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Abstract

BACKGROUND: Exosomes are membrane-enclosed extracellular vesicles implicated in cell–cell communication. Exo-

somes contain proteins, mRNAs, non-coding RNAs (miRNAs and lncRNAs) and lipids that are derived from producing

cells. These nano-sized vesicles are present in biofluids including blood, urine, saliva, amniotic fluid, semen and condi-

tioned media of cultured cells.

METHODS: This review summarizes current progress on the strategies of development of diagnostic biomarkers and drug

loading onto exosomes for overcoming cancer progression.

RESULTS: A number of studies indicate that the exosome appears to be a key player in tissue repair and regeneration of

in a number of animal disease models. In addition, alterations of the molecular profiles in exosomes are known to be

correlated with the disease progression including cancer, suggesting their usefulness in disease diagnosis and prognosis.

Studies utilizing engineered exosomes either by chemical or biological methods have demonstrated promising results in a

number of animal models with cancer.

CONCLUSION: Understanding the molecular and cellular properties of exosomes offer benefits for cancer diagnosis by

liquid biopsy and for their application in therapeutic drug delivery systems. Studies have shown that genetic or molecular

engineering of exosomes augmented their target specificity and anticancer activity with less toxicity. Thus, deeper

understanding of exosome biology will facilitate their therapeutic potential as an innovative drug delivery system for

cancer.
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1 Introduction

The key requirements for ideal drug delivery system (DDS)

are safety, nontoxicity, efficiency, non-immunogenicity,

bioavailability, and targeting ability. While a number of

DDS, such as liposomes, micelles, nanoparticles and

hydrogels, have been developed for the purpose of effec-

tive drug delivery [1], most of them faced two critical

issues: high systemic toxicity and low bioavailability. The

most recent addition to the fields of DDS is nano-sized

extracellular vesicles, such as exosomes and microvesicles,

that possess organotropism [2], good bioavailability with

little toxicity and immunogenicity [3].
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The exosomes and microvesicles are a relatively new

addition to the complex avenue of the intercellular com-

munication. Their existence was known for decades by

electron microscopy from pellets from plasma ultracen-

trifugation [4]. The presence of exosomes in in vitro cul-

tured cells and in vivo tumor ascites was first reported by

Dvorak et al. [5] in 1981. Later, exosomes found to be

produced by nearly all types of cells including immune

cells [6, 7], epithelial cells [8], neurons [9], mesenchymal

stem cells [10] and red blood cells [11]. In addition, they

were identified in most bodily fluids including blood

plasma [12], cerebrospinal fluid [13], urine and amniotic

fluids [14], breast milk [15] and saliva [16].

Exosomes are membrane-enclosed nanosphere of

30–150 nm in diameter originated from a subset of late

endosomes (also known as multivesicular bodies, MVBs)

during ceramide-dependent initiation phase. Fusion of

outer membrane of MVBs with plasma membrane releases

the exosomes [17] that deliver cargo including soluble and

membrane bound proteins, lipids, mRNAs, microRNAs

and chemical messengers into extracellular space (Fig. 1).

Reflecting their subcellular origin, exosomes contain a

number of endosomal membrane proteins, proteins

involved in exosome biogenesis [18], vesicle trafficking

proteins and plasma membrane-associated proteins

[19, 20]. Similar to lipid rafts, they are rich in cholesterol,

glycosphingolipids, and phosphatidylserine [21] account-

ing for their higher stability and rigidity. In addition to

these, exosomes cargo large amounts of nucleic acids,

including mRNAs, microRNAs (miRNAs) and long non-

coding RNAs (lncRNAs) [22].

