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Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer, and its
incidence is rapidly increasing in North America and Western Europe as well as
South-East Asia. Patients with advanced stage HCC have very poor outcomes;
therefore, the discovery of new innovative approaches is urgently needed. Cancer
immunotherapy has become a game-changer and revolutionized cancer
treatment. A comprehensive understanding of tumor-immune interactions led to
the development of immune checkpoint inhibitors (ICIs) as new therapeutic tools,
which have been used with great success. Targeting immune checkpoint
molecules such as programmed cell death-1 (PD-1) and cytotoxic T lymphocyte-
associated protein-4 (CTLA-4) reinvigorates anti-tumor immunity by restoring
exhausted T cells. Despite their effectiveness in several types of cancer, of the
many immune suppressive mechanisms limit the efficacy of ICI monotherapy.
Radiation therapy (RT) is an essential local treatment modality for a broad range
of malignancies, and it is currently gaining extensive attention as a promising
combination partner with ICIs because of its ability to trigger immunogenic cell
death. The efficacy of combination approaches using RT and ICIs has been well
documented in numerous preclinical and clinical studies on various types of
cancers but not HCC. The application of ICIs has now expanded to HCC, and RT
is recognized as a promising modality in HCC. This review will highlight the
current roles of PD-1 and CTLA-4 therapies and their combination with RT in the
treatment of cancers, including HCC. In addition, this review will discuss the
future perspectives of the combination of ICIs and RT in HCC treatment.
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Core tip: In the era of cancer immunotherapy, the roles of radiation therapy (RT) are not
limited to the direct killing of cancerous cells but have expanded to immune modulation.
Numerous proof-of-concept preclinical studies have proven that combination approaches
of RT and immune checkpoint inhibitors (ICIs) are highly promising for many types of
cancers, and currently, many related clinical trials are ongoing. Historically, RT was
considered ineffective for hepatocellular carcinoma (HCC), but the efficacy of RT in
HCC has improved greatly with technical advances. Our goal of this review is to provide
a rationale for the combined treatment with RT and ICIs in HCC.

Citation: Choi C, Yoo GS, Cho WK, Park HC. Optimizing radiotherapy with immune
checkpoint blockade in hepatocellular carcinoma. World J Gastroenterol 2019; 25(20): 2416-
2429
URL: https://www.wjgnet.com/1007-9327/full/v25/i20/2416.htm
DOI: https://dx.doi.org/10.3748/wjg.v25.i20.2416

INTRODUCTION
Hepatocellular carcinoma (HCC), which is the predominant type of liver cancer, is the
fifth most common cancer[1,2]. The incidence of HCC is relatively high in South-East
Asia,  and that  in  North  America  and Western  Europe  is  increasing[3].  Although
hepatitis B and C infection are the main causes of HCC, alcohol consumption, liver
cirrhosis,  non-alcoholic  fatty  liver  disease,  aflatoxin  exposure,  and  hereditary
disorders such as hemochromatosis and alpha-1-antitrypsin deficiency can be also the
etiologies of HCC[4-6]. The Barcelona Clinic Liver Cancer (BCLC) system recommends
various treatment strategies, including curative local modalities, such as resection,
liver transplantation, and ablation, and palliative chemoembolization and sorafenib
according to the BCLC stage,  performance status,  and liver function[7].  However,
patients with advanced stage HCC have very poor outcomes[8] and novel approaches
to greatly improve clinical outcomes are urgently needed.

Cancer immunotherapy has become a game-changer in cancer treatment, and we
have  witnessed how it  has  led  to  a  paradigm shift  in  cancer  therapy.  Although
surgical removal or elimination of tumor cells by chemotherapy or radiotherapy is
still a mainstay treatment, the reinvigoration of the antitumor immunity in the tumor
microenvironment (TME) is gaining growing attention. Tumors escape from immune
surveillance using various mechanisms[9]. Among them, a better understanding of the
immune checkpoint mechanism has led to new therapeutic targets for cancer therapy,
the so-called immune checkpoint inhibitors (ICIs). Programmed cell death-1 (PD-1),
programmed death-ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated protein-
4 (CTLA-4) are the main targets of ICIs[10]. To date, beginning with the approval of
ipilimumab [anti-CTLA-4 monoclonal antibodies (mAbs)] for malignant melanoma in
2011,  a  number  of  ICIs,  including  three  anti-PD-1  antibodies  (nivolumab,
pembrolizumab, and cemiplimab) and three anti-PD-L1 antibodies (atezolizumab,
durvalumab,  and  avelumab),  have  been  approved  by  the  Food  and  Drug
Administration (FDA) for different types of cancers such as melanoma and non-small
cell lung cancer[9]. In addition, the use of nivolumab and pembrolizumab has now
extended to patients with HCC who have been previously treated with sorafenib.

