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Abstract

Insertions and deletions (INDELs) remain understudied, despite being the most common form of genetic variation after single

nucleotide polymorphisms. This stems partly from the challenge of correctly identifying the ancestral state of an INDEL and thus

identifying it as an insertion or a deletion. Erroneously assigned ancestral states can skew the site frequency spectrum, leading to

artificial signals of selection. Consequently, the selective pressures acting on INDELs are, at present, poorly resolved. To tackle this

issue,wehave recentlypublishedamaximumlikelihoodapproach toestimate themutation rateandthedistributionoffitnesseffects

for INDELs.Ourapproachestimatesandcontrols for the rateofancestral statemisidentification,overcoming issuesplaguingprevious

INDEL studies. Here, we apply the method to INDEL polymorphism data from ten high coverage (�44�) European great tit (Parus

major) genomes. We demonstrate that coding INDELs are under strong purifying selection with a small proportion making it into the

population (�4%). However, among fixed coding INDELs, 71% of insertions and 86% of deletions are fixed by positive selection. In

noncoding regions, we estimate�80% of insertions and�52% of deletions are effectively neutral, the remainder show signatures

of purifying selection. Additionally, we see evidence of linked selection reducing INDEL diversity below background levels, both in

proximity to exons and in areas of low recombination.
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Introduction

Insertion and deletion (INDEL) mutations are an important

source of genetic variation, often separated into long and

short INDELs due to different calling approaches required

for longer variants. There is one short INDEL (here � 50 bp)

for every eight single nucleotide polymorphisms (SNPs) in

humans (Montgomery et al. 2013), representing a significant

proportion of variation. Short INDELs have been implicated in

a range of genomic evolutionary processes, such as the evo-

lution of genome size (Petrov 2002; Hu et al. 2011; Nam and

Ellegren 2012; Sun et al. 2012). INDELs arguably contribute

more to sequence divergence, in terms of the number of base

differences, than SNPs (Britten 2002). Additionally it has been

suggested that short INDELs may be instrumental in maintain-

ing an optimal intron size (Parsch 2003; Presgraves 2006).

INDEL studies, however, are underrepresented in the liter-

ature. In part, this is due to the need to categorize INDELs

into insertions and deletions, which requires knowledge of

the ancestral state for each variant. This can be obtained

using multispecies genome alignments. However, INDELs dis-

proportionately occur in repetitive sequence contexts

(Ananda et al. 2013; Montgomery et al. 2013), which are

notoriously problematic to align (Earl et al. 2014). Where

alignments are successful they are hampered by high rates

of ancestral allele misidentification, due to homoplasy. The

result is a proportion of deletions are mistakenly identified

as insertions (and vice versa), which can confound estimates

of selection (Kvikstad and Duret 2014) (see figure 1 in Barton

and Zeng [2018]).

Despite the difficulty of analyzing INDEL data, a number of

characteristics have been widely reported for INDELs. INDEL

mutation is consistently biased toward deletions across a diverse

range of organisms (Taylor et al. 2004; Presgraves 2006;

Keightley et al. 2009; Hu et al. 2011; Nam and Ellegren

2012; Kvikstad and Duret 2014). Additionally, polymerase slip-

page has emerged as the predominant force driving short INDEL

generation, explaining �75% of events in repetitive hotspot

regions (Montgomery et al. 2013) and�50% of events in non-

hotspot regions (Taylor et al. 2004; Montgomery et al. 2013).

In terms of the selective pressures acting on INDELs, dele-

tions consistently segregate at lower frequencies than inser-

tions, both in genes (Sjödin et al. 2010) and genome wide
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(Chintalapati et al. 2017), which has been interpreted as

stronger purifying selection acting on deletions. A mechanistic

explanation is that deletions have two breakpoints relative to

an insertion’s one, so are more likely to hit an important motif

(Petrov 2002; Sjödin et al. 2010). The difference in mean allele

frequencies of the two types of variation has also been

explained as selection acting on insertions (Ometto et al.

2005). Concordantly, a number of studies have inferred ele-

vated fixation rates for insertions from comparisons of the

ratio of deletion to insertion events between polymorphism

data and divergence data (Presgraves 2006; Sjödin et al.

2010; Leushkin and Bazykin 2013; Chintalapati et al. 2017).

This fixation bias is in line with a number explanations such as

selection on insertions to maintain intron lengths (Parsch

2003; Ometto et al. 2005; Presgraves 2006) or insertion-

biased gene conversion (Leushkin and Bazykin 2013).

However, Kvikstad and Duret (2014) demonstrate the exis-

tence of mutation hotspots in repetitive regions, and cryptic

hotspots in nonrepetitive regions, which could explain the

fixation biases by elevating rates of ancestral state misidenti-

fication. They also show that differences in the rate of ances-

tral misidentification between polymorphism data and

divergence data make McDonald–Krietman type tests

(McDonald and Kreitman 1991), which in an INDEL context

compare polymorphic and fixed numbers of deletions and

insertions (e.g., see Chintalapati et al. [2017]), particularly

prone to false signatures of fixation bias.

