r = ∞. In a standard
fashion, we require that

niðr ¼ 1Þ ¼ ni;b
=niðr ¼ 0Þ ¼ 0:

ð29Þ

and

μiðr ¼ 1Þ ¼ 0

=μiðr ¼ 0Þ ¼ 0:
ð30Þ

The linear Eq. (28) are solved by a linear superposition of Yukawa potential-like
functions eqr/r36. The characteristic equation for the wavevector q can be written in
a relatively transparent form:

0¼ q6 � q4 l�2
1 þ l�2

2

� 	
þq2 l1l2ð Þ�2þ l1L1ð Þ�2þ l2L2ð Þ�2
 �
� l1l2L1ð Þ�2þ l1l2L2ð Þ�2
 �

;

ð31Þ

where l2i � κi=mi and L2i ¼ Di=ki . Here,

Di � ~Dimi ð32Þ

is the ordinary diffusivity. Indeed, Eqs. (5) and (3) together with the usual
ji ¼ �Di=ni lead to Eq. (32). The lengths li are, of course, the correlation lengths
of the Landau-Ginzburg theory32; they are static, thermodynamic quantities. In
contrast, the lengths Li originate exclusively from the presence of chemical
conversion and are kinetic quantities that constitute new length-scales in the
problem analogously to the length scale from Eq. (1). We observe that according
to Fig. 8, the critical radius is largely determined by those kinetic lengths.

The contributions of the respective terms eqr/r to the overall solution of the
differential equations are constrained by the boundary and patching conditions, in
the usual way36. Cases when the characteristic roots are degenerate can be dealt
with straightforwardly. For instance, the doubly degenerate root q = 0 corresponds,
respectively, to an additive constant and a 1/r contribution to the overall solution.

Second-order reaction. As before, we solve exclusively for the stationary state
within each individual phase. The stationary non-linear equations are solved using
the finite differences40. We sub-divide the space into three spherically symmetric
regions, all centered at the origin: (1) the minority phase, r < R, (2) the vicinity of
the cluster in the majority phase, R < r < Rp, and (3) the outer regions, r > Rp. The
edge of the outer region, Rp, is chosen to be sufficiently far away from the cluster
boundary so that the concentrations of the components are numerically close to
their bulk values. Thus in the outer region, the reaction-diffusion scheme can be
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approximated by linearized equations in a controlled fashion:

_n1 ¼ �=j1 � 2k1δn1n1;b þ 2k2δn2
_n2 ¼ �=j2 þ k1δn1n1;b � k2δn2:

ð33Þ

where δni � ni � ni;b is the deviation of concentration of species i from its bulk
value. The solution of the linearized Eq. (33) is obtained exactly the same way as
the first order case from Eq. (7).

In regions 1 and 2, we solve the original non-linear equation using finite
differences while imposing patching conditions with the linearized solution in
region 3, at R = Rp. The patching is done by enforcing that the density and the
chemical potential of both species be continuously differentiable at r = Rp. The
boundary conditions at the cluster center, r = 0, at the phase boundary, r = R,
and in the bulk, r = ∞ are the same as in the 1st order case.

To test the convergence of our solutions, we have computed them at several
values of the grid size and the patching radius Rp. We then evaluated the root-
mean-square (RMS) difference between these solutions and the reference solution,
which was obtained using some large values for the number of grid points and
Rp respectively. In Fig. 9a, b, we show the respective RMS differences for the
chemical potential of the monomer. These graphs indicate that our solutions do in
fact tend to a stationary value as the number of grid points and Rp are increased.

Ripening. Consider regular Ostwald ripening. At a given value of over-saturation Δ
of the majority phase, the rate of growth of an individual droplets is given by24:

_R ¼ D
R

Δ� α0
R

� �
; ð34Þ

where D is the diffusivity of the species in question and the coefficient α0 is
proportional to the mismatch penalty between the majority and minority phases7.
The critical radius is thus given by

Rz ¼ α0=Δ: ð35Þ
Eq. (34) can be profitably rewritten in terms of the critical radius and the

dimensionless radius ~R � R=Rz :

d~R
dt

¼ α0D

Rz3 1� 1
~R

� �
1
~R

ð36Þ
Lifshitz and Slyozov24 have argued that at sufficiently long times, the droplet

size distribution tends toward a universal form that is determined by the critical
radius R‡ alone and no other length scales. In other words, the distribution of the
dimensionless radius ~R is time independent at long times. Averaging Eq. (36) w.r.t.
to this distribution immediately shows that for this equation to be internally
consistent, one must have at long times:

Rz ¼ cðDα0tÞ1=3; ð37Þ
where c is a numerical constant of order one. (The constant turns out to be 2/9
in the simplest treatment24). To avoid confusion, we note that the times are
sufficiently long that the memory of the initial distribution of the droplet sizes
is already lost but not too long so that the number of clusters is still sub-
thermodynamic. Eq. (34) implies that the volumetric rate of droplet growth is
linear in the quantity R� Rz :

R2 _R / ðR=Rz � 1Þ: ð38Þ
According to the discussion in the main text, our kinetically stabilized clusters

will exhibit ripening. Since they do not obey the exact linear relation (38) we
may inquire whether the ripening exponent in the R‡ vs. t relation would differ
significantly from the value 1/3 from Eq. (37) predicted by the Lifshitz-Slyozov-
Wagner theory and, in the first place, from the experimental data due to Li et al.12.
To answer this question, we first fit the pertinent curve in Fig. 6 by a functional
form:

R2 _R / RxRzz ðRy � Rzy Þ ð39Þ
Hereby, the Gibbs–Thomson relation and diffusion-limited droplet growth

would correspond to x = 0, y = 1, and z = −1.) The same line of logic that led
to Eq. (37) yields

Rz / t1=½3�ðxþyþzÞ� ð40Þ
In Fig. 10, we show the Δg dependence of the combination ðx þ y þ zÞ of the

parameters from Eqs. (39) and (40). We observe that by Eq. (40), the predicted
growth implies Rz / t1=ð3:1 ± 0:1Þ ¼ t0:32 ± 0:01, which is quite close to both the
experiment by Ye Li et al.12 and the predictions due to the Lifshitz-Slyozov-Wagner
theory24–27. We note that we have not shown that the shape of the cluster-size
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distribution is, in fact, time-invariant within the present framework, which would be
necessary to fully validate Eq. (39). This is work in progress. Still, experimental data
due to Ye Li et al.12. suggest that the distribution’s shape is, in fact, time-invariant.

To obtain the estimate for the cluster-ripening times cited in the main text,
we set the LSW-based c = 2/9 in Eq. (37) and Rz ¼ Rmax. The quantity α0D is
determined by fitting the curve in Fig. 6b using the functional form (38) while the
diffusivity is set at the value reported for lysozyme in ref. 12.

Data availability
The reported numerical data were obtained by numerical solution of algebraic and
differential equations, as detailed in the article, using the commercially available
mathematical software Matlab. When appropriate, the convergence of the solutions is
described. All generated data are presented in the published article.
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