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Abstract

GDF-15 (growth differentiation factor 15) acts both as a stress-
induced cytokine with diverse actions at different body sites and
as a cell-autonomous regulator linked to cellular senescence and
apoptosis. For multiple reasons, this divergent transforming growth
factor-bmolecular superfamily member should be better known to
pulmonary researchers and clinicians. In ambulatory individuals,
GDF-15 concentrations in peripheral blood are an established
predictive biomarker of all-cause mortality and of adverse
cardiovascular events. Concentrations upon admission of critically ill
patients (without or with sepsis) correlate with organ dysfunction
and independently predict short- and long-term mortality risk.
GDF-15 is a major downstream mediator of p53 activation, but it
can also be induced independently of p53, notably by nonsteroidal
antiinflammatory agents. GDF-15 blood concentrations are
markedly elevated in adults and children with pulmonary

hypertension. Concentrations are also increased in chronic
obstructive pulmonary disease, in which they contribute to mucus
hypersecretion, airway epithelial cell senescence, and impaired
antiviral defenses, which together withmurine data support a role for
GDF-15 in chronic obstructive pulmonary disease pathogenesis and
progression. This review summarizes biological and clinical data on
GDF-15 relevant to pulmonary and critical care medicine. We
highlight the recent discovery of a central nervous system receptor for
GDF-15, GFRAL (glial cell line–derived neurotrophic factor family
receptor-a–like), an important advance with potential for novel
treatments for obesity and cachexia.We also describe limitations and
controversies in the existing literature, and we delineate research
questions that must be addressed to determine whether GDF-15 can
be therapeutically manipulated in other clinical settings.
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Discovered over 20 years ago and linked to
such crucial biological processes as cachexia,
erythropoiesis, and cell survival, GDF-15
(growth differentiation factor 15) nonetheless
remains unknown to most pulmonary
clinicians and researchers. This status is
undeserved because blood concentrations of
GDF-15 provide independent prognostic
information of all-cause and disease-specific
mortality and are increasingly incorporated
into algorithms for cardiovascular (CV)
disease management. GDF-15 acts both as a
cell-autonomous regulatory molecule linked
to senescence and as a pleomorphic cytokine.
It serves broad-ranging homeostatic roles to

integrate the response to cellular stress,
especially within the vascular system. GDF-15
has been the topic of several comprehensive
reviews (1–4). Our goal in this translational
review is to highlight its relevance to
pulmonary and critical care medicine.

Key Aspects of GDF-15
Biology

Genetics and Regulation of
Expression
GDF-15 is a highly divergent member of the
transforming growth factor (TGF)-b
molecular superfamily. Its remarkably low

sequence conservation with other
superfamily members (15–29%) (5)
suggests unique biological roles. The GDF-15
gene was independently cloned almost
simultaneously by six different research
groups. The varied strategies they employed
led to multiple names (Table 1) (5–12), an
early indication of the many organs and
processes impacted by GDF-15. Familiarity
with these alternative names is useful
because several continue to be used even
in recent literature. The gene for human
GDF-15 (Gene ID 9518; Online Mendelian
Inheritance in Man accession no. 605312)
resides on chromosomes 19p12–19p13.1. In
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genome-wide association studies,
polymorphisms mapping to this region
contribute significantly (27.4%) to variation
in circulating GDF-15 concentrations (13).
The human gene comprises two exons of
309 and 891 bp, respectively, separated by a
single intron of 1,800 bp within the pre-
prodomain of the corresponding peptides
(5, 6). The 59-flanking region of GDF-15
contains one or more binding sites for the
transcription factors AP-1 (activator protein
1), AP-2, Nkx-2, p53, Sp1 (specificity protein
1), and Sp3 (6, 8, 14, 15).

In the basal state in humans, GDF-15
transcripts are expressed in virtually all
tissues but are highly prevalent in only a
few (Table 2). A study that used deep RNA
sequencing to examine tissue-specific
expression of transcripts in 27 different
organs designated GDF-15 as a “mixed
high” gene because it was detected at
greater than 10 fragments per kilobase of
transcript per million mapped reads
(FPKM) in all tissues in which it was
present (16). Concentrations were highest
in placenta, prostate, colon, kidney, and
liver, but they were significant (.1 FPKM)
in 14 other tissues, including lung. By
contrast, concentrations less than 0.5
FPKM were found in lymph node, testis,
brain, bone marrow, heart, and skin.