Avian genomes provide a good system for working on

INDELs, thanks to their markedly conserved karyotypes and

synteny, characterized by having few large macrochromo-

somes and many smaller microchromosomes (Stapley et al.

2008; Hansson et al. 2010; van Oers et al. 2014; Zhang et al.

2014). Not only does this facilitate genome alignments for

ancestral state identification, but also obligate crossing over

elevates recombination rates on microchromosomes, driving

large intra-genomic variation in recombination (Stapley et al.

2008; Backström et al. 2010; van Oers et al. 2014). This

provides power for associating diversity levels with recombi-

nation rates. As a result, birds have been the focus of a num-

ber of INDEL studies. Nam and Ellegren (2012) propose that

high recombination rates drive elevated small deletion rates

on microchromosomes and might have caused genome con-

traction along the lineage leading to birds. Additionally, Rao

et al. (2010) show a positive correlation between INDEL den-

sity and recombination rate in chicken (Gallus gallus) introns.

Although this may suggest the impact of linked selection, the

use of unpolarized INDEL data means it cannot be distin-

guished from the impact of a recombination driven muta-

tional bias, such as proposed by Nam and Ellegren (2012).

Furthermore, previous work has been constrained by utilizing

partial sequencing approaches and neutral markers, negating

the formation of a genome-wide picture of INDEL diversity

(Brandstrom and Ellegren 2007; Rao et al. 2010; Nam and

Ellegren 2012). Thus, despite the advantages of an avian sys-

tem, the role of natural selection in shaping INDEL diversity in

birds is poorly resolved.

Most existing work looking at selection on INDELs has re-

lied upon approaches susceptible to the confounding effects

of ancestral state misidentification. There also has been little

effort to directly infer unbiased selection coefficients for

INDELs, in different genomic contexts. To bridge this gap,

we recently published our maximum likelihood model

“anavar” for estimating the mutational and selective param-

eters for INDELs, while simultaneously estimating and control-

ling for ancestral state misidentification and the confounding

effects of demography (Barton and Zeng 2018). Here, we

apply this approach to INDEL polymorphism data from 10

European great tit (Parus major) genomes from Corcoran

et al. (2017). We investigate the selective pressures acting

on INDELs across the great tit genome and estimate selection

coefficients and the proportion of substitutions fixed by pos-

itive selection (a) in coding regions. We also seek to address

how INDEL diversity changes with distance from coding

regions and assess the impact of linked selection on INDEL

variation, an area understudied in the literature so far. The

great tit genome is particularly well positioned to address

these questions with an abundance of current genomic

resources available including a well annotated reference ge-

nome, high coverage resequencing data, and replicated link-

age maps (van Oers et al. 2014; Laine et al. 2016; Corcoran

et al. 2017).

Materials and Methods

The Great Tit Data Set

The great tit data set consisted of ten European males (1280,

1485, 15, 167, 249-R, 318, 61, 917, 943-R, and TR43666)

from a subset of sampling locations in Laine et al. (2016) as

described in Corcoran et al. (2017). The mean coverage of the

sample is 44�.

Data Preparation and Variant Calling

Base quality score recalibrated and INDEL realigned BAM files,

and an all-sites VCF file containing raw variant calls produced

by GATK (version 3.4) (McKenna et al. 2010; DePristo et al.

2011; Van der Auwera et al. 2013) were obtained from

Corcoran et al. (2017).

Variant quality score recalibration (VQSR) was then per-

formed for INDELs. This step requires a set of high confidence

variants. To generate this data set, we intersected the raw

variants called from GATK with variants called with

SAMtools (version 1.2) (Li et al. 2009). The resulting variants

were filtered using the GATK best practice hard filters (QD <

2.0, ReadPosRankSum < �20:0, FS > 200.0, see https://

software.broadinstitute.org/gatk/guide/article? id¼3225; last
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accessed October 1, 2018). Variants with coverage more than

twice, or less than half, the mean coverage of 44� were

excluded, along with variants falling in repeat regions identi-

fied by RepeatMasker (Smit et al. 2013). INDELs with more

than two alleles of different length (multiallelic sites) were

excluded and INDELs >50 bp. Post-VQSR, we retained var-

iants that fell within the 99% tranche cut-off. The passing

variants were then refiltered as above with the exception of

the GATK hard filters, which were not reapplied.

For SNPs, variants passing the 99% tranche cut-off in the

data set of Corcoran et al. (2017) were obtained and subject

to the same post-VQSR hard filters as described above for

INDELs.

Multispecies Alignment and Polarization

We created a multispecies alignment between zebra finch

(Taeniopygia guttata) (Warren et al. 2010) (version:

TaeGut3.2.4, available from: ftp://ftp.ensembl.org/pub/re-

lease-84/fasta/taeniopygia_guttata/dna/; last accessed

October 1, 2018), flycatcher (Ficedula albicollis) (Ellegren

et al. 2012) (version: FicAlb1.5, available from: http://www.

ncbi.nlm.nih.gov/genome/? term¼flycatcher; last accessed

October 1, 2018) and great tit (version 1.04) (Laine et al.