2 Physiological function of exosomes

These subcellular particles are ubiquitous and secreted by

virtually all types of cells in our body. Upon fusion with by

local or distant target cells, exosomes deliver complex sets

of biological information to recipient cells thereby modu-

lating their behaviors by their molecular cargo. While

nomenclatures of exosomes, microvesicles and apoptotic

bodies were based on their sources and sizes, the terms of

exosome and microvesicle are confusing and often used

interchangeably due to their overlapping sizes as well as

sharing common markers. A number of different strategies

have been developed to isolate and/or purify these extra-

cellular vesicles from biofluids, including ultracentrifuga-

tion, size exclusion chromatography, density gradient

centrifugation, immunoaffinity-mediated sorting,

microfluidics and filtration [23–25]. Since these technolo-

gies cannot distinguish exosomes and microvesicles, the

functional assignment and physiological significance of

these particles is a challenging project. Due to the com-

plexity of molecular cargo including proteins, nucleic acids

and lipids, exosomes can deliver multiple biological

information at once. To date, large number of

Fig. 1 Biogenesis of exosomes from multivesicular endosome.

Exosomes formed by invagination of endosomal membrane are

secreted vesicles derived from intraluminal vesicles within

multivesicular body (MVB). Upon fusion of MVB with plasma

membrane, exosomes carrying proteins, RNAs and lipids that are

derived from donor cells are released the in the extracellular space
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transcriptome and proteome analyses have been performed

to elucidate the physiological function of exosomal com-

ponents (many of them are cataloged in the ExoCarta

database, www.exocarta.org) [26].

Exosomes are secreted from cells under change of

physiological conditions by cell growth, cell injury,

inflammation, hypoxia, oxidative stress and carcinogenesis

[27]. For instances, exosomes is a potential mediator for

development process through WNT and Hedgehog sig-

naling that regulate cell proliferation and differentiation

during embryonic development [28]. In addition, immune

cells-derived exosomes accounts for a large population of

circulating exosomes within blood [29]. Dendritic cells, a

pivotal player of innate and adaptive immunity, are known

to modulate T cell responses [30, 31] and natural killer

(NK) cell function [32] via secreted exosomes. Exosomes

derived from proinflammatory (M1-polarized) macro-

phages exhibited a trophism toward lymph nodes upon

in vivo administration and induced strong cytotoxic T cell

response [33] suggesting their potential use as an

immunoadjuvant for cancer therapy.

Recently, exosomes are considered as novel biomarkers

for diagnosis of early detection, chemoresistance, therapy

response and poor prognosis leading to relapse in cancer

research. Cancer-derived exosomes appears to play

important roles in cancer initiation, promotion and pro-

gression by cell–cell communication [34] and thus exoso-

mal biomarkers can serve as a potential indicator of real-

time status of the disease progression. Based on the pos-

sibility to isolate exosomes from human body fluid, exo-

somal biomarkers have been widely investigated to screen

progression of cancers with low-cost, short time, reduced

pain by liquid biopsy [35]. Here, we will highlight and

discuss the more recent issues related to molecular mech-

anisms of exosome in cancer development and the uti-

lization of exosomes as DDS for their potential clinical

applications.

3 Exosomes in cancer progression and diagnostics

Unlike normal physiology, the onset of cancer may alter

the molecular cargo of exosomes, i.e., lipids, proteins,

mRNAs, miRNAs and lncRNAs. Recently, exosomal

RNAs have been widely reported in cancer progression

with aspects of cell proliferation [36], migration [37],

apoptosis, metastasis [38], angiogenesis [39], and

chemoresistance [40]. The lncRNAs in cancer cells-derived

exosomes regulates survival rates of the cells by transfer-

ring genetic information via cell-to-cell communication for

mediating cancer microenvironment. In colon cancer,

lncRNA H19 in cancerous cell-derived exosomes activates

b-catenin signaling leading to cancer development and

chemoresistance [41]. In addition, first identified lncRNA

MALAT-1 related in lung cancer progression isolated from

serum exosome stimulates cell proliferation and migration

whereas it suppresses cell death of lung cancer cells [42].