The GDF-15 protein shares properties
with other TGF-b superfamily members
(17). First, it is synthesized as an inactive
precursor containing an N-terminal
propeptide and a C-terminal mature
domain that undergo disulfide‐linked
dimerization in the endoplasmic reticulum.
The propeptide is essential to monitor
correct protein folding, the first example of
such a quality control function for the
propeptide of a secreted protein (18).
Second, like TGF-b, GDF-15 requires
proteolytic processing, although unlike
TGF-b, that process occurs in the Golgi
apparatus, where the dimeric precursor is

cleaved at a conserved RXXR site by a
furin-like protease, releasing the bioactive
25 kD disulfide-linked dimer (5, 12, 18).
Matrix metalloproteinase (MMP)-26 (also
known as matrilysin 2), but not the
structurally similar molecule MMP-7,
mediates GDF-15 cleavage in placental
trophoblast cells (19). How this
intracellular processing step occurs in other
cell types is unreported. The U937
macrophage cell line releases unprocessed
propeptide, which, by binding to
extracellular matrix, might provide latent
GDF-15 stores that could contribute to
circulating concentrations of mature GDF-15
if subsequently processed extracellularly
(20). Third, sequence alignment
demonstrates that the C-terminal domain of
GDF-15 contains a “cysteine knot,” a
structural hallmark of the TGF-b
superfamily produced by its eight intrachain
disulfide bonds. However, X-ray diffraction
data recently revealed a disulfide bonding
configuration (1→2, 3→7) in GDF-15 not
previously observed in TGF-b family
members (21), another mark of its
divergence.

Importantly, GDF-15 can be induced,
especially in macrophages; during injury,
inflammation, and oxidative stress; and in
cancer (2). Known induction stimuli
include IL-1b, TNF-a, macrophage colony-
stimulating factor, angiotensin II, and
TGF-b. In healthy individuals, GDF-15
concentrations in serum range between 200
and 1,150 pg/ml (22) and increase with age
(23). Aside from pregnancy, where GDF-15
concentrations are high, and reductions
predicting miscarriage (24, 25), chronic
elevations correlate with adverse clinical
outcomes. Moreover, GDF-15 is an
established or potential biomarker in
multiple conditions relevant to pulmonary
and critical care medicine.

GDF-15 is strongly induced by p53,
a transcription factor that regulates cell

cycle progression and cellular survival.
Depending on the cellular context, GDF-15
can mediate either pro- or antiapoptotic
functions (15, 26–28). GDF-15 protected
pulmonary endothelial and epithelial cell
lines against hyperoxia in a p53-dependent
fashion (29), but whether it does so in vivo
is unstudied. The induction of GDF-15 in
human umbilical vein endothelial cells
(HUVEC) by high glucose concentrations
was also p53 dependent and protective.
However, GDF-15 can be induced
independently of p53; the best-known
example is by nonsteroidal antiinflammatory
agents (8). GDF-15 production can also be
induced in hepatocytes by the unfolded
protein response via direct binding
of the transcription factor C/EBP
(CCAAT/enhancer binding protein)
homologous protein to its promoter (30).
Studies using gene-targeted mice also showed
p53 independence of GDF-15 induction in
both neonatal and adult injury models (31).