2016) with the MULTIZ package (Blanchette et al. 2004) per

chromosome, following the pipeline described in Corcoran

et al. (2017).

The ancestral states of each variant were then inferred us-

ing a parsimony approach where all outgroups were required

to match either the reference, or the alternate, allele in the

great tit in order to assign it as ancestral.

Variant Annotation

All variants were annotated as coding, intronic, or intergenic

using the great tit annotation (version 1.03) (available from:

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/522/545/GC

F_001522545.1_Parus_major1.0.3/GCF_001522545.1_Paru

s_major1.0.3_genomic.gff.gz; last accessed October 1, 2018).

Additionally the possible locations of 4-fold degenerate sites,

0-fold degenerate sites and nonsense mutations were identi-

fied using the great tit coding sequence (CDS) fasta file (ver-

sion 1.03) (available from: ftp://ftp.ncbi.nlm.nih.gov/genomes/

all/GCF/001/522/545/GCF_001522545.1_Parus_major1.0.3/

GCF_001522545.1_Parus_major1.0.3_cds_from_genomic.fn

a.gz; last accessed October 1, 2018). SNPs at these positions

were then identified.

We identified ancestral repeats (ARs, specifically, LINEs) by

intersecting the RepeatMasker coordinates for each species

with our whole genome alignment and identifying positions

annotated as LINEs in all three species. Variants within these

regions were identified from the VCF files prior to filtering and

were then filtered as described previously, with the exception

of the repeat filtering.

We identified callable sites for use in the calculation of

summary statistics and our anavar analyses by applying our

filters to the original all-sites VCF file and restricting the sites to

those that we could polarize.

Summary Statistics

We calculated nucleotide diversity (p) (Tajima 1983) and

Tajima’s D (Tajima 1989) for INDELs and SNPs both

genome-wide and in ARs, introns, intergenic regions, and

CDS. In coding regions, we analyzed mutations that preserve

the reading frame (in-frame: SNPs, and INDELs a multiple of

three in length) and those that shift the reading frame (frame-

shift: remaining INDELs) separately. For SNPs, we also calcu-

lated these statistics for 4-fold degenerate sites, 0-fold

degenerate sites, and nonsense mutations. Additionally, we

calculated Tajma’s D for each INDEL length group separately.

Note that although classically p refers to the average number

of nucleotide differences (Tajima 1983), for INDELs we are

measuring the average number of mutation differences with-

out accounting for the number of bases a given INDEL

encompasses.

We also calculated Tajima’s D and p using the site fre-

quency spectrum corrected for orientation errors. We took

the model estimates of polarization error for the regions

under consideration (see supplementary table S1,

Supplementary Material online), and solved the system of lin-

ear equations:

/ins;obs
i ¼ ð1� �insÞ/ins

i þ �del/del
n�i ; (1)

/del;obs
n�i ¼ ð1� �delÞ/del

n�i þ �ins/ins
i ; (2)

for 1 � i < n, where /ins;obs
i (/del;obs

i ) is the observed num-

ber of insertions (deletion) of frequency i, �ins (�del) the prob-

ability that the ancestral state of an insertion (deletion) is

incorrectly identified, and /ins
i (/del

i ) the underlying (unob-

served) site frequency spectrum for insertions (deletions).

Tajima’s D and p were then calculated using /ins
i and /del

i .

We calculated the distribution of INDEL lengths from our

VCF file, both genome-wide and in CDS regions. Within CDS

regions, we calculated the proportion of in-frame INDELs per

gene. We calculated this proportion both for all genes and for

a set of conserved genes identified in Corcoran et al. (2017).

Divergence estimates for INDELs were calculated by count-

ing the number of fixation events unique to the great tit lin-

eage in our whole genome alignment, and dividing by the

number of sites that were aligned in all three species for each

region analyzed (CDS, AR, intron, and intergenic). For SNPs,

we created concatenated FASTA files for each region (CDS,

AR, intron, and intergenic), and obtained a pairwise distance

matrix using APE (Paradis et al. 2004) in R (R Core Team

2015). The pairwise distance estimates were then used to

get an estimate for the branch leading to the great tit.
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Distribution of Fitness Effect Analysis

To estimate the distribution of fitness effects (DFEs) for

INDELs, we used the “neutralINDEL_vs_selectedINDEL”

model in the anavar package (Barton and Zeng 2018) (avail-

able from: http://zeng-lab.group.shef.ac.uk/wordpress/?

page_id¼28; last accessed October 1, 2018). The package

controls for the confounding effects of polarization error

and demography (Barton and Zeng 2018). We fitted two

types of models for the DFE. The first type fits a discrete num-

ber of site classes (c) to the data, each class having its own

scaled selection coefficient, c ¼ 4Nes. The per-site scaled mu-

tation rate, h ¼ 4Nel, may be equal across sites (the equal

mutation rate model), or be different between the neutral

sites and the focal sites (the variable mutation rate model).

