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Abstract

Chronic obstructive pulmonary disease–associated chronic
inflammation has been shown to lead to an autoimmune phenotype
characterized in part by the presence of lung autoreactive antibodies.
We hypothesized that ischemia–reperfusion injury (IRI) liberates
epitopes that would facilitate preexisting autoantibody binding,
thereby exacerbating lung injury after transplant. We induced
emphysema in C57BL/6 mice through 6 months of cigarette smoke
(CS) exposure. Mice with CS exposure had significantly elevated
serum autoantibodies compared with non–smoke-exposed age-
matched (NS) mice. To determine the impact of a full preexisting
autoantibody repertoire on IRI, we transplanted BALB/c donor lungs
into NS or CS recipients and analyzed grafts 48 hours after transplant.
CS recipients had significantly increased lung injury and immune cell

infiltration after transplant. Immunofluorescence staining revealed
increased IgM, IgG, and C3d deposition in CS recipients. To exclude
confounding alloreactivity and confirm the role of preexisting
autoantibodies in IRI, syngeneic Rag12/2 (recombination-activating
protein 1–knockout) transplants were performed in which recipients
were reconstituted with pooled serum from CS or NS mice. Serum
from CS-exposed mice significantly increased IRI compared with
control mice, with trends in antibody and C3d deposition similar to
those seen in allografts. These data demonstrate that pretransplant
CS exposure is associated with increased IgM/IgG autoantibodies,
which, upon transplant, bind to the donor lung, activate complement,
and exacerbate post-transplant IRI.
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Despite recent advances in the field of
transplantation, outcomes for lung
transplant (LTx) recipients remains
disproportionately poor. The reasons for
this stagnation in outcomes are complex,

but at least one culprit that can be identified
as a major factor is primary graft
dysfunction (PGD). PGD occurs in one-
third to one-half of all LTx recipients and is
associated with as much as a 33% increase

in 90-day mortality (1, 2). Although the
pathogenesis of PGD is multifactorial, clear
associations have been made between PGD
and the severity of ischemia–reperfusion
injury (IRI) (3), with the long-term
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implications manifesting in the form of
increased risk and incidence of early-onset
bronchiolitis obliterans syndrome (BOS)
and restrictive allograft syndrome, which
are two manifestations of chronic lung
allograft dysfunction (4). Given these
clinical data, it is incumbent on the LTx
community to identify the effector
mechanisms driving these outcomes,
beginning specifically with the earliest
donor–recipient interactions and how they
shape IRI.

Increasing evidence indicates a role for
recipient autoimmunity in the pathogenesis
of graft rejection (5, 6). The earliest injury
to the transplanted lung occurs as a
consequence of IRI, which induces a
proinflammatory microenvironment that is
capable of shaping the adaptive immune
response. Ischemic insult followed by
reperfusion leads to the exposure of
neoepitopes expressed on stressed/injured
cells that may well be recognized by
preformed extracellular matrix (ECM)
reactive antibodies, which bind and activate
the complement system, resulting in
inflammation and injury (7–9). Preformed
tissue-specific antibodies have recently been
demonstrated as a contributor to IRI and
PGD (10, 11). Studies examining the
presence of a select few non–human
leukocyte antigen (non-HLA) antibodies
(Ka-1 tubulin, collagen type V, and
collagen type I) have demonstrated that up
to 30% of LTx recipients have elevated
antibodies and that this may have
significant implications for development of
PGD and BOS (12). These autoantibodies
are unaccounted for in the cross-match
process; however, they are believed to be
major contributors to peritransplant injury
because they readily bind to neoepitopes
exposed by IRI (10, 12, 13).