GDF-15 Effects, Receptors, and
Signaling
The effects of GDF-15, both homeostatic
and detrimental, involve multiple organ
systems (Table 2). GDF-15 regulates
neutrophil arrest and platelet aggregation
under flow conditions by modulating the
affinity of integrins (b1, b2, and b1, b3,
respectively) (32–34), the first instance
of such action by a cytokine. GDF-15 is
highly upregulated within atherosclerotic
plaques, where it localizes to infiltrating
macrophages. GDF-15 also suppresses
hepcidin, a master regulator of iron
homeostasis, in primary human
hepatocytes (a finding not confirmed in
mice) (35, 36). GDF-15 concentrations are
increased in disorders involving ineffective
erythropoiesis, and its production by
erythroblasts is essential for normal
erythrocyte maturation (37). Subcutaneous
implantation of GDF-15 in rats induced

Table 1. GDF-15 Synonyms

Abbreviation Name Action Leading to Identification References

GDF-15 Growth differentiation factor 15 Cloning of novel TGF-b family members from a
human placental cDNA library

(6, 7)

NAG-1 Nonsteroidal antiinflammatory drug–activated gene Regulation by cyclooxygenase inhibitors (8)
MIC-1 Macrophage inhibitory cytokine-1 Upregulation in stimulated macrophages (5, 9)
PDF Prostate-derived factor Homology to bone morphogenetic proteins (10)
PLAB Placental bone morphogenetic protein Inhibition of hematopoietic progenitor proliferation (11)
PTGFB Placental transforming growth factor-b High expression in placenta (12)

Definition of abbreviation: TGF-b = transforming growth factor-b.
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cartilage and bone formation (10). This
diversity of actions is one reason why a
unifying understanding of the regulation
and role of GDF-15 remains elusive.

Another significant reason why the
knowledge base needed before targeting
GDF-15 therapeutically is lacking in most
conditions is that the receptors and
downstream mediators of its signaling in
most tissues have not yet been identified.
The sole exception is the newly identified
glial cell line–derived neurotrophic factor
family receptor-a–like (GFRAL) receptor
(21, 38–41). GFRAL, acting with the
receptor tyrosine kinase RET, is a bona fide
GDF-15 receptor unrelated to any known
TGF-b receptors (21, 40). GFRAL
specifically binds GDF-15, reducing food
intake. Via this hormone-like central
action, GDF-15 contributes to hyperemesis
of pregnancy and to cachexia of malignancy.
The converse possibility, that modified
forms of GDF-15 or small-molecule agonists
of GFRAL could be developed as therapeutic
agents to reduce obesity, is discussed below.

Significantly, however, the exclusive
expression of GFRAL within the hindbrain
confirmed in these studies implies that it
does not mediate GDF-15 actions elsewhere
in the body.

Considerable research has investigated
whether GDF-15 signal transduction
mirrors that of other TGF-b superfamily
members. TGF-b ligands generally signal
via heterodimer complexes of type I and
type II serine/threonine kinase receptors to
activate either Smad-dependent (canonical)
or Smad-independent (noncanonical)
events (21). Several publications have
implicated the ALK5 and TGF-b type 2
receptors in GDF-15 signaling, whereas the
use of the TGF-b type 1 receptor remains a
subject of debate (34, 39, 42–44) and might
be cell type specific. Although purified
GDF-15 did not bind to cell lines transfected
with a large number of receptors for TGF-b
and related molecules (21, 41), it remains
possible that these systems do not capture
the full complexity of ligand-receptor
interactions in vivo. Further downstream,

involvement of Smad1, but not Smad2, has
been demonstrated in cardiomyocytes (21),
but non–Smad-mediated signaling of
GDF-15 via PI3K, Akt, ERK (extracellular
signal-regulated kinase), and mTOR has
been reported more frequently (27, 39, 40,
43, 44). Of these, the PI3K and Akt pathways
appear particularly important in GDF-15’s
antiapoptotic effects after p53 activation
(27, 45). Importantly, however, the recent
observation that TGF-b contaminates
multiple commercially available sources of
GDF-15 (46) mandates circumspection
about much of this earlier literature. Hence,
elucidating the receptors and signaling
pathways by which GDF-15 impacts organs
other than the brain is a crucial unmet
research goal.