Radiation therapy (RT) has been used as an essential local treatment modality for a
broad range of malignancies for over a century, and its immune-related effects have
recently  gained  extensive  attention  in  the  era  of  immunotherapy[11,12].  Figure  1
illustrates  the modulation of  tumor immunity by RT and ICIs.  RT has both pro-
immunogenic and immunosuppressive effects on immune responses. RT triggers
immunogenic  cell  death,  which  releases  danger-associated  molecular  patterns
(DAMPs) and primes immune cells, including dendritic cells (DCs), in the TME. RT
also enhances immune cell infiltration by upregulating the expression of adhesion
molecules on endothelial cells and the secretion of cytokines that can recruit cytotoxic
T  lymphocytes[13].  By  contrast,  RT  directly  kills  radiosensitive  CD8  effector  T
lymphocytes  and  preserves  the  less  radiosensitive  regulatory  T  lymphocytes
(Tregs)[14].  Moreover,  RT-induced production of  transforming growth factor-beta
(TGF-β)  renders  the  TME  more  immunosuppressive [15].  RT-induced  colony-
stimulating factor-1 (CSF-1) also acts in immune suppression mechanisms such as the
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M2 polarization of tumor-associated macrophages and the recruitment of myeloid-
derived suppressor  cells  (MDSCs)[16].  Furthermore,  a  substantial  increase  in  the
expression  of  PD-L1  and  PD-1  in  tumor  cells  and  T  lymphocytes,  respectively,
following RT weakens anti-tumor immunity, providing a rationale for combination
treatment with ISIs.

Numerous  preclinical  studies  have  provided  convincing  evidence  that  the
combination of ICI and RT (iRT) can be more potent than either treatment alone[17].
The  benefits  of  iRT  have  been  reported  in  head  and  neck  cancer,  metastatic
melanoma,  metastatic  pancreas  cancer,  and  lung  cancer[18,19],  and  clinical  trials
evaluating the outcomes of iRT are now ongoing[20].  The clinical  use of immuno-
therapy in the form of iRT has been extended to HCC[21], and several ongoing trials are
investigating the benefits  of  immunotherapy for  HCC[22].  In  this  review, we will
discuss the basis of immunotherapy and iRT, and their application in HCC. Regarding
immunotherapy, we will focus only on the CTLA-4 and PD-1/PD-L1 pathways in this
review. Moreover, we will also discuss the future perspectives of immunotherapy and
iRT for HCC.

IMMUNE CHECKPOINT INHIBITORS
The immunologic effect on the host has been an intriguing issue for the past several
decades in cancer research. To date, a variety of cellular molecules relevant to the
activation and inhibition of cancer immunity have been identified (Figure 1). Among
these molecules, CTLA-4 and PD-1/PD-L1 have been proven to be effective targets for
cancer  immunotherapy,  and  their  discovery  opened  a  new landscape  in  cancer
treatment[23,24].

CTLA-4 is an immune checkpoint receptor that is upregulated in activated T cells
and constitutively expressed in Treg cells, and it negatively regulates the priming
phase of the immune response. It outcompetes CD28 stimulatory protein for binding
to CD80/CD86 (also called B7-1/2) located on the surface of antigen presenting cells
(APCs),  including  DCs,  and  the  interaction  between  CTLA-4/CD80  transmits
inhibitory signals to T cells. CTLA-4 also facilitates immunosuppression by activating
Tregs and upregulating indoleamine 2,3-dioxygenase (IDO) and IL-10 in DCs. Anti-
CTLA-4 antibodies were designed to release T cells from the inhibitory signals and
reactivate them, resulting in strong antitumor immunity[25].  Ipilimumab, the first
humanized  anti-CTLA4  mAb,  produces  remarkable  responses  in  patients  with
metastatic  melanoma[23].  Superior  treatment  outcomes  following  combination
treatment with ipilimumab and nivolumab (PD-1 inhibitor) have been reported in
advanced melanoma, although toxicities were higher with combination treatment
than with monotherapy[26].