Also, lncRNAs functions as an oncogene by increasing

non-controlled proliferation of cancerous cells originated

from liver, thyroid, bladder, lung and ovary [43–45]. For

example, lncRNA FAL1 was upregulated in tumor tissues

and serum exosomes from hepatocellular carcinoma (HCC)

patients and the transfer of exosomal FAL1 to HCC cells

increased their proliferative and migratory capacity which

was mediated by competitive binding to miR-1236 [46].

Taken together, these studies suggest that exosomal

lncRNAs regulate key cellular events, via epigenetic and

transcriptional regulation, in tumor progression and

metastasis.

For diagnosis of early stage cancers, it is important to

develop an optimal biomarker. Although tissue biopsy has

been commonly used for histopathological analysis, it is

hard to use in cancer screening and determination of

heterogeneous characteristics of cancers for therapy. In

addition, the tissue biopsy has limitations in cost burden,

invasive tissue collection, pains, and identification of

genetic changes for monitoring therapy response and

prognosis of cancers [47]. In order to overcome these

limits, new approaches for detection of early diagnosis,

chemoresistance, relapse and microenvironment of cancers

are required in these days. Liquid biopsy has a variety of

advantages of diagnosis, treatment and therapy response in

cancer research based on genetic materials of exosomes

and circulating tumor cells (Fig. 2) [35, 48]. Especially,

analytical methods of exosomal genomic materials have

been developed for cancer diagnosis and prevention

(Table 1). For examples, serum exosomal expression of

prostate cancer associated transcript 1 (PCAT-1), upregu-

lated in bladder cancer 1 (UBC1), small nucleolar RNA

host gene 16 (SNHG16), and H19 belonging to lncRNAs

show high diagnostic accuracy for bladder cancer [49, 50].

In addition, exosomal miR-21, miR-105, miR-155, miR-

301, and miR-1246 derived from the blood of breast cancer

patients can be used as biomarkers to predict the progres-

sion of malignancy and metastasis [51–53]. In colorectal

cancer patients resistant to treatment with cetuximab, the

expression of urothelial carcinoma-associated 1 (UCA1),

the lncRNAs, is high in serum exosome [54]. Diagnosis of

esophageal cancer can also be performed through the

exosome of saliva [55]. The expression of GOLM1-NAA35

chimeric RNA can be used to predict the response to

chemoradiation. Exosomal miRNAs derived from cancer-

ous cells are important for metastatic procedure and drug

resistance. MiR-210, abundantly detected in serum exo-

some and tissues from hepatocellular carcinoma patients

and exosome-derived from hepatocellular carcinoma cells,
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is transmitted into adjacent endothelial cells leading to

angiogenesis by suppressing SMAD4 and STAT6 activities

[56]. Furthermore, prostate cancer derived exosomes

overexpressing miR-100-5p, miR-21-5p and miR-139-5p

increased the expression of receptor activator of nuclear

factor kappa B ligand (RANKL) and metalloproteinases-2,

-9 and -13 in cancer-associated fibroblasts that can lead to

cancer progression and metastasis [57]. The expression of

alpha-2-HS-glycoprotein (AHSG), extracellular matrix

protein 1 (ECM1), and miR-21-5p, miR-126-3p, and miR-

140-5p is higher in exosome in patients with lung cancer

than in healthy group, so it could be used as a good diag-

nostic marker for lung cancer [58, 59]. Also, serum

exosomal miR-99 is highly upregulated in ovarian cancer

patients as compared to benign tumor patients or healthy

women. However, the expression of miR-99 significantly

decreases after surgical management of cancers. In addi-

tion, neighboring human peritoneal mesothelial cells

transfected miR-99 promotes invasive properties by an

increase in fibronectin and vitronetin leading to cancer

growth [60]. The mRNA of a specific gene also shows

clinical utility in the diagnosis of cancer through exosomes.