GDF-15 as a Biomarker of
Mortality

Multiple recent studies have confirmed the
prognostic value of GDF-15 testing to

Table 2. Notable Sources and Sites of Action of GDF-15

Confirmed Sources of High-Level GDF-15
Production Comments References

Macrophages Induced by LPS or proinflammatory cytokines (9)
Erythroblasts (95)
Placenta Crucial to maintaining pregnancy; low levels predict

fetal wastage
(11, 24, 25)

Prostate gland Expressed by benign and especially malignant
epithelium; positively regulated by androgens

(6, 96)

Airway epithelial cells Induced by cigarette smoke; upregulates MUC5AC
and induces apoptosis

(76, 77)

Vascular endothelial cells (including pulmonary
microvascular and HUVEC)

Supports survival in response to hypoxia via
activation and nuclear translocation of HIF-1a

(65, 66)

Cardiac myocytes Produced in congenital heart disease, myocardial
infarction, ischemia–reperfusion

(45, 97)

White fat Secreted by adipocytes

Sites of GDF-15 Action Comments References

Brain Binds to GFRAL in area postrema and nucleus of
the tractus solitarius and suppresses appetite;
circulates in cerebrospinal fluid; has potent
neuroprotective effects

(21, 38–41, 90, 91)

Neutrophils Blocks integrin-mediated arrest (32, 34)
Platelets Inhibits integrin-mediated aggregation (33)
Liver Inhibits secretion of hepcidin; inhibits production of

growth hormone, inducing growth retardation in
children with congenital heart disease

(35, 36, 97)

Kidney Mediates ductal lengthening and induces
proliferation of acid-secreting intercalated cells
during adaptation to metabolic acidosis

(98)

Definition of abbreviations: GDF-15 = growth differentiation factor 15; GFRAL = glial cell line–derived neurotrophic factor family receptor-a–like; HIF-1a =
hypoxia-inducible factor 1a; HUVEC = human umbilical vein endothelial cells.
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predict all-cause mortality and particularly
CV events (47). In patients with heart
failure, GDF-15 concentrations are increased
relative to those of healthy control subjects
(48, 49); such elevation has been implicated
as causally related to progression (50). In a
multicenter study of 646 patients presenting
to emergency departments with acute chest
pain, GDF-15 concentrations were higher in
those with acute myocardial infarction
relative to those with other diagnoses, and
they predicted 1-year all-cause mortality
(51). In a prospective cohort study of 847
patients with acute myocardial infarction,
GDF-15 was 1 of 2 biomarkers (of 92) most
strongly linked to all-cause mortality (52).
That study, the Västmanland Myocardial
Infarction Study, followed patients for a
median of 7 years and identified GDF-15
and TRAIL-R2 (TNF-related apoptosis-
inducing ligand receptor 2) as independent
predictors of all-cause mortality after
adjusting for age, sex, diabetes, previous
myocardial infarction, stroke, heart failure,
hypertension, smoking, and other factors
(52). Similarly, the RE-LY (Randomized
Evaluation of Long-Term Anticoagulation
Therapy) study measured GDF-15 at
randomization of participants (n = 8,474)
with atrial fibrillation, with a median 2-year
follow-up. In models adjusted for other
biomarkers, GDF-15 remained significantly
associated with all-cause mortality and
major bleeding but not with stroke (53).
Increased GDF-15 concentrations are also
associated with subclinical coronary artery
atherosclerosis, assessed by coronary artery
calcium score, both in middle-aged adults in
the general population (54) and in smokers
with chronic obstructive pulmonary disease
(COPD) (55). In two different cohorts of
patients with peripheral artery disease, the
JUVENTAS (Intraarterial Infusion of
Autologous Bone Marrow Mononuclear
Cells in Patients with Chronic Critical Limb
Ischemia) trial (n = 160) and the Athero-
Express Biobank Study (n = 386), high GDF-
15 concentrations were associated with an
increased risk of major amputation and all-
cause mortality (56).

GDF-15 also predicts mortality in other
conditions. Measurements in critically ill
patients (with and without sepsis) upon ICU
admission showed a strong association
between GDF-15 concentration and organ
dysfunction and independently predicted
short- and long-term mortality risk (57).
Interestingly, in elderly community-
dwelling individuals, changes in serum

concentrations of GDF-15 over 5 years
independently predicted all-cause
mortality, which was only partially
explained by CV risk factors (58). GDF-15
was recently identified as having the
strongest association with chronological
aging (P = 7.493 10256) among 1,301
plasma proteins measured using the
SOMAscan assay (SomaLogic) in 240
healthy men and women (59).
Collectively, these findings support the
value of GDF-15 concentrations to identify
patients at high risk of clinically relevant
events or death. No current clinical
guidelines have incorporated GDF-15 for
this purpose.