PD-1, firstly discovered in 1992, is another immune inhibitory receptor for the
effector phase of the immune response[27]. It is primarily expressed by mature T cells
in peripheral tissues and is also expressed in other immune cells including B Cells,
natural killer (NK) cells, Tregs, MDSCs, and DCs. It has high binding affinity to PD-L1
(also called B7-H1), which is broadly expressed in hematopoietic cells such as APCs
and MDSCs and non-hematopoietic cells such as parenchymal cells. The PD-1/PD-L1
interaction plays key roles in maintaining immune homeostasis in normal tissues.
Tumor cells also express PD-L1, which allows them to escape immune surveillance in
the TME. In the TME, antigen-specific T cells produce interferon-gamma (IFN-γ),
which  in  turn  induces  PD-1  and  PD-L1  expression  on  T  cells  and  tumor  cells,
respectively. This ligand/receptor binding leads to T-cell exhaustion. Nivolumab was
the first PD-1 inhibitor approved by the FDA; it was first approved for melanomas,
followed by non-small-cell lung cancer and other cancers. Anti-PD-L1 antibodies such
as atezolizumab, durvalumab, and avelumab were also developed to block the PD-
1/PD-L1 axis and are now on the market.

ICI IN HCC
HCC has distinct characteristics compared to those of other cancers regarding the
application of ICIs. Although a variety of etiologies link to the development of HCC,
viral  infection  comprises  the  largest  proportion,  particularly  in  HBV  and  HCV
epidemic areas[28]. The chronic inflammatory status stimulated by viral infection can
effectively  exhaust  immune  systems,  thereby  facilitating  immune  tolerance.
Furthermore, the liver is an organ into which large amounts of antigens from the
intestines drain via the portal vein, which also attenuates the immune surveillance
system[29,30].  Indeed, pre-clinical and clinical studies have indicated that advanced
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Figure 1

Figure 1  Modulation of tumor immunity by radiotherapy and immune checkpoint blockade. Radiation-induced cell death results in cytosolic DNA accumulation
in the tumor, which in turn activates the production of type I interferon (IFN) genes via cGAS/STING pathway. Increased IFN activates antigen presenting cells such as
dendritic cells (DCs), which can prime T cells within draining lymph node. IFN also mediates recruitment of effector CD8+ T cells capable of killing cancer cells into
irradiated tumor sites. Radiation triggers the release of tumor antigens and danger-associated molecular patterns, which can also activate DCs. Radiation-induced
secretion of cytokines and chemokines play both pro-immunogenic and immunosuppressive roles in the tumor microenvironment. The antitumor effect of radiation
therapy (RT) is frequently hindered by activation of immune checkpoint pathways. Thus, the combination of RT and immune checkpoint inhibitors such as anti-
programmed death 1 inhibitor shows a synergistic effect in many types of cancer. The immune checkpoint blockade also enhances RT-induced systemic effect, called
abscopal effect, which refers to the regression of an unirradiated tumor. cGAS: Cyclic guanosine monophosphate-adenosine monophosphate synthase; CTLA-4:
Cytotoxic T lymphocyte-associated protein 4; IFN: Interferon; LN: Lymph node; MHC: Major histocompatibility complex; PD-1: Programmed death 1; PD-L1:
Programmed death-ligand 1; STING: Stimulator of interferon genes; TAA: Tumor-associated antigen; TCR: T-cell receptor; Trex1: Three prime repair exonuclease 1.

HCC has a highly immunosuppressive TME, as indicated by intratumor CD8+ T cell
exhaustion and inefficient T cell infiltration[31,32].

Hepatic  immune  tolerance  is  mainly  mediated  by  specialized  APCs  such  as
resident DCs, liver sinusoidal endothelial  cells (LSECs),  Kupffer cells (KCs),  and
hepatic  stellate  cells  (HSCs),  as  well  as  Treg  cells  and  MDSCs[33].  They  express
inhibitory cytokines and immune checkpoint molecules including CTLA-4, PD-1,
TIM-3, LAG-3 and BTLA[34]. Among them, PD-1 expression is high on effector CD8+ T
cells within tumors of patients with HCC[35], which is associated with poor disease
progression and postoperative recurrence[36]. Overexpression of PD-L1 is also seen on
tumor cells as well as non-parenchymal liver cells such as KCs and LSECs, predicting
tumor aggressiveness and postoperative recurrence in HCC[37]. In this background,
ICIs were anticipated to be highly effective in HCC and therapeutic efficacy of CTLA-
4 and PD-1/PD-L1 targeted therapies was clinically evaluated in HCC. Treatment-
related hepatic toxicity is one of the most concerning issues when applying ICIs to
patients with HCC because most patients with HCC have liver cirrhosis and are
usually more vulnerable to systemic therapeutics than those with other malignancies.