Expression of WASF2 mRNA in exosomes isolated in

serum from patients with pancreatic cancer is strongly

correlated with risk of disease [61]. Highly expressed miR-

30d-5p in response to hypoxia, which contributes to the

Fig. 2 Exosomes present in a

number of biological fluids,

including cerebrospinal fluid,

milk, saliva, blood

(serum/plasma) and semen can

be obtained using a liquid

biopsy that can be useful for

early diagnosis, targeted

therapy, prognosis and clinical

monitoring

Table 1 Examples of cancer diagnosis using exosome

Disease target Clinical sample Measured biomarker Clinical application References

Bladder cancer Serum PCAT, UBC1, and SNHG16 Malignant progression [49]

H19 [50]

Breast cancer Serum miR-21 and miR-105 Metastatic progression [51]

Plasma miR-155 and miR-301 Malignant progression [52]

miR-1246 [53]

Colorectal cancer Serum UCA1 Drug resistance [54]

Esophageal carcinoma Saliva GOLM1-NAA35 chimeric RNA Therapeutic response [55]

Hepatocellular carcinoma Serum miR-210 Microvessel density [56]

Lung cancer Serum AHSG and ECM1 Malignant progression [58]

miR-21-5p, miR-126-3p, and miR-140-5p [59]

Ovarian cancer Serum miR-99a-5p Malignant progression [60]

Pancreatic cancer Serum WASF2 mRNA Malignant progression [61]

Rectal cancer Plasma miR-30d-5p Metastatic progression [62]
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high risk of locally advanced rectal cancer, helps to predict

metastatic progression using plasma exosomes in rectal

cancer patients [62]. Likewise, exosomal miRNAs are

important for diagnostics and therapy response in cancers.

4 Exosomes as drug delivery system
for oncotherapy

The most common example of drug delivery systems

(DDS) for oncotherapy include synthetic polymers, lipo-

somes, micelles, super magnetic particles, protein and

recombinant viral vectors have been developed [63–67]

and some of them are currently in clinical testing [68]. A

more recent addition includes smart or intelligent poly-

meric hydrogels that respond to external environmental

changes and encapsulate or release its cargo [69]. While

some of these innovative drug delivery systems have been

exploited and may lead to clinical benefits in cancer

patients, there are many potential barriers hinder their

efficient drug delivery for their toxicity, bioavailability,

stability, and target delivery. Although chemical modifi-

cation, their systemic bioavailability and stability can be

pursued [70–72], these strategies are associated with

stronger immunogenicity against the carriers thereby

leading to their quicker clearance in vivo [73, 74]. In this

regards, the use of exosome provides an attractive alter-

native for targeted drug delivery.

Unlike synthetic drug delivery systems, exosomal

membrane is derived from donor cell, they are non-im-

munogenic and thus may avoid rapid clearance from cir-

culation and thereby increasing their bioavailability

[75, 76]. Chemical drugs, proteins, RNAs, DNAs and lipids

can be loaded with into exosomal cargo through different

methods that can enhance their bioavailability while lim-

iting toxicity. They are an ideal carriers for lipid-soluble

drugs to the target cells. Immunogenic or toxic drugs can

be encapsulated and be transmitted to target cells thereby

reducing their systemic toxicity. In addition, they possess

blood brain barrier passing ability [77], homing ability and

cell/tissue tropism due to their surface proteins [78, 79]

Exosomes can be further engineered endogenously or

exogenously for the loading of therapeutic molecules (such

as chemicals, nucleic acids, proteins or lipids) in order to

enhance targeting efficiency and bioavailability.

4.1 Exogenous loading of therapeutic molecules

to exosomes

Exosomes can be loaded with drug of interests (chemicals,

DNAs, RNAs, Proteins or lipids) upon purification from

producing cells or biofluids. This can be achieved by pas-

sive diffusion of hydrophobic molecules, mechanical (such

as sonication), electroporation or chemical-mediated

transfer (lipofection) of hydrophilic molecules by (Fig. 3).