GDF-15 in Lung Diseases

GDF-15 in Pulmonary Vascular
Disease
GDF-15 has been linked to acute and
chronic pulmonary vascular diseases,
including pulmonary embolism and
pulmonary hypertension, in which some of
the highest concentrations are observed.
Peripheral blood concentrations of GDF-15
at diagnosis of pulmonary embolism predict
30-day outcome risk (60) and mortality
(61). GDF-15 is also elevated in adults with
pulmonary arterial hypertension (PAH),
either idiopathic (62) or systemic sclerosis
associated (63), as well as in children with
PAH secondary to congenital heart disease,
compared with children with congenital
heart disease without PAH (64).

An important research question is
whether GDF-15 is not only a biomarker of
acute or chronic vascular stress but instead
might also contribute to PAH progression
(63, 65). GDF-15 production by endothelial
cells in vitro is stimulated by shear stress.
The cytokine was upregulated in areas of
active vascular remodeling in PAH, was
expressed by pulmonary vascular
endothelial cells, and improved these cells’
proliferation and survival in culture (65).
Because GDF-15 increased HUVEC
proliferation and promoted the formation
of functional vessels (44), it is possible that
it is elevated in PAH due to pressure
overload. An alternative, not mutually
exclusive, explanation is that GDF-15
serves a potentially protective role for
endothelial cells by promoting the
activation and nuclear translocation of
HIF-1a (hypoxia-inducible factor-1a), as
has been shown in hypoxic human

pulmonary microvascular endothelial cells
(65) and HUVEC (66). These findings are
in apparent disagreement with another
study showing that, in HUVEC but not
in fibroblasts, GDF-15 blocked the
proangiogenic activity of connective tissue
growth factor (CCN)-2 to induce vascular
tube formation by inhibiting avb3-integrin
clustering and consequent focal adhesion
kinase activation in HUEVC but not in
fibroblasts (67). These disparate findings
may relate to the different experimental
systems examined, but they merit validation
in other types of primary human endothelial
cells. Importantly, the effect of GDF-15
on endothelial cells in vitro showed dose
dependence, stimulating their proliferation
at 5 ng/ml but inhibiting it at 50 ng/ml (68).

GDF-15 in COPD
GDF-15 has been examined both as a
potential biomarker of COPD severity and
prognosis, and as a possible etiologic factor
in COPD progression. In stable COPD,
circulating GDF-15 concentrations are
increased compared with those in healthy
control individuals (49, 69). Similarly, GDF-15
was increased locally in the airways and
lung tissue, at both mRNA and protein
concentrations, as well as in quadriceps
muscle biopsies of patients with COPD
compared with control individuals (69–71).
In a cross-sectional analysis of subjects with
COPD free of clinical CV disease in the
COPDGene cohort (n= 694), plasma GDF-15
concentrations correlated independently
with subclinical coronary atherosclerosis, as
measured by coronary artery calcium scores,
whereas no correlation was found with
common markers of COPD severity (55). In
contrast, high concentrations of GDF-15
upon entry to the Bergen COPD study
(n = 413) associated with higher annual
exacerbation rate, increased mortality, and
faster decline in lung function (FEV1 and
FVC) over 3 years of follow-up (72). This
disparity likely relates to the increased
statistical power imparted by the longitudinal
design of the Bergen COPD study. Elevated
GDF-15 has been demonstrated during
COPD exacerbations, both in comparison
with stable subjects with COPD and control
subjects (73), and more tellingly, in paired
within-subject comparisons (74). Increased
GDF-15 upon hospital admission for COPD
exacerbation correlated with adverse
outcomes such as the need for endotracheal
intubation or inotropic support and 30-day
mortality (75). Collectively, these data
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support investigation of GDF-15 as a
prognostic biomarker in COPD.