The  first  study  to  evaluate  the  treatment  outcomes  of  a  CTLA-4  inhibitor,
tremelimumab, was conducted in HCV-related HCC. This pilot clinical trial found a
partial  response  rate  of  17.6%  and  disease  control  rate  of  76.4[38].  Interestingly,
tremelimumab showed both anti-tumoral and anti-viral effects. Treatment-related
hepatic toxicities were observed in approximately one-half of the patients, but they
were all reversible. This success with tremelimumab encouraged the testing of other
ICIs in HCC. In the CheckMate 040 trial, the feasibility of a PD-1 inhibitor, nivolumab,
was evaluated in patients with HCC, finding an overall response rate of 15-20% with
no severe toxicity[39]. Another phase 2 trial (KEYNOTE-224) investigating the efficacy
of pembrolizumab in patients with advanced HCC who had been previously treated
with  sorafenib[40].  In  this  trial,  the  objective  response  rate  was  17%  and  12-mo
progression-free survival and overall survival were 28% and 54%, respectively. While
safety of combination treatment with PD-1 and CTLA-4 inhibitors could be proven in
phase I/II, efficacy should be proven in phase III[41]. CheckMate-459 (NCT02576509)
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trial is an ongoing phase III trial to evaluate the role of nivolumab in frontline setting
for  advanced  HCC [ 4 2 ].  Another  ongoing  phase  III  trial,  Keynote-240  trial
(NCT02702401), is to investigate the benefit of pembrolizumab in previously treated
advanced HCC[43]. Most recently, Merck released update on Keynote-240 study. They
announced that the patients who have been treated with pembrolizumab had superior
OS to those treated with placebo, but the superiority failed to reach pre-specified
statistical significance [HR=0.78 (95%CI: 0.611-0.998); P = 0.0238][44]. Although they
failed to meet primary endpoints,  favorable OS in pembrolizumab-treated group
suggests that more evidence be needed to confirm the role of this drug. The final
result  from Keynote-240  and other  ongoing trials  are  awaited.  The combination
treatment with durvalumab and tremelimumab showed better outcomes compared to
monotherapy,  but  it  showed higher  toxicity  rates.  Based  on  the  phase  I/II  trial
outcomes, a large phase III trial, the HIMALAYA study, is ongoing to examine the
feasibility of durvalumab and tremelimumab as first-line treatment for advanced
HCC[45].

RADIOTHERAPY IN HCC
Traditionally, external beam RT (EBRT) has been limited role in the treatment of
HCC[46]. Because of several obstacles facing the use of liver EBRT such as respiratory
motion control, target delineation of hepatoma, and difficulty in image-guidance, few
institutions  had the  technical  ability  to  perform EBRT for  patients  with  HCC[47].
Therefore, the role of EBRT was restricted in the palliation of metastatic HCC. In
recent years, there has been growing interest in the use of EBRT in patients with
HCC[46,48]. The recent technical advances ensure that high doses of radiation will be
precisely delivered to the target in the liver while sparing the normal tissue[8]. As a
result, EBRT has been utilized increasingly and practice guidelines of EBRT in HCC
have been presented especially in Asian area[49,50].

The use of EBRT for primary HCC has various aims, including ablation of HCC;
consolidation of other local treatments, mainly chemoembolization; bridging to liver
transplantation;  salvation  from  disease  refractory  to  other  treatment;  and
palliation[48,50-52].  Specifically, as higher doses of irradiation are widely attempted,
stereotactic  body  RT  (SBRT)  or  hypofractionated  EBRT  with  ablative  doses  is
increasingly  used,  with  comparable  local  control  compared  to  that  with
radiofrequency ablation[53-56]. Proton beam therapy (PBT) is another optimized EBRT
tool for high-dose irradiation[57,58]. The physical properties of PBT with no exit dose
minimize the integral  doses in the normal liver parenchyma[59,60].  Therefore,  PBT
enables  dose  escalation  without  increasing  the  risk  of  radiation-induced  liver
toxicities, as evidenced by retrospective studies reporting that PBT showed excellent
local  control  and  low  incidences  of  toxicities[57,58].  RT  challenged  the  treatment
guidelines of the BCLC system for HCC with macroscopic vascular invasion, which
recommend sorafenib[8,61]. Recently, Yoon et al[62] showed in a phase II randomized
controlled trial  that the outcomes of chemoembolization followed by EBRT were
superior to those of sorafenib in patients with HCC with macrovascular invasion,
providing  improved  progression-free  survival,  objective  response  rate,  time  to
progression, and overall survival. With the accumulation of evidence regarding the
benefits of RT for primary HCC, other guidelines for the treatment of primary HCC
have extended the range for the application of RT[50].