Water-insoluble chemicals (such as anti-cancer drugs) can

interact and cross hydrophobic exosomal membrane under

ambient conditions thereby increasing in vivo drug

bioavailability. Indeed, exosome loaded with chemothera-

peutic drugs exhibited stronger cytotoxicity against drug

resistant cancer cell lines in vitro [80], stronger anti-tumor

activity in vivo than that of free drugs [81].

Chemotherapeutics and large molecules, such as miR-

NAs and siRNAs, can also be incorporated into exosomes

by electroporation [82]. Electric field creates transient

pores into exosomal membrane allowing temporal move-

ment of drugs into the exosomal lumen. Since exosomes

are the natural delivery vehicles for RNAs [83, 84] which

are unstable and extremely inefficient in target specificity

in free form, exosomal loading of these molecules over-

come these limitations. A number of studies validated

successful delivery of exosome-loaded siRNAs and selec-

tive silencing of target genes [85–88]. Drug loading effi-

ciency of chemical drugs and siRNA into the lumen of

exosomes were as high as 25% for siRNA [82, 85] and

11.7% for chemical drugs [77], the accurate measurement

of loading efficiency is not easy due to molecular com-

plexity of exosomes. In addition, electroporation is known

to induce vesicular aggregation [89] or siRNA aggregation

[90] thereby affecting the integrity of exosome or thera-

peutic efficacy of RNA molecules.

In order to increase the loading efficiency and preserve

the integrity of exosomes, various strategies were pro-

posed. Pre-formed mixture of negative charged RNAs with

cationic liposome can be fused with exosomes thereby

incorporating RNA molecules [85, 91]. Alternatively, the

hydrophobicity of siRNA or therapeutic molecules can be

modified to increase its loading efficiency into exosomes.

This strategy was validated in silencing of Huntington

RNA by siRNA-loaded exosomes in vitro cultured neu-

ronal cells as well as in vivo mouse striatum upon infusion

[92]. Exosomal aggregation upon electroporation can be

minimized by a use of trehalose pulse media (TPM) [89].

While exosomes are a natural vehicle of proteins [10],

their innate chemical properties hinder their uptake into

exosomes. Various strategies are developed to overcome

this problem, such as simple incubation, physical insults

(freeze-thawing, sonication, extrusion), permeabilization,

liposome-mediate fusion and polymer-mediated transfer

[93]. Haney et al. [94] reported various methods for load-

ing exosome with catalase, 250 kDa complex and com-

pared their loading efficiency and therapeutic efficacy

in vivo. The study showed that permeabilization with

saponin, sonication and extrusion among tested methods

resulted in good loading efficiency of catalase while

maintaining the exosomal integrity. Furthermore,
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intranasal administration of catalase-loaded exosome led to

behavioral recovery in murine model of Parkinson’s dis-

ease demonstrating that exosome can cross the blood brain

barrier for brain tumor therapy. However, mechanical or

physical insults on exosomes can compromise membrane

integrity as well as protein integrity [93] thereby signifi-

cantly affecting their therapeutic activity.

4.2 Endogenous loading of therapeutic molecules

to exosomes

Although exogenous loading of therapeutic molecules has

been successfully demonstrated, clinical use requires scale

production of exosome prior to in vitro drug packaging. In

this regards, production and isolation of large quantity of

exosome carrying therapeutic molecules from host cells

can be an attractive alternative. Endogenous loading of

therapeutic exosomes containing more therapeutic drugs

(proteins and/or RNAs) can be accomplished by engi-

neering host cells chemically or genetically. Pretreating or

priming cells with chemical drugs (free or vehicle-medi-

ated) may lead to an increase of cytoplasmic drug con-

centration and subsequently to their uptake into exosomal

cargo.