Finally, the model has polarization error parameters, �ins and

�del, for both insertions and deletions. The second type of

model is similar but assumes continuous gamma distributions

for the selection coefficients for INDELs. Different variants of

these two types of model were fitted (e.g., with different

numbers of site classes and with the mutation rate being ei-

ther equal or variable) and were compared using Akaike in-

formation criterion (AIC).

We used INDELs in ARs (as described previously) as neutral

reference and applied the models separately to CDS INDEL

data and to noncoding INDEL data. For CDS data, we as-

sumed the equal mutation rate model. This is necessary in

order to estimate the proportion of substitutions fixed by pos-

itive selection (a), as well as estimating the proportion of

strongly deleterious variants that do not contribute to poly-

morphism. We calculated a using equation (19) from Barton

and Zeng (2018). For noncoding data we employed the var-

iable mutation rate model, which fitted the data better than

the equal mutation rate model. We will explore the effects of

model choice on our results in the Discussion.

Exon Proximity Analysis

To investigate the impact of linked selection on INDEL diversity

patterns in regions adjacent to CDS, we extracted INDELs and

numbers of callable sites in 2-kb adjacent windows moving

away from exons up to a maximum distance of 100 kb. The

data from all windows at each distance were then binned,

creating 50 distance bins. We ran each of the resulting data

sets through the anavar package. We fitted the

“neutralINDEL_vs_selectedINDEL” model with a continuous

c distribution and variable mutation rates, as this was the

best-fitting model for noncoding INDELs (supplementary table

S4, Supplementary Material online). We used the same neu-

tral reference as in our previous analysis. The relationship be-

tween the model’s h estimates and distance from exons was

tested with Spearman’s correlations using the “cor.test”

function in R (R Core Team 2015). We repeated this analysis

using p estimates for INDELs instead of the model’s mutation

rate estimates.

To look at the relative contributions of different selective

site classes to INDEL diversity in each window, we separated

our h estimates into h for sites with 0 � c � 1 and h for c
> 1 using the model outputs, we repeated the correlation

analysis for these data sets.

To assess to what extent the relationship between distance

from exon and diversity was driven by bins close to exons, we

generated downsized data sets by progressively removing

bins, starting by removing the nearest bin, and then the

next nearest, and so on, up until only the furthest two bins

were left. We reported the Spearman’s correlation coefficient

(q) and the significance for each downsampled data set.

Recombination Correlation Analysis

To investigate the relationship between local recombination

rate and the action of linked selection, we divided the great tit

genome into 2-Mb nonoverlapping windows. We extracted

noncoding INDEL calls for each window from our VCF file,

excluding windows with <500 polarizable INDELs. As we

lacked sufficient data to obtain a regional neutral reference

for each window, we were unable to apply our model based

approach. Instead, we calculate p and Tajima’s D for each

window. We also estimated noncoding INDEL divergence

per window as described previously.

Mean recombination rate was estimated per window. This

was achieved by estimating a point recombination rate for

every INDEL in the window, along with positions 2-kb up-

and down-stream of each variant and taking a mean across

all these values. The site specific recombination rates were

estimated using the pipeline described in Corcoran et al.

(2017). Briefly, we fitted third order polynomials as a function

of physical position versus map length for each chromosome

using the great tit linkage map data (van Oers et al. 2014). The

derivative of each chromosome’s polynomial was then used

to estimate recombination rate at a given genomic position.

The relationships of Tajima’s D and p with local recombi-

nation rate were analyzed with Spearman’s correlations using

the “cor.test” function in R (R Core Team 2015). The rela-

tionship between p and recombination rate was also analyzed

using partial Spearman’s correlations, with divergence esti-

mates as a confounding variable, to control for the mutagenic

effect of recombination, using the “ppcor” package (Kim

2015) in R.

Data Availability

Detailed documentation of the analysis pipeline along with all

scripts used is available at https://github.com/henryjuho/

parus_indel (last accessed October 1, 2018). The python

scripts make use of the pysam python package (https://

github.com/pysam-developers/pysam; last accessed October

1, 2018) and the anavar_utils package (https://henryjuho.

github.io/anavar_utils/; last accessed October 1, 2018).
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Results

Summary of the Data Set

Using the high coverage resequencing data from Corcoran

et al. (2017), we called polymorphic INDELs and SNPs accord-

ing to a GATK based pipeline (Van der Auwera et al. 2013).

We polarized variants using a custom multispecies genome

alignment and a parsimony based approach. Application of

our data calling pipeline to the ten European great tit samples

yielded 10,259,689 SNPs and 1,162,517 short INDELs

(� 50 bp), of which we could polarize 254,040 insertions

and 329,506 deletions. This reduction in variants in the

polarized data set is mainly a result of gaps in the whole

genome alignment and “hotspots” where the INDEL break-

points differ between species in the alignment (supplemen-

tary fig. S1, Supplementary Material online).

Genome-wide diversity (p) for INDELs is around 10-fold

lower than that for SNPs. This scale of difference between

the two forms of variation was found in all genomic regions

analyzed other than in CDS regions where INDEL diversity is

close to 80 times lower than SNP diversity. Additionally, we

see that within INDELs p is biased toward deletions in all

regions (table 1).