Aside from EBRT, selective internal RT (SIRT) using yttrium-90 (90Y) microspheres
is also increasingly utilized in the treatment of primary HCC[63]. SIRT, also known as
radioembolization, is a form of brachytherapy in which microspheres loaded with 90Y
that emit high-energy beta radiation are administrated via a microcatheter positioned
within the hepatic artery[64]. Because of the limited penetration depth of 2.5 mm of the
beta-radiation,  this  approach  spares  much  of  normal  liver  tissue.  The  clinical
application of SIRT is largely limited because of the lack of clinical evidence, but its
roles in tumor control and immune activation are actively being investigated[65].

The role of palliative RT for HCC metastases has been expanded as well. Although
the development of new systemic agents has improved the overall survival of patients
with cancer, efficacious local modalities that palliate symptoms are frequently needed
as the disease progresses[66]. In metastatic HCC, the need for palliative care has been
raised, and technological advances have led to an increase in the use of palliative
RT[67].  Bone  metastasis  from  a  primary  HCC  represents  the  type  of  soft  tissue
formation that requires high-dose irradiation for the long-term control of the tumor
and symptoms[68] and in retrospective studies, the use of SBRT or hypofractionated RT
with high doses was proven to be an effective way to control painful bone metastases
from HCC[67,69,70].  This trend would be in accord with the scheme for iRT in which
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hypofractionated RT is preferred for immune boosting, as described below.

COMBINATION OF RT AND ICIs

Synergistic effects of RT and ICIs
Although ICIs have recently revolutionized cancer treatment, overall response rates
remain around 20%, with much room for further improvement. RT is one of the most
encouraging strategies that can be combined with ICIs to improve treatment outcomes
because of its pro-immunogenic properties. On the other hand, the addition of ICIs
could help overcome radiation resistance caused by radiation-induced immuno-
suppressive effects. These synergistic effects of iRT have been proven in numerous
preclinical studies and clinical settings[11,18,19,71,72]. Demaria et al[73] provided the first
evidence of a synergistic effect when examining RT and CTLA-4 blockade using a
murine 4T1 mammary carcinoma model; the survival of mice harboring a poorly
immunogenic  4T1  tumor  was  not  affected  by  CTLA-4  blockade  alone  but  was
significantly increased when combined with RT. Subsequently, the synergy between
RT and PD-1 blockade was intensively investigated in preclinical settings[74-77]. For
example, Zeng et al[74] showed that stereotactic radiation combined with anti-PD-1
antibodies markedly increased the survival of mice with intracranial gliomas with
increased CD8+ T cells and decreased Treg cell infiltration. Another preclinical study
using syngeneic mouse models revealed that PD-L1 blockade exerted a synergistical
anti-tumor immunity with RT via MDSC reduction and cytotoxic T cell activation[78].

These  lines  of  preclinical  evidence  provide  a  strong  rationale  for  the  use  of
combined iRT for cancer treatment, and numerous clinical evaluations are currently
ongoing. A phase III trial (CA184-043) evaluating RT and ipilimumab in patients with
metastatic  castration-resistant  prostate  cancer  that  progressed  after  docetaxel
chemotherapy has been conducted; post hoc subgroup analysis revealed a survival
benefit  with anti-CTLA-4 ipilimumab[79].  The efficacy of  combining PD-1/PD-L1
blockade with RT has been tested more frequently in the clinical setting. A recent
phase III PACIFIC trial for patients with unresectable stage III non-small lung cancer
(NSCLC) receiving chemoradiation showed significant improvement of progression-
free survival with anti-PD-L1 durvalumab vs placebo (median survival 16.8 mo vs 5.6
mo)[80]. According to a recent update of the PACIFIC trial, overall survival was also
improved in the durvalumab group vs placebo group (2-year overall survival 66.3% vs
55.6%)[81]. The secondary analysis of the KEYNOTE-001 trial that studied patients with
locally  advanced  or  metastatic  NSCLC  treated  with  anti-PD-1  pembrolizumab
revealed that  patients  who had previously  received RT benefited from pembro-
lizumab compared to patients without RT in terms of improved progression-free
survival and overall survival with pembrolizumab[82].