Patients with chronic obstructive
pulmonary disease (COPD)/emphysema
and idiopathic interstitial pneumonia (IIP)
make up more than half of all LTx
recipients; yet, these two groups of patients
have some of the poorest long-term survival
statistics, with median survival of 5.6 and 4.8
years, respectively (14). These trends hold
when controlling for 3-month and 1-year
perioperative survival. Furthermore,
patients with COPD who develop chronic
lung allograft dysfunction phenotypes such
as BOS also have a significantly higher risk
of mortality than similar patients with
differing underlying diagnoses (15). The
question of why these patient populations

do poorly is complex. It is worth noting
that one of the striking commonalities
between patients with emphysema and
patients with IIP is the documented
presence of a large array of circulating ECM
non-HLA autoreactive autoantibodies (16,
17). As a result of chronic inflammation,
these patients develop an underlying
autoimmune phenotype characterized by
increased lung inflammation, injury, and
the production of ECM humoral and
cellular autoreactive immune responses
(18–20). Indeed, emphysema has been
shown to induce a far more diverse
spectrum of ECM autoantibodies directed
toward lung-specific collagen, elastin, and
decorin than the handful of non-HLA
autoantibodies studied previously in LTx
(19–21). The impact of these heterogeneous
autoantibody populations on post-LTx
outcomes is largely unknown.

In the present study, we hypothesized
that non-HLA lung autoreactive antibodies
generated as a consequence of emphysema
pathogenesis promote post-LTx injury that
leads to an exacerbated IRI phenotype.
We used the well-established murine
orthotopic left-lung transplant model to
demonstrate not only that mice with
significant cigarette smoke (CS) exposure
experience exacerbated IRI but also that CS-
related antibodies contribute to allograft
injury. Finally, our findings describe a novel
model system that can be used to model the
impact of a broad and comprehensive
autoreactive immune response on LTx
outcomes in future studies.

Methods

Animals
BALB/c (H-2kd), C57BL/6 (H-2kb), and
Rag12/2 (recombination-activating protein
1–knockout; H-2kb) mice (The Jackson
Laboratory) were housed at the Medical
University of South Carolina. All
procedures were performed in accordance
with institutional animal care guidelines.
Eight-week-old C57BL/6 mice were
exposed to CS for 6 months (22). Upon
completion, C57BL/6 (CS) and non–smoke-
exposed age-matched control mice (NS)
received a left-lung transplant from BALB/c
donors. Allografts were harvested 48 hours
after LTx.

For reconstitution studies, Rag12/2

donor lungs were transplanted into
Rag12/2 recipients. Thirty minutes before

LTx, Rag12/2 recipients were inoculated with
200 ml of pooled serum from either CS or NS
C57BL/6 mice. A subgroup of Rag12/2

recipients was reconstituted with pooled CS
serum that had been depleted of specific
antibody subtypes using a two-step process
with IgG depleted by a protein G column
(Santa Cruz Biotechnology), followed by IgM
removal with anti-IgM microbeads (Thermo
Fisher Scientific). IgM and IgG depletion was
confirmed to be greater than 90% by ELISA
(Bethyl Laboratories). For Rag12/2

transplants, recipient mice were killed 6 hours
after LTx. Additional details on the methods
used for micro–computed tomography
(m-CT), histology, autoantibodies, flow
cytometry, and quantitative reverse
transcriptase–polymerase chain reaction
(qRT-PCR) are provided in the data
supplement.

In Vitro Simulated Cold Storage
and IRI
Mouse lung epithelial cells (MLE-15) and
microvascular endothelial cells (Cedarlane)
were cultured to confluence inmicrotiter ELISA
plates and exposed to a simulated cold storage,
hyperoxemia, and reperfusion process of LTx
(23, 24). In brief, to recreate cold storage and
reperfusion injury, media were replaced with
Perfadex (XVIVO Perfusion), and cells were
stored at 48C for 18 hours in a sealed chamber
containing 100% oxygen. Eighteen hours later,
the Perfadex was removed and reperfused with
378C culture media supplemented with 10%
CS or NS pooled heat-inactivated serum for 6
hours, then incubated with either IgG or IgM
(Bethyl Laboratories) primary antibodies and
quantified by standard ELISA techniques. To
determine antibody-mediated complement
activity, experiments were modified such that
after 6 hours of reperfusion with heat-
inactivated NS or CS supplemented media,
media were removed and then incubated with
media containing freshly prepared 10% C6-
deficient sera. C3 was quantified using anti-C3
antibody (Bethyl Laboratories) and detected as
outlined above.

Statistics
Prism version 7.0 for Mac OS X software
(GraphPad Software) was used for statistical
analysis. Except when indicated, differences
between groups were compared by use of
one-way ANOVA with Dunnett’s multiple-
comparisons test for post hoc analyses. For
histological injury scores, the Kruskal-
Wallis test was used, followed by post hoc
analyses. P values less than 0.05
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were considered significant. Values shown
are mean6 SEM.