When considering INDEL sequence length we observe that

the length distribution is enriched in shorter variants, with

80% of INDELs <5-bp long. Additionally, within CDS, we

note that the length distribution is enriched in variants that

are a multiple of three in length, in other words, mutations

that preserve the reading frame (in-frame) (supplementary fig.

S2, Supplementary Material online). This enrichment is even

more pronounced in conserved genes (supplementary fig. S3,

Supplementary Material online). To further investigate the

differences between in-frame and frameshifting INDELs, we

first note that it is far more likely for an INDEL mutation to

have a length that is not a multiple of three than otherwise.

This can be seen by the fact that, in putatively neutrally

evolving AR regions, p values for insertions and deletions

with lengths not a multiple of three are 9:8� 10�5 and

1:4� 10�4, respectively, whereas for those with lengths a

multiple of three, the values are 1:9� 10�5 and

3:4� 10�5. When we consider this in terms of the ratio of

AR to CDS diversity (using the CDS p values in table 1), for

mutations that shift the reading frame we get a ratio of 52 for

insertions and 63 for deletions, whereas for in-frame muta-

tions the ratios are both 11. This indicates a much larger re-

duction in diversity for frameshifting INDELs, and this

reduction is more pronounced for deletions, supporting the

idea that they are more deleterious.

In general, ARs have the highest diversity level and the least

negative Tajima’s D for both INDELs and SNPs (table 1 and

fig. 1a). This supports our decision to use them as a putatively

neutral reference in the subsequent analyses. The fact that

Tajima’s D values are consistently negative in AR regions

(fig. 1a) is consistent with a recent population expansion for

the great tit, as previously reported (Laine et al. 2016;

Corcoran et al. 2017). Intronic and intergenic regions have

similar diversity patterns across all mutation types, so we

grouped them as “noncoding” in subsequent analyses.

Tajima’s D values for the unpolarized INDELs in CDS regions

are similar to those for 0-fold SNPs and SNPs that cause pre-

mature stop codons (nonsense mutations). However when

polarized, we see that deletions in CDS regions have the

most negative Tajima’s D of all (fig. 1a). In noncoding regions,

Tajima’s D is negatively correlated with INDEL size for both

insertions (Spearman’s q ¼ �0:95; P < 2:2� 10�16) and

deletions (Spearman’s q ¼ �0:40, P¼ 0.0038), suggesting

that longer variants are probably more deleterious (supple-

mentary fig. S4, Supplementary Material online). In coding

regions, we lack power when subsetting INDELs by length

(supplementary fig. S4, Supplementary Material online).

The patterns reported above are mirrored by the diver-

gence estimates. The highest divergence is seen in ARs.
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FIG. 1.—Tajima’s D (a) and divergence (b) estimates for SNPs, INDELs (unpolarized), insertions (INS), and deletions (DEL) in different genomic contexts.

Divergence estimates for SNPs are presented as the true divergence divided by 10.
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Intergenic and intronic regions have similar divergence levels,

and both have lower divergence than ARs. In CDS regions,

divergence is lowest, 14 times lower than the genome-wide

average for INDELs. SNP divergence is around 10-fold higher

than INDEL divergence in noncoding regions, in line with p
estimates. In CDS regions, SNP divergence is 70-fold higher

than INDEL divergence (fig. 1b). These results are robust to

polarization error (table 1 and supplementary fig. S5,

Supplementary Material online).

The Distribution of Fitness Effects

To describe the DFEs for INDELs, we fitted four distinct DFEs to

coding and noncoding data separately. For coding data, the

model assumes equal mutation rates between neutral and

focal sites, a requirement to calculate the proportion of sub-

stitutions fixed by positive selection (a). For noncoding data

where a was not calculated, this assumption was relaxed and

mutation rates were free to vary (see Materials and Methods).

The best-fit model for each case is reported in table 2.

The best-fit INDEL DFE (according to AIC, see supplemen-

tary table S2, Supplementary Material online) in coding

regions is bimodal, characterized by a class of strongly dele-

terious INDELs making up 96% of sites and a class of weakly

deleterious INDELs for the remaining 4% of sites (fig. 2). For

those variants with weakly negative c estimates (i.e., those

segregating in our sample), deletions are more deleterious,

however for the strongly deleterious class of INDELs, insertions

have the more negative selection coefficient. We subse-

quently estimate the proportion of INDEL substitutions fixed

by positive selection (a) at 71% for insertions and 86% for

deletions (table 2). When we run this analysis using a non-

coding neutral reference we recapture a very similar bimodal

DFE, but with slightly lower a values, 63% for insertions and

79% for deletions (table 2 and supplementary table S3,

Supplementary Material online).

The noncoding INDEL data are best fit by a continuous

gamma DFEs (supplementary table S4, Supplementary

Material online). We see small shape parameter estimates of

0.0345 for insertions and 0.106 for deletions (table 2), de-

scribing a DFE enriched in effectively neutral variants. When

binning this gamma distribution into four�c categories (0–1,

1–10, 10–100, and >100) we see that �80% of insertions

and �52% of deletions in noncoding regions have c esti-

mates between 0 and –1 and can be considered as effectively

neutral. The remaining proportions of variants are evenly dis-

tributed between the other three selective categories (fig. 2).