RT is a type of local treatment but is also believed to induce systemic effects. An
RT-induced systemic effect, called an “abscopal effect,” refers to the remission of a
tumor outside the RT field. Because it was first reported in 1953[83], only anecdotal
clinical evidence was reported for several decades[84]. However, in the era of cancer
immunotherapy, abscopal effects are increasingly being reported when RT is given
concomitantly with ICIs. Demaria et al[85] first showed evidence that an RT-induced
abscopal effect is an immune-mediated response using a syngeneic mouse model
bearing  two  tumors.  Thereafter,  numerous  preclinical  results  using  ICIs  were
reported[86-88]. Using PD-1 knockout mice, Park et al[88] showed that PD-1 blockade is a
promising strategy to potentiate abscopal effects as well as anti-tumor effects caused
by stereotactic ablative RT. In the clinical setting, Postow et al[89] reported the case of
an abscopal effect in a patient with melanoma treated with anti-CTLA-4 ipilimumab
and RT. Since then, several studies have reported that combined immunotherapy
boosts the abscopal effects of RT, although the optimal dose/fraction size is still a
matter of debate[84,90-92].

As described above, RT modulates immunity in the TME directly or indirectly, and
a thorough understanding is important to design the optimal settings for iRT. RT
exerts immunostimulatory effects by increasing CD8+ effector T cells[93] and type I IFN
is a key modulator for their recruitment in response to RT[94]. The production of type I
IFN required for anti-tumor immunity is mediated by stimulator of interferon genes
(STING),  and  the  upstream  cyclic  guanosine  monophosphate-adenosine
monophosphate synthase (cGAS) signaling pathways are initiated by sensing tumor-
derived  cytosolic  DNA  (Figure  1)[95-97].  On  the  other  hand,  RT  exerts  immune-
inhibitory effects by upregulating PD-L1 expression or secreting cytokines such as
TGF-β, which contributes to radio-resistance[98,99]. The balance between two opposite
immune reactions depends on the radiation dose schemes, sequences between RT and
ICIs, and treatment volume of radiation[100]. Therefore, these parameters need to be
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established in order to determine the optimal RT conditions that reach the maximum
synergistic effect with ICIs.

Treatment sequences
When RT is given, ICIs can be administered before RT, after RT, or concurrently.
Several preclinical studies have been performed to determine the optimal sequences
of RT and ICIs. Dovedi et al[77] showed the concurrent administration of anti-PD-L1
mAb with RT of 2 Gy × 5 was more effective than their sequential application. On the
other hand, another study showed that anti-CTLA-4 antibodies were most effective
when given prior to RT[101], which reflects the function of CTLA-4 blockade in Treg
depletion. Single large doses (> 20 Gy) of RT followed by anti-CTLA-4 also enhanced
anti-tumor immunity in a Lewis lung carcinoma mouse model[102] and a mesothelioma
mouse model[103], suggesting that dose and fraction size may also have an effect. A
concurrent regimen for anti-PD-L1 and RT was also effective in a bladder cancer
model[104]. Further retrospective or prospective studies are required to elucidate the
optimal timing of RT that maximizes outcomes in patients co-treated with RT and
ICIs.

Radiation dose and fractionation
It is widely accepted that SBRT or hypofractionated RT may be more immunogenic
than conventional fractionated RT with 2 Gy per day. Lugade et al[105] showed that a
single dose of 15 Gy boosted the immune reaction more effectively than a fractionated
dose of 3 Gy × 5 in a B16 murine melanoma mouse model. Regarding the combination
with ICIs, Dewan et al. reported that an 8 Gy × 3 regimen showed better local tumor
control and a systemic abscopal effect than two other regimens, 20 Gy × 1 and 6 Gy ×
5, plus anti-CTLA-4 mAb in a TSA mouse breast carcinoma model[86]. A recent study
by Vanpouille-Box et al[106]  provided an important mechanistic clue regarding the
modulation of the immunogenic effect by different dose/fractionation schemes. They
showed that 8 Gy × 3 but not a single 30 Gy dose when co-treated with anti-CTLA-4
antibodies  induced abscopal  responses  with increased IFN-β production via  the
cGAS/STING pathway. A single radiation dose between 12 and 18 Gy upregulates
the DNA exonuclease TREX, which in turn degrades cytoplasmic double-stranded
DNA, resulting in turning off RT-induced immune stimulation. Thus, the use of a
dose per fraction above 12 Gy for synergy with ICIs needs to be reconsidered.