Results

CS Induces Autoreactive Antibodies
To confirm that our 6-month mouse model
of CS exposure in C57BL/6 mice had
pathophysiological features of emphysema,
lungs were formalin inflated, and the
presence of emphysema was confirmed by
mean linear intercept measurements
(Figure 1A). CS exposure resulted in an
increased mean linear intercept as
compared with age-matched NS control
mice (55.6 mm vs. 42.4 mm; P, 0.01).
Clinical COPD is associated with
significantly increased production of a
number of autoantibodies (25, 26).
Consistent with previously published data
(27), and to confirm the characteristics of
our model system, we demonstrated in the
present study that ECM-specific antibodies
are upregulated in response to chronic CS
exposure. Serum from the NS and CS
cohorts was tested for specific ECM
autoreactive antibodies. In CS mice, serum
concentrations of antielastin, collagen type
I, and decorin IgG antibodies were
significantly elevated compared with NS
mice (P, 0.05) (Figure 1B). Upon further
analysis of the antielastin antibodies, IgM
and IgG isotype analysis revealed that IgG
subclasses IgG2 and IgG3 were elevated in
CS mice. Of note, these immunoglobulin
isotypes are associated with pronounced
complement-activating ability (P, 0.05)
(Figure 1C). Clinically, patients are
required to quit smoking before selection

for LTx; therefore, in the present study, we
sought to determine whether smoking
cessation altered the presence of ECM-
specific antibodies in our model system. To
test this, we modified our CS exposure
protocol. Mice again received 6 months of
CS exposure, after which they were
returned to normal housing conditions for
a period of 3 months. Measurement of
antielastin antibodies demonstrated that
cessation had no impact on antibody
concentrations, with concentrations
persisting through the smoking cessation
period as compared with age-matched
control mice (see Figure E1 in the data
supplement).

CS Exposure in Recipient Mice
Exacerbates IRI
Fully allogeneic left-lung transplants were
performed to investigate the impact of
recipient CS exposure on peritransplant IRI.
Age-matched transplants were performed
into NS or CS mice. m-CT performed 48
hours after LTx (Figure 2A) demonstrated
the presence of minimal functional
lung/airspace and dramatically increased
opacification in CS recipients as compared
with NS mice, suggestive of edema and
inflammation. m-CT2 findings were
corroborated by pathologic scoring
performed on lungs harvested 48 hours
after LTx. CS mice demonstrated
significantly worse pathologic injury
(Figures 2B and 2C). In keeping
with our histopathological findings,
immunohistochemistry for localization and
quantification of neutrophils demonstrated
that CS mice had significantly greater
innate immune infiltrates (Figure 2D).

Given the increased evidence of injury and
inflammation, we performed qRT-PCR for
key innate cytokines associated with IRI.
Although increases were seen in CS as
compared with NS for TNF-a and MCP-1
(monocyte chemoattractant protein 1), no
significant differences were noted for any of
the analyzed proinflammatory cytokines,
which also included KC (keratinocyte
chemoattractant) and IL-6 (Figure 2E).

To delineate the role of preformed
antibodies in peri-LTx IRI in CS versus NS
recipients, immunofluorescence staining
was performed. Given the predominance of
complement fixing that immunoglobulin
subtypes demonstrated in the serum of
CS mice before transplant, we performed
colocalization studies with either IgM or
IgG detection together with C3d, a
complement C3 split product, and
opsonin as an indicator of complement
activity (Figure 3A). Using automated
quantification, immunofluorescence
staining demonstrated significantly
increased IgM, total IgG, and C3d in CS
recipients compared with NS (Figures
3B–3D). Immunoglobulin and complement
immunostaining was seen on both
epithelial and endothelial cells, with the
distributions of IgM and IgG not dissimilar
from each other. Antibody staining
colocalized with C3d on both epithelial and
endothelial cells (Figure 3A).