Relative to clinical data, experimental
evidence in preclinical models of COPD is
less extensive. GDF-15 expression in human
small airway epithelial cells was increased by
exposure to cigarette smoke extract (71).
Using air–liquid interface cultures of human
tracheobronchial epithelial cells, Wu and
colleagues demonstrated that cigarette smoke
exposure upregulated GDF-15 to stimulate
MUC5AC expression via the PI3K pathway,
but also to induce senescence via the Smad1
pathway (76, 77). Recently, the same group
showed that GDF-15 overproduction
promoted human rhinovirus infection and
lung inflammation by inhibiting IFN-l1 (also
known as IL-29) (78). We confirmed that
exposure to cigarette smoke induces GDF-15
in human airway epithelial cells and in the
airways and lungs of a murine model of
COPD (70). Collectively, these findings
support the potential involvement of GDF-15
in the pathogenesis of COPD progression
and exacerbations.

As with other TGF-b superfamily
members, there is no consensus on whether
GDF-15 dampens or aggravates
inflammatory processes, as indicated by
contradictory results in different disease
models, ranging from CV disease to cancer
(1). Our studies show that deletion of the
GDF-15 gene in mice leads to reduced
lung inflammation after cigarette smoke
exposure, suggesting a net harmful effect
of the cytokine in this situation (70).
Importantly, data from animal models
suggest that GDF-15 may also contribute to
muscle and adipose tissue wasting in COPD
and thus to respiratory cachexia (69, 70).
Some of this effect appears to result from
appetite suppression (79), but GDF-15 also
directly induced myotube atrophy in the
C2C12 murine myoblast cell line (80).

GDF-15 in Metabolism and
Regulation of Body Weight

GDF-15 concentrations are elevated in
obesity; they decrease after bariatric surgery
and are also independently raised in type 2
diabetes (4). GDF-15 has been termed an
adipokine because it is secreted by white
adipose tissue and has multiple effects that
reduce adiposity. Chief among such effects
is appetite reduction mediated via GFRAL
expression in the hindbrain. The very
circumscribed anatomic distribution of

GFRAL could permit highly selective
small-molecule agonists to treat obesity or
allow inhibitors to correct cachexia in
malignancy, heart failure, and advanced
COPD, without risking more global effects
on the homeostatic roles of GDF-15.

However, GDF-15 also alters
thermogenesis (81) and increases insulin
sensitivity, implying that, like other
adipokines such as leptin and adiponectin,
it has key systemic actions that regulate
body weight and composition. Supporting
the potential for these effects to be used to
combat the metabolic syndrome, male
transgenic mice overexpressing human
GDF-15 were resistant to both genetic and
diet-induced obesity, showed greater insulin
sensitivity and oxidative metabolism, and
exhibited lower inflammation than wild-type
control animals (81–83). Intriguingly, in
contrast to the wealth of data indicating
an adverse effect of elevated GDF-15
concentrations (outside of pregnancy) on
survival in humans, Kaplan-Meier analysis
demonstrated that the median lifespans of
female mice from two founder lines
overexpressing the human gene were
significantly longer than control mice. This
difference was greater on a high-fat diet
(60% fat vs. 10% fat) and was associated with
decreased signaling through the mTOR
pathway, but not with differences in hepatic
expression of sirtuin 1 or sirtuin 6 (84).
Although it might be tempting to dismiss
such improved survival after global
overexpression of the human transgene as
related to species differences, congruent
metabolic effects were observed by a separate
group that produced transgenic mice
overexpressing the murine gene in a
macrophage-specific manner using a
modified c-fms promoter sequence (39, 85).

Because the native GDF-15 molecule
poses challenges to use as a recombinant
protein (due to its complex tertiary structure
and low circulating half-life), several Fc
fusion molecules with extended half-lives
and potent efficacy were recently developed.
In studies in mice and obese cynomolgus
monkeys, these agents delayed gastric
emptying, changed food preference, reduced
caloric intake, and activated neurons in the
area postrema (86). Hence, it is likely that
these agents will move toward human
testing as a weight reduction therapy, which
raises questions about collateral toxicity
(based on the senescence-inducing effects
of GDF-15) and possible tachyphylaxis of
the anorectic effect (given the association of

obesity with elevated concentrations of
GDF-15, analogous to the situation with the
adipokine leptin).