Exosomes can be engineered to cargo chemotherapeu-

tics at cellular level. For instance, exosomes isolated from

paclitaxel-primed mesenchymal stem cells exhibited strong

anti-proliferative activity to a pancreatic cancer cell line

in vitro [95] suggesting that exosome producing cells can

serve as a packaging factory chemical drugs. In another

study, a synthetic fusogenic liposome-mediated transfer of

chemical drugs to exosome-producing cells led to an effi-

cient loading of the chemical drugs into exosomes [96].

Although these studies clearly demonstrated the feasibility

of the endogenous drug loading to exosomes, the pitfall of

these approaches is the low yield of exosomes from

unmodified cells. This obstacle can be solved by one of the

following 3 strategies. First, as Jang et al. [97] and Kal-

imuthu et al. [98] reported, mechanical extrusion of drug-

primed cells generates large quantity of drug-loaded exo-

some-like (exosome-mimetic) nanovesicles with strong

antitumor activity in vivo. Culturing cells in 3-dimension

[99] or priming with cytokines, chemicals [100] or physical

means including hypoxia [101] or hyperthermia are all

known to significantly affect the yield of exosomes.

Finally, exosome production from engineered cells can be

enhanced by transducing some of the key genes that boost

the exosome biogenesis. Indeed, Kojima et al. [102]

demonstrated the feasibility of such engineered exosome

for increased yield in vitro as well as their therapeutic

usefulness in in vivo model of Parkinson’s disease and

potentially for brain tumors.

Studies have shown that exosomes isolated from host

cells transfected with miRNA-encoding vectors could

deliver the target miRNAs in animal models [87, 103]. For

example, miR-146b-overexpressing and miR-122-overex-

pressing exosomes from engineered mesenchymal stem

cells inhibited the glioma growth in rat brain [103] and

significantly increased the chemosensitivity of hepatocel-

lular carcinoma to sorafenib [104], respectively. Exosome

loaded with anti-miR-214, siRNA to GRP78, and siRNA to

PLK-1 could reduce gastric tumor growth [105] and hep-

atocellular carcinoma [106], respectively, by reversing

their chemoresistance. Recent studies showed that RNA

packaging into exosomes during biogenesis are mediated

by a sets of RNA binding proteins (RBPs) and overex-

pression of these RBPs led to higher levels of exosomal

RNAs [107, 108] suggesting that engineering of host cells

OO
H

R1

OO
H

R1

Fig. 3 Ex vivo loading of

therapeutic molecules into

exosomes. Exosomes can be

loaded with RNAs, chemical

drugs/prodrugs, plasmid/

vectors, and proteins ex vivo.

Therapeutic molecules can be

loaded into the purified

exosomes from donor cells by

simple incubation, liposomes,

electroporation, freeze thawing,

sonication and carrier-assisted

delivery
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with these RNA and/or protein sorting machineries may

provide efficient tools for the packaging of theses thera-

peutic molecules into exosomes and for their clinical

applications. Thus, the delineation and exploitation of

exosomal sorting machineries as well as ligand-receptor

web of exosomal proteins will open new avenues for tar-

geted drug delivery.

While exosomes contain proteins and RNA cargo in vivo

and are difficult to incorporate these large molecules

in vitro, the genetic modification of exosome-producing

cells is one of the most preferred strategy for active

packaging of therapeutic RNAs or proteins. Exosomal

delivery of TRIM3, a potential tumor suppressor for gastric

cancer cell proliferation and migration, inhibited gastric

cancer progression and metastasis [109]. Exosomes from

TRAIL- or suicide gene-transduced exosome producing

cells induced a significant tumor inhibition in animal tumor

models [110, 111]. Studies also demonstrated that exo-

somes from genetically modified host cells with transgenes

encoding model proteins, including ovalbumin, catalase

and glial cell-line derived neurotropic factor, successfully

delivered the proteins to target tissues and exhibit thera-

peutic efficacy in the animal model of Parkinson’s disease.