Simulated Cold Static Storage and
Reperfusion Exposes Epitopes
Recognized by CS Serum
Autoantibodies
Our in vivo data suggest that the presence
of preexisting autoantibodies leads to
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antibody binding and complement
activation. To test antibody binding and
complement deposition more directly, we
exposed mouse lung epithelial cells and

endothelial cells to simulated cold storage
and reperfusion injury using a recently
described cell culture model (23). After 18
hours of cold storage, cells subsequently

exposed to media containing CS serum had
significantly elevated IgM and IgG binding
as compared with NS (Figures 4A and
4B). To determine whether these
antibodies fix complement, we repeated
these experiments, but this time, after
6 hours of exposure to either NS or CS
serum-containing media, the cells were
subsequently exposed to media with fresh
C6-deficient serum as a source of active
complement and incubated for a further
6 hours. C6-deficient serum was used to
inhibit complement-mediated cell lysis. As
anticipated, C3 deposition was increased in
the CS group compared with the NS group
(Figures 4A and 4B).

To rule out the potential confounding
impact of alloimmunity, CS and NS pooled
serum was assayed to determine the
presence of alloantibody using standard
donor splenocyte serum incubations and
flow cytometry as previously described (28).
No significant differences in alloantibody
mean fluorescence intensities between
donor splenocytes incubated with CS or
with NS serum were determined
(Figure E2).

Autoantibodies Present in CS
Serum Reconstitutes IRI in
Antibody-Deficient Recipients
To more thoroughly implicate CS-
associated preformed autoantibodies in the
exacerbation of lung IRI after LTx, we
performed reconstitution experiments
using syngeneic left-lung transplants with
immunodeficient B6.Rag1 (Rag1)-
knockout donors and recipients. Serum
isolated from C57BL/6 NS or CS mice was
reconstituted into Rag1 recipients 30
minutes before receiving a Rag1 donor
lung. To enable comparison and to
minimize batch variability, samples from
each CS and NS batch were pooled and
quality controlled to confirm development
of ECM autoreactivity in CS-exposed mice,
as demonstrated in Figure 1. Analysis of
total IgM and IgG concentrations by
ELISA confirmed that no significant
difference in total IgM and IgG was seen
between pooled CS and NS sera (data not
shown). After 6 hours of reperfusion, graft
histology showed significant neutrophil
infiltration, edema, and red blood cell
accumulation in the alveoli of Rag1
recipients reconstituted with pooled serum
from CS-exposed C57BL/6 mice. These
features were seen to a much lesser degree
in NS reconstituted recipients and were all
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Figure 2. Pretransplant recipient chronic CS exposure exacerbates lung transplant ischemia–
reperfusion injury. Prolonged recipient CS exposure predisposes to (A) increased radiographically
detectable lung injury and (B) histologically scored injury. ##P, 0.01. Representative histological images
of lung injury show increased neutrophilic infiltrates, alveolar red blood cell accumulation, and fibrin
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but absent in non–serum-reconstituted
Rag1 control mice (Figures 5A and 5B).
To demonstrate that the effect noted in CS
serum-reconstituted mice was antibody
dependent, we depleted IgM and IgG
from serum (depletion confirmed by
ELISA; data not shown). In the absence
of IgM and IgG, CS serum failed to
reconstitute significant injury (Figures 5A
and 5B).

Finally, to confirm that the effects
of serum reconstitution were associated
with antibody binding in the lung, we
assessed IgM, IgG, and C3d deposition
in reconstituted mice. As anticipated,
nonreconstituted and IgM/IgG-depleted
serum control Rag1 transplants had no IgM
or IgG staining, and complement C3d
deposition was minimal (Figures 6A–6E). In

Rag1 recipients of CS serum, significantly
greater IgM, IgG, and C3d than with NS
serum-reconstituted recipients was noted
(Figures 6A–6E).

Discussion

In the present study, we demonstrated that
chronically CS-exposed recipients had an
increased injury profile and that CS-
induced preformed autoreactive antibodies
can promote complement activation and
lung injury. A role for autoreactive
antibodies in LTx has previously been
demonstrated in studies focused on a
handful of particularly compelling non-
HLA antibodies (collagen type V and K-a1
tubulin) that were shown to develop

de novo after LTx. The development of
these non-HLA antibodies after transplant
was associated with an increased risk of
PGD and obliterative bronchiolitis (5, 10,
12, 29). Furthermore, adoptive transfer of
either collagen type V or K-a1 antibodies
at supraphysiological concentrations
caused lung inflammation and fibrosis
when administered at the time of
transplant in a rodent syngeneic LTx
model (5, 11). Although these elegant
studies provided important clues to the
injurious pathways induced by singular
adoptively transferred autoreactive
antibodies, they did not take into
consideration the full spectrum of
specificities that may develop in the
recipient before transplant, nor did
they consider/model the impact of
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immunoglobulin autoantibody subtypes,
such as IgM, IgG1, IgG2, and IgG3, that
may have differing Fcg- or complement-
mediated functions.