Treatment volume
Draining lymph nodes (LNs) where APCs present antigens to T cells play a critical
role in PD-1/PD-L1 therapy[75,107]. However, paradoxically, draining LNs are usually
suspected to contain cancer cells as well as immune cells, which encourages radiation
oncologists to encompass them in the RT field. In the setting of combination treatment
with ICIs, the benefit of an RT target volume that includes draining LNs should be
weighed against the risk of loss of tumor antigen-specific immune cells that help to
reinvigorate  anti-tumor  immunity.  Further  studies  to  clarify  the  need  for  the
modification of target delineation in the iRT setting may be warranted.

PRECLINICAL DATA AND ONGOING TRIALS FOR HCC
As described above, there are numerous studies and ongoing trials regarding the
synergistic efficacy of ICIs and RT in various cancer types such as melanoma, head-
and-neck cancer, non-small cell lung cancer, colorectal cancer, sarcoma, and renal cell
carcinoma[11].  However,  the  studies  on  the  combination  effect  in  HCC  are  still
underway,  and just  a  few results  have been reported to date.  To the best  of  our
knowledge,  only two preclinical  studies  have been conducted to  investigate  the
efficacy and the mechanism of ICIs and RT in murine HCC models[108,109]. Kim et al[108]

showed that RT upregulated PD-L1 expression via IFN-γ/STAT3 signaling in the
murine HCa-1 HCC cell line. The authors showed that the combination of anti-PD-L1
and RT of 10 Gy significantly suppressed Hca-1 tumor growth in syngeneic C3H mice
and improved the survival of tumor-bearing mice compared to those with anti-PD-L1
alone or RT alone. The combination treatment increased the infiltration of effector
CD8+ T cells and enhanced RT-induced apoptotic death within tumor tissue. These
results suggest that iRT may hold promise as a potential strategy for HCC treatment.
Another preclinical study supported the synergistic effect of the SBRT and anti-PD-1
combination in an orthotopic murine HCC model[109]. A Hep-55.1C tumor was injected
into the liver right lobe, and 30 Gy in 3 fractions was delivered using a specialized
irradiation system called the Small Animal Radiation Research Platform (SARRP). The
combination of SBRT and anti-PD-1 antibodies markedly suppressed tumor growth
and improved survival with increased infiltration of CD8+ cytotoxic T cells within the

WJG https://www.wjgnet.com May 28, 2019 Volume 25 Issue 20

Choi C et al. Combination of RT with ICIs in HCC treatment

2422



tumor.
There are only a limited number of studies on the combination effect of ICIs and RT

in  patients  with  HCC  in  the  clinical  setting.  Kim  et  al[110]  reported  the  clinical
significance of the soluble PD-L1 level in blood samples from patients with HCC. The
authors showed that EBRT significantly increased the soluble PD-L1 level and that a
higher soluble PD-L1 level at 1 mo after EBRT was significantly associated with early
lung metastasis and poor overall survival. Even though PD-1/PD-L1 therapy was not
tested  in  this  study,  these  findings  support  the  rationale  that  iRT  might  be  a
promising therapeutic strategy in patients with HCC. In addition to the EBRT, the
immune responses by the SIRT are under investigation. SIRT allows delivery of high-
dose radiation up to 170 Gy penetrating the tissue with depth ranging from 2.5 to 11
mm[111].  Therefore,  it  was hypothesized that SIRT may have robust immunogenic
effect by its similarity with high-dose EBRT with single fraction. However, there is
very  few  literatures  and  only  a  case  report  showing  the  enhancement  of  the
antitumoral immune response by the combination of nivolumab and SIRT with 90Y[112].
An analysis of tumor-infiltrating leukocytes isolated from patients with HCC after 90Y
radioemboliztion revealed SIRT resulted in higher tumor infiltration of CD8+ T cells,
and CD8+ and/or CD56+ NK cells and higher expression of tumor necrosis factor-α on
both the CD8 and CD4 T cells and APCs in peripheral blood[65]. These implied that
SIRT with 90Y enabled the activation of both local and systemic immune and potential
of synergy by combination with ICI. There are needs for clinical data regarding the
iRT and now several ongoing clinical trials are being conducted to investigate the
efficacy of iRT using various ICIs and EBRT or SIRT for patients with HCC. The trials
registered in www.ClinicalTrials.gov are listed in Table 1.