For noncoding and coding data, there is a marked deletion

bias with the deletion to insertion ratio estimated at 1.5 in

coding regions and 1.7 in noncoding regions.

The Impact of Linked Selection

To test for evidence of linked selection acting on INDELs, we

obtained estimates of the scaled INDEL mutation rates (hins

and hdel, respectively) in 2-kb nonoverlapping bins with in-

creasing distance from exons, up to 100 kb away.

We find significant positive correlations between our

model estimates of both hdel (Spearman’s q ¼ 0:47,

P¼ 0.00058) and hins (Spearman’s q¼ 0.28, P¼ 0.046) with

distance from exons (fig. 3). This relationship is corroborated

when using p estimates for deletions and insertions (deletions:

Spearman’s q ¼ 0:79; P ¼ 2:2� 10�16, insertions:

Spearman’s q ¼ 0:84; p ¼ 2:2� 10�16, see supplementary

fig. S6, Supplementary Material online). We separated var-

iants into two c ranges, 0 to –1 and <�1 and reanalyzed

this relationship. For the putatively neutral sites, we recapture

this significant correlation between h and distance from

exons (hdel: Spearman’s q ¼ 0:54; P ¼ 7:9� 10�5, hins:

Spearman’s q ¼ 0:57; P ¼ 2:3� 10�5). However, for the

more deleterious category, we see no relationship

(hdel: Spearman’s q ¼ �0:027, P¼ 0.85, hins: Spearman’s

q ¼ �0:15, P¼ 0.30) (supplementary fig. S7,

Supplementary Material online). Additionally, to assess how

these correlations held up when using data further from

exons we performed correlations on downsampled data

sets by cumulatively removing each bin nearest to exons in

turn, progressively reducing our number of bins from 50 to 2.

Table 1

Nucleotide Diversity (p) for SNPs, INDELs (Unpolarized), Insertions (ins), and Deletions (del) in Different Genomic Contexts

Context p pindel pins pdel

Genome wide 0.00310 0.000356 0.000113 ð0:000112Þ 0.000142 ð0:000144Þ
Ancestral repeats 0.00432 0.000363 0.000117 ð0:000119Þ 0.000175 ð0:000177Þ
Intergenic 0.00333 0.000378 0.000121 ð0:000119Þ 0.000154 ð0:000157Þ
Introns 0.00306 0.000361 0.000116 ð0:000115Þ 0.000143 ð0:000145Þ
CDS 0.00145 1:87� 10�5 3:61� 10�6 ð4:36� 10�6Þ 5:25� 10�6 ð5:09� 10�6Þ
In-frame — 9:43� 10�6 1:71� 10�6 ð1:86� 10�6Þ 3:00� 10�6 ð3:04� 10�6Þ
Frameshift — 9:28� 10�6 1:90� 10�6 ð2:17� 10�6Þ 2:24� 10�6 ð2:27� 10�6Þ
4-Fold 0.00369 — — —

0-Fold 0.000586 — — —

Nonsense 2:45� 10�5 — — —

NOTE.—Estimates in parentheses corrected for polarization error.
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We see that for p we recover significant positive correlations

(for both deletions and insertions) for data sets starting up to

�35 kb from exons. For h, we recover this relationship for

deletions up to �40 kb from exons, however for insertions,

we lack statistical power from the model estimates, probably

due to there being relatively fewer insertion polymorphisms

(supplementary fig. S8, Supplementary Material online).

Recombination Rate and INDEL Diversity

To obtain additional evidence for linked selection, we sepa-

rated our noncoding INDEL data into 322 2-Mb genomic

windows, each with a mean recombination rate estimate.

As a lack of a regional neutral reference per window pre-

cluded the use of our model, we instead obtained estimates

of p and Tajima’s D for each window.

We report positive relationships between pins and recom-

bination rate (Spearman’s q ¼ 0:18, P¼ 0.0010), and pdel

and recombination rate (Spearman’s q ¼ 0:12, P¼ 0.027)

(fig. 4a). However, when introducing INDEL divergence as a

covariate in a partial correlation analysis (to control for the

possible mutagenic effects of recombination), we only main-

tain the relationship between pins and recombination rate

(partial Spearman’s q ¼ 0:15, P¼ 0.0076) and not pdel (par-

tial Spearman’s q ¼ 0:077, P¼ 0.17). Additionally, we see a

Table 2

Maximum Likelihood Parameter Estimates for the Best-Fitting Models for INDELs in CDS Regions and Noncoding regions

Model and DFE Variant Type C h c Scale Shape � a(%)