In the present study, we used a rodent
model of chronic CS exposure as a tool to
develop a full spectrum of pretransplant
autoreactivity in a clinically relevant
paradigm. Our rationale for using a chronic
CS exposure model of emphysema was as
follows: 1) The model is well validated
(30–33); 2) animals develop a broad array
of ECM autoreactive antibodies with
specificities that are also seen in humans
(21, 27, 34); and 3) emphysema is a key
indication for LTx, and thus our studies
have greater clinical relevance. Although
other chronic lung diseases, such as
idiopathic pulmonary fibrosis (IPF), have
been shown to develop autoreactive
antibodies (16, 35), and although recipients
with IPF similarly have poorer outcomes,
animal models of IPF tend to be acute and
do not display a robust autoreactive
immune phenotype that mirrors clinical
findings. We acknowledge that chronic CS
exposure will likely alter a host of metabolic
and immunological factors, both pro- and
antiinflammatory, but in the present study
we focused, through our reconstitution
studies, on the mechanistic interplay
between CS-induced antibodies and
demonstrated that complement activation
appears to be central to this exacerbated
phenotype. The findings described in our
studies expand on previous clinical and
preclinical findings regarding the roles of
recipient preformed autoantibodies such as
those found in high prevalence in patients
with COPD/emphysema, and they

highlight a potential benefit for targeting
complement activation early after
transplant in COPD/IIP recipients to
improve overall outcomes in this at-risk
population.

In the present study, we sought to
examine how the full repertoire of
emphysema-related autoantibodies in a
clinically relevant in vivo system would
impact the severity of IRI after LTx, as well
as if this diverse array of antibodies could
drive IRI by themselves. We demonstrated
significantly worse cellular lung injury,
edema, pulmonary hemorrhage, and
immune cell infiltration in the transplanted
lungs of CS recipients versus NS control
mice. Despite the minimal cold and warm
ischemia times, an obvious difference in
injury was seen in CS recipients, and
importantly, this difference correlated to
significantly increased antibody deposition.
It is also important to note that the
antibody binding that we demonstrated by
immunofluorescence was almost entirely
absent in the native nontransplanted right
lung, indicating that the documented
antibody activity was in response to epitope
exposure resulting from the transplant
process itself (i.e., cold storage and IRI).
Although we demonstrated increases in
proinflammatory gene expression in
transplant lungs in CS as compared with
NS, we could not demonstrate any
significance, which led us to consider
complement activation as a prime inducer
of injury.

Complement-dependent
activation/cytotoxicity represents a main
pathway by which antibodies propagate
immune responses and inflammation (8). In

this study, we demonstrated that a large
proportion of the pretransplant antibodies
present in emphysema represents isotypes
associated with complement fixation. We
and others have previously demonstrated
that transplant IRI can, in and of itself,
activate the complement cascade, with a
resultant increase in allograft neutrophil
and macrophage infiltration leading to
tissue inflammation, injury, and acute
rejection (8, 36). Given the elevated level of
complement-driven inflammation in these
studies using otherwise healthy (young,
without CS exposure) mice as recipients, it
stands to reason that additional antibody-
mediated complement activation in CS-
exposed mice would only serve to further
exacerbate injury and graft dysfunction
after LTx, which we demonstrated with the
increased antibody and complement
colocalization seen in CS recipients after
LTx.