Utilizing of targeting ligands on the engineered exosome

can further enhance the targeting efficiency [112]. Ohno

et al. [87] demonstrated that targeted delivery of miRNA-

loaded exosomes could be greatly enhanced by EGFR

ligand expression on the surface of exosomes in a mouse

model. The finding of Grapp et al. [113] that folate

receptor-a on exosomal surface plays an important role in

the blood–brain barrier (BBB) crossing and delivery of

therapeutics into brain parenchyma suggesting that engi-

neering host cells with this exosomal membrane protein

can be used in cerebral drug targeting for the treatment of

neurodegenerative disease or malignancy. Engineering

exosomes to carry ligands for adhesion molecules or sur-

face receptors on the exosomal membrane can facilitate the

targeted delivery of their cargo to cells with corresponding

receptors [96, 111–113]. These studies highlighted the

therapeutic potential of engineered exosomes as DDS for

the treatment of cancer. Translational applications of

engineered exosomes for cancer therapy are summarized in

Table 2.

5 Conclusions

Exosomes clearly play key roles in cancer development.

Exosomal biomarkers can greatly improve theragnostics of

cancer patients by liquid biopsy. In addition, the use of

engineered exosomes may represent a new class of drug

delivery system for their ability to cross biological barriers

with little or no safety concerns associated with therapeu-

tics, including drug toxicity, immune responses, biodistri-

bution and targeted delivery. Low stability and/or

transducibility of therapeutics (chemical drugs, proteins,

and RNAs) in circulation can be solved by encapsulating

them into exosomes. To increase the therapeutic efficacy of

exosomes, a number of endogenous or exogenous loading

strategies have been developed and validated in vitro as

Table 2 Engineered exosomes for cancer therapy in preclinical studies

Therapeutic molecules Exosome origin Disease target Drug loading References

Chemical

Paclitaxel MSC Pancreatic cancer Endogenous, incubation [95]

MSC Breast cancer Exogenous, extrusion [98]

RAW264.7 Drug-resistant lung cancer Exogenous, sonication [80]

Doxorubicin U937 RAW264.7 Colon cancer Exogenous, extrusion [97]

DCs expressing iRGD Breast cancer Exogenous, electroporation [112]

miRNA/siRNA

Let-7a HEK293 expressing GE11 Breast cancer with EGFR Endogenous, transfection [87]

miR-146b MSC Glioma Endogenous, transfection [103]

miR-122 MSC Hepatocellular carcinoma Endogenous, transfection [104]

Anti-miR-214 HEK293T Gastric cancer Endogenous, transfection [105]

PLK-1 siRNA HEK293 ? MSC Bladder cancer Exogenous, electroporation [88]

GRP78 siRNA MSC Hepatocellular carcinoma Endogenous, lipofection [106]

Proteins/mRNA

TRIM3 Gastric cancer cells Gastric cancer Endogenous, transfection [109]

CD-UPRT fusion protein HEK293T Schwannoma Endogenous, transfection [111]

TRAIL K562 Lymphoma Endogenous, transduction [110]
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well as in vivo animal models. Promising results of this

cell-free therapeutics were obtained from a number of

relevant animal models for human diseases and clinical

translation of exosomes has already initiated in cancer

therapy and organ transplantation and their safety was

validated. Although further studies are required to stan-

dardize methods involved in exosome purification and

characterization for their application as a drug delivery

system in clinical research, the engineered exosomes may

serve as an ideal DDS for cancer therapy due to their high

biocompatibility, minimal toxicity, low immunogenicity

with high target specificity in future. However, successful

clinical translation of exosome-based therapeutics critically

depends on not only our understanding of the therapeutic

mechanisms of exosomes, but also our ability to isolate as

well as design exosomes for their optimal potency to cure

or treat diseases.
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31. Näslund TI, Gehrmann U, Qazi KR, Karlsson MC, Gabrielsson

S. Dendritic cell-derived exosomes need to activate both T and

B cells to induce antitumor immunity. J Immunol.

2013;190:2712–9.

32. Viaud S, Terme M, Flament C, Taieb J, André F, Novault S,
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