CDS: equal mutation rate Insertions 1 4:92� 10�6 –1.14 — — 0.0799

Discrete C ¼ 2 Insertions 2 0.000134 –801 — — 0.000307 71

Ancestral repeat reference Deletions 1 8:32� 10�6 –2.70 — — 0.0368

Deletions 2 0.000206 –649 — — 3:12� 10�7 86

CDS: equal mutation rate Insertions 1 4:79� 10�6 –0.264 — — 0.0729

Discrete C ¼ 2 Insertions 2 0.000156 –897 — — 0.000526 63

Noncoding reference Deletions 1 7:79� 10�6 –1.70 — — 0.0366

Deletions 2 0.000205 –629 — — 0.00587 79

Noncoding: free mutation rate Insertions — 0.000170 –53.6 1,553 0.0345 0.0110 —

Continuous Deletions — 0.000293 –75.5 715 0.106 0.0166 —

NOTE.—C defines the number of site class, h the population scaled mutation rate, c the population scaled selection coefficient, � the polarization error, and a the proportion of
INDEL substitutions driven by positive selection. Where c values are presented for the continuous model these are mean c estimates and the product of the scale and shape
parameters.
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significant enrichment of low frequency variants in low

recombining regions, as measured by Tajima’s D, for both

insertions (Spearman’s q ¼ 0:30; P ¼ 3:7� 10�8) and dele-

tions (Spearman’s q ¼ 0:33; P ¼ 1:5� 10�9) (fig. 4b).

Discussion

INDELs often remain unanalyzed in sequencing studies, de-

spite constituting a large proportion of genetic variation

(Brandstrom and Ellegren 2007; Montgomery et al. 2013).

This is largely a result of the difficulty of working with

INDELs compared with SNPs (see Introduction). Yet, when

INDELs do get analyzed, studies are hampered by the issue

of ancestral state misidentification confounding signatures of

selection (Kvikstad and Duret 2014), leaving the selective

landscape for INDELs poorly defined. Here, we seek to over-

come this hurdle using our recently published model (Barton

and Zeng 2018), to estimate the DFE for INDELs in an avian

genome. We use high coverage resequencing data from ten

European great tits from Corcoran et al. (2017), to quantify

the levels of purifying and positive selection for INDELs in

coding regions and report evidence of linked selection acting

on noncoding INDELs.

Coding Sequence INDELs

The majority of INDELs in our data set are<5 bp in length. The

most common length is 1-bp genome wide, but 3 bp within

coding regions (supplementary fig. S2, Supplementary

Material online). This enrichment of in-frame INDELs is even

more pronounced in conserved genes (supplementary fig. S3,

Supplementary Material online). Consistently, we report that

frameshifting INDELs have a more severe reduction in diversity

and more negative Tajima’s D than in-frame INDELs. In

noncoding regions, we see strong negative correlations be-

tween INDEL length and Tajima’s D. Taken together, these

results provide confidence in the genome annotation, show

the importance of INDEL length in coding regions with frame-

shifting INDELs more deleterious, and provide evidence that

longer noncoding INDELs are more deleterious. These results

are consistent with previous studies (Sjödin et al. 2010;

Montgomery et al. 2013; Barton and Zeng 2018).

From the application of our model, we see that the major-

ity (96%) of deletions and insertions occurring in CDS regions

are strongly deleterious (c < �100) (table 2 and fig. 2). This

proportion corresponds to our previous estimates for INDELs

in Drosophila melanogaster of between 92% and 97%

(Barton and Zeng 2018). Additionally, our values are similar

to those reported for SNPs in a number of organisms, includ-

ing 0-fold degenerate (0-fold) SNPs in the great tit (�80%

with c < �10) and zebra finch (Taeniopygia guttata) (�85%

with c < �10) (Corcoran et al. 2017), and nonsynonymous

SNPs in D. melanogaster (78% with c < �100) and Mus

musculus castaneus (69% with c < �100) (Kousathanas

and Keightley 2013). We estimate the proportion of INDEL

substitutions fixed by positive selection, a, at 86% for dele-

tions and 71% for insertions (or 79% and 63%, respectively,

when using noncoding INDELs as neutral reference) (table 2).

This is comparable to our previous estimates of a for deletions

(81%) and insertions (60%) in D. melanogaster (Barton and

Zeng 2018), and a estimates for SNPs in D. melanogaster of

between 74% and 95% (Schneider et al. 2011). However,

our estimates are higher than the a estimate for 0-fold SNPs of

48% obtained by Corcoran et al. (2017) using the same great

tit data set. This may reflect stronger purifying selection acting

on INDELs than SNPs (in line with our Tajima’s D and diver-

gence estimates), which provides a stronger opposing force to

genetic drift and hence reduces the number of INDEL fixations
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FIG. 4.—The relationship between local recombination rate (log transformed) and p (a) and Tajima’s D (b) for both insertions (turquoise) and deletions

(purple).
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by drift relative to SNPs. Both our c estimates for weakly se-

lected sites and a estimates point to deletions being more

deleterious than insertions, in line with theoretical expecta-

tions that deletions impact more sequence than insertions,

and are thus more likely to hit an important motif (Petrov

2002; Sjödin et al. 2010), as reported in other studies

(Sjödin et al. 2010; Montgomery et al. 2013; Chintalapati

et al. 2017).

A number of potential caveats are worth noting however.