CONCLUSION
The advent of immunotherapy using ICIs had a great impact on melanoma treatment
and is now expanding to the treatment of gastrointestinal malignancies, including
HCC. Although the use of iRT in HCC treatment is anticipated, there remain many
issues to be investigated. First, ICIs should not be considered the best partners to use
with  RT  in  HCC.  Aside  from  ICIs,  other  immunotherapeutic  strategies  such  as
cytokine-induced killer cells or gene therapy using adenoviral vectors have already
been assessed in patients with HCC[113,114]. The potential of IL-12 with RT was tested in
a murine model, demonstrating that the combined therapy of RT and IL-12 showed
better tumor regression compared to each treatment alone; however, this has not been
evaluated in the clinical setting yet[115].

Another issue is that an optimized RT methodology for use in combination with
ICIs has not been established. Although large amounts of preclinical and clinical data
suggest  optimal  schemes  for  dose-fractionation,  the  timing  of  RT,  and  target
delineation as described above, there is no general consensus that can be applied in
the clinic. Further efforts are needed to understand the nature of RT-induced immune
responses. In addition, RT-induced lymphopenia may suppress reinvigoration by
ICIs, so a specialized RT protocol that can minimize lymphopenia needs to be newly
designed for  iRT[116].  The  combination  of  ICIs  and particle  beam therapies  is  an
emerging research field. Because of its dosimetric benefits, particle beam therapy can
potentially prevent lymphopenia as well as save the normal liver. The immunologic
effects of particle beam therapy are being investigated in other types of cancers such
as NSCLC[117].  To date,  the  clinical  trials  to  assess  iRT have been focused on the
treatment of primary HCC. However, iRT can potentially be effective in systemic
disease control via abscopal effects[84]. As with other types of cancers in which the
application  of  iRT for  metastatic  disease  has  been  tested,  iRT for  the  control  of
metastatic HCC can be considered a future new therapeutic strategy.

Finally, the appropriate selection of good candidates for iRT is required to improve
the outcomes in patients with HCC. PD-L1 expression is a predictive biomarker for
PD-1/PD-L1 blockade in patients with NSCLC, but it has not been tested in patients
with HCC. Tumor mutation burden and infiltration of effector T lymphocytes are
emerging  biomarkers[118],  but  they  also  have  not  been  evaluated  in  HCC.  Next-
generation sequencing-based profiling of  tumor mutation burden,  immune gene
expression signatures, T-cell receptor repertoire, T-cell-inflamed gene expression, and
the  microbiome  could  help  to  predict  the  suitability  of  patients  with  HCC  for
iRT[118,119]. Such genetic information is useful for predicting not only the susceptibility
to ICIs but also the individual radiation sensitivity[120-122]. Therefore, further efforts to
identify  the  biomarkers  to  guide  the  selection  of  patients  with  HCC  who  are
appropriate for iRT are needed.
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Table 1  On-going clinical trials for combination of immune checkpoint inhibitor and radiation

NCT number Institution Phase Disease Intervention Estimated
enrollment Primary endpoint

NCT03482102 United States
(MGH)

II Locally advanced/
unresectable or

metastatic disease
HCC or biliary tract

cancer

Experimental:
Tremelimumab +

Durvalumab + EBRT

70 Best overall
response rate

NCT03203304 United States (UCh) I HCC SBRT Nivolumab →
+/- ipilimumab +
SBRT (8 Gy × 5)

50 Number of
participants with

adverse events

NCT03316872 Canada (UHN) II HCC showing
progression after

sorafenib

Pembrolizumab +
SBRT

30 Overall response
rate

NCT03812562 United States (NU) I HCC intended to be
resected

90Y SIRT →
Nivolumab

12 Recurrence rate

NCT03033446 Singapore (NCC) II HCC not suitable for
resection or
transplant

90Y SIRT →
Nivolumab

40 Response rate

NCT02837029 United States (NU) I/Ib HCC stage IIIA - IVB 90Y SIRT →
Nivolumab

35 Maximum tolerated
dose

NCT03099564 United States (UNC) I HCC 90Y SIRT +
Pembrolizumab

30 Progression-free
survival

MGH: Massachusetts  General  Hospital;  HCC: Hepatocellular  carcinoma;  EBRT:  External  beam radiotherapy;  UCh:  University of  Chicago;  SBRT:
Stereotactic body radiotherapy; UHN: University Health Network; NU: Northwestern University; SIRT: Selective internal radiation therapy; NCC:
National Cancer Center; UNC: University of North Carolina.
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