In these acute studies, we proposed
that epitopes exposed by organ harvest,
cold storage, and IRI would be bound
by a wide range of preformed ECM
autoantibodies that are present in
emphysema, resulting in subsequent
immune activation and injury. To more
mechanistically test this, we used a recently
described simulated cold storage IRI
in vitro model and demonstrated that
incubation with CS serum not only
increased antibody deposition on both
epithelial and endothelial cells but also
resulted in increased C3 deposition after
reperfusion (23). We confirmed these
in vitro findings with our acute in vivo
reconstitution experiments that also
demonstrated increased IgM and IgG
deposition and complement activation in
CS serum-reconstituted LTx recipients.
Taken together, our data show increased
antibody binding and C3 deposition,
which might account for the increased
injury seen in the lungs of CS recipients
in vivo. Our qRT-PCR data showed no
differences in KC, a key neutrophil
chemotactic factor in the lung, which was
in contrast to our immunohistochemical
data that clearly demonstrated increased
neutrophil infiltrates. Although these
and the other mRNA data point to no
significant differences in proinflammatory
gene expression, it is important to note
that complement activation fragments can
directly impact immune cell infiltration
via C3a- and C5a-mediated chemotaxis
(37–40). Therefore, we speculate that
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increased injury and immune cell
infiltration could be directly impacted
by the degree of complement activation. In
keeping with this, increased complement
activation has been shown to associate
with increased incidence of PGD in
clinical studies (41), and it is believed
to promote injury and collagen deposition
in models of obliterative bronchiolitis
(42).

Moving forward, the insights derived
from these studies and from the extension of
these studies could help to inform the
management of patients who constitute a
majority of LTx recipients: patients with
COPD and potentially patients with IIP. The
underlying mechanisms that appeared to
drive the worsened post-transplant injury
seen in CS-exposed mice in the present
study appear to be the same mechanisms
that have recently been implicated in the
clinical literature to worsen long-term
outcomes: a marked increase in circulating
lung-specific autoreactive antibodies (6),
recipient pretransplant CS exposure (4),
and pretransplant diagnosis of COPD (4,
14). Indeed, Bharat and colleagues had
previously documented that 30% of their
LTx cohort had positive results for at least
one of the three IgG non-HLA antibodies

they tested. It is also worth noting that
approximately 70% of their patient
population, and over half of the antibody-
positive patients, were patients with COPD
and patients with IIP (12). On the basis
of our data, it is reasonable to suggest
that increasing the antibody screen or
investigating immunoglobulin subtypes and
their association with outcomes would yield
even higher numbers. As more is learned
about the role of pretransplant non-HLA
autoantibodies, the implementation of
screening for certain isotypes, or even
entire panels, will enable more appropriate
patient-specific care.

Given these data, the use of short-term
complement inhibition may provide relief
from autoantibody-driven injury (8, 43).
With the current availability of U.S. Food
and Drug Administration–approved
complement therapeutics and ongoing
research to develop a number of different
complement-inhibitory compounds (44,
45), this may represent a significant step
forward in the care of this patient
population. Factoring in the documented
ability of glucocorticoids to increase
complement production only serves to
support complement-targeted therapy as an
adjunct or alternative to existing

immunosuppressive regimens (46). Studies
more thoroughly exploring these topics,
using more clinically relevant model
systems with brain death and cold
ischemia, may provide more definitive
evidence regarding the utility of these
interventions.

Although our data support a role for
antibody-induced injury, we acknowledge
that further studies are needed to see how
preexisting ECM T-cell autoreactivity, as
described in humans and mice (47, 48), will
impact post-transplant outcomes. Given the
complex role of T cells in organ rejection, a
role that is even further obscured in the
context of lung transplantation as Kreisel
and colleagues have demonstrated through
a series of publications (49–51), we believed
that the task of addressing the mechanisms
by which CS alters T-cell subsets and
effector/memory/regulatory functions was
beyond the scope of our present study.
They remain extremely important to
carry out, however, given the well-
documented survival statistics
demonstrating disproportionately poor
long-term outcomes for patients with
COPD and patients with IIP (14).

In conclusion, LTx recipients with
certain underlying pathologies develop a
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wide array of lung-specific autoantibodies
before transplant that are clinically
relevant to the peritransplant period. In
the present study, we focused on the murine
emphysema model to demonstrate that the

full range and/or exacerbated pretransplant
titers of autoantibodies negatively
contribute to the severity of IRI. The injury
mediated through the post-LTx binding of
these antibodies appears to be driven by the

complement cascade, which may represent a
logical therapeutic target. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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