Considerations for Animal
Models

A key research consideration for
development of novel therapeutics to target
GDF-15 is how faithfully animal data will
translate to humans. Most evidence suggests
that mouse models will be useful for this
purpose. The murine gene for GDF-15
(Gene ID 23886) resides on chromosome 8
in a region showing synteny to the location
of the human gene. Indeed, in both species,
its nearest protein-encoding neighboring
genes—Lrrc25, Pgpep1, and Ssbp4—show
similar relationships to GDF-15 in the two
species, implying the likelihood of conserved
cis-regulatory elements. By compositional
matrix adjustment using BLASTP 2.8.11
(87, 88), the molecule displays a high degree
of amino acid homology (62% identity, 76%
positive, 5% gaps) in the two species.
Expression of GDF-15 in various murine
tissues in the basal state (89) also parallels that
observed in humans (16). These data all
support exploiting the convenience and power
of transgenic murine models, especially those
employing tissue-specific conditional
knockouts, to aid in defining the complex
biology of GDF-15 expression. In addition to
the examples already cited, transgenic mice
lacking functional GDF-15 have proven useful
in neuropsychiatric research because they
exhibit progressive loss of motor neurons and
distinctive behavioral patterns (90–92).

One factor potentially complicating
translation of murine results to humans is
the existence of a microRNA, miR-3189,
within the intron of the GDF-15 gene of
primates but not of other mammals. In
tumor cell lines derived from humans, miR-
3189 displayed proapoptotic effects that
were partially p53 independent, including
upregulation of GDF-15 itself (93).

Future Directions (Remaining
Research Questions)

Currently, it is not possible to devise a single
unifying explanation for all the varied effects
of GDF-15 in health and disease, limiting
progress in advancing GDF-15 from a
prognostic biomarker to a potential
therapeutic target. One reason could be that
the binding of GDF-15 to cell surface

TRANSLATIONAL REVIEW

Translational Review 625



receptors and/or the signaling pathways
distal to those receptors might differ
between cell types. Confirming the nature
and role of GDF-15 receptors in multiple
lung parenchymal and inflammatory cell
types is a crucial research goal. Future
studies should address whether the anorectic
effect of GDF-15 accounts entirely for its role
in cachexia and examine possible direct
contributions to muscle weakness in critical
illness (80).

Another unsettled area relates to
proteolytic processing of GDF-15. Is MMP-26
the only protease involved in all cell types?
Does matrix binding of unprocessed GDF-15
propeptide occur in vivo? If so, does it
contribute significantly to local or systemic
actions of the cytokine, and how
is extracellular processing of GDF-15
propeptide mediated and regulated?

Arguably, the most essential question
for development of novel therapies is
whether the protective actions of GDF-15

can be dissociated from the generally
deleterious effects of sustained high
concentrations. Beneficial effects of GDF-15
appear to relate to highly regulated secretion,
likely at relatively low concentrations, and as
suggested by cell culture experiments, to cell-
autonomous actions. It will be important for
future studies to investigate thoroughly issues
of dose and timing. Opposite effects of GDF-
15 ablation have been observed by different
laboratories, not only in the in vitro models
cited above but also in murine models of
atherosclerosis (42, 94), suggesting that
chronic therapeutic targeting of GDF-15
may be difficult, aside perhaps from small
molecules specifically targeting GFRAL, as
discussed above.

Conclusions

GDF-15 is emerging as a uniquely central
homeostatic molecule that, particularly in its

role as a circulating cytokine, appears to
reflect an integrated attempt by the
organism to reduce tissue injury.
Whether that attempt ultimately succeeds is
highly contextual. Because GDF-15 is
well established as an informative
prognostic biomarker of mortality and
CV outcomes, baseline measurement of
GDF-15 should be included in the design
of clinical trials in pulmonary and
critical care medicine looking at those
endpoints. Additional translational
studies are warranted to determine
whether manipulation of GDF-15 can
be beneficial in specific clinical
settings. n
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