First, the great tit has likely experienced a recent population

expansion (Laine et al. 2016; Corcoran et al. 2017), consistent

with our negative Tajima’s D values across the genome.

Population expansion can lead to an excess of weakly delete-

rious fixations relative to the amount seen in polymorphism

data, which can artificially inflate estimates of the proportion

of mutations fixed by positive selection (Eyre-Walker 2002;

Eyre-Walker and Keightley 2009). Here, we have used the

method of Eyre-Walker et al. (2006) to control for demogra-

phy. Existing evidence suggests that this approach is effective

in alleviating biases on the estimation of selection intensity on

weakly selected variants caused by demography (see fig. 4a in

Jackson et al. [2017]). Because the best-fitting model suggests

that the DFE for both insertions and deletions in coding

regions is bimodal, with segregating variants subject to

weak purifying selection (table 2), our a estimates should be

robust.

Second, the formula for estimating a (e.g., eq. 19 in Barton

and Zeng 2018) assumes that the mutation rate is the same

between the neutral reference and the focal sites. For this

reason, we employed the equal mutation rate model in our

analysis of the coding INDELs. However, we note that the

model that assumes a gamma DFE and allows the neutral

sites and the coding sites to have different mutation rates

fits the data better than the equal mutation rate model pre-

sented in table 2 [DAIC¼ AIC(best-fitting equal mutation rate

model) � AIC(best-fitting variable mutation rate model) ¼
4.50]. As demonstrated in Barton and Zeng (2018), this diffi-

culty can be readily alleviated if we know both the point mu-

tation rate and the INDEL mutation rate, which is currently

unavailable for the great tit, but can be obtained by direct

sequencing of parents and offspring. It should also be noted

that both models lead to similar conclusions regarding the

DFE. To see this, we calculate pðjX j � xÞ for x¼ 1.5, 5,

and 10, where jX j follows a gamma distribution. Using the

MLEs (supplementary table S5, Supplementary Material on-

line), for insertions, the proportions are 0.12, 0.18, and 0.23,

whereas for deletions, they are 0.052, 0.094, and 0.132.

These results are congruent with those shown in table 2 as

they indicate that, in coding regions, deletions tend to be

under stronger purifying selection, and that only a small frac-

tion INDEL mutations are sufficiently weakly selected that they

contribution to observed polymorphism.

Third, as repetitive regions of the genome are notoriously

difficult to call variants in and align (Earl et al. 2014), it is

possible that our elevated diversity and divergence estimates

in ARs could be the result of an increased number of false

positive calls in these regions. To assess the impact of our

choice of neutral reference on the DFE, we reran our coding

analysis using noncoding INDELs as neutral reference. We find

that the use of either neutral reference results in a very similar

bimodal DFE, with a majority of INDELs being strongly dele-

terious, and a minority weakly deleterious (table 2). With non-

coding INDELs as neutral reference, we observe a slight

reduction in the estimated selection pressure on the weakly

deleterious site class. This is probably due to the presence of

weakly selected variants in the noncoding data set, as we

have previously shown (see supplementary table S2 in

Barton and Zeng 2018). As the fixation rate is higher when

the estimated selection coefficient is smaller, our a estimates

are also lower in this case, but are still well above zero. Overall,

it seems that our use of ARs as neutral reference does not

unduly impact our results.

Noncoding INDELs and Linked Selection

The DFE for noncoding INDELs is best described by a gamma

distribution. The shape parameter estimates we obtain for

both insertions and deletions are small (0.0345 and 0.106,

respectively, table 2), corresponding to 76% of insertions and

52% of deletions having c values between 0 and –1, and thus

effectively neutral (fig. 2). The proportion of neutral insertions

in noncoding regions (76%) is comparable to the proportion

of intronic SNPs with c estimates between 0 and –1 (70%) in

D. melanogaster (Eyre-Walker and Keightley 2009). However,

the proportion of deletions falling into this selective range is

markedly lower at 52%, more in line with SNPs in untrans-

lated regions in birds, where in the great tit�50%, and in the

zebra finch �40% of variants fall within the 0 to –1 c range

(Corcoran et al. 2017). This mirrors and reinforces the trend

seen in coding regions supporting the more deleterious na-

ture of deletions. It also suggests that overall a substantial

proportion of INDELs (24% of insertions and 48% of dele-

tions) in noncoding regions are experiencing purifying

selection.

To understand how noncoding INDEL diversity changes

around coding regions, we investigated how h varies with

distance from exons. Our analysis shows that noncoding h
estimates adjacent to exons are lower than the genome-

wide noncoding estimates. As distance from exons increases,

both hins and hdel increase significantly returning to the

genome-wide level by 100 kb from exons (fig. 3). As the

scaled mutation rate (h ¼ 4Nel) is the product of the per-site

mutation rate (l) and the effective population size (Ne)

changes in h can be the result of changes in either parameter.

However, as we do not expect there to be a systematic var-

iation in l between our distance bins, changes in h should be

driven by corresponding changes in Ne. This relationship be-

tween distance and h could be explained through increasing
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proximity to functional sequence, and therefore increased

linkage to sites either under purifying or positive selection,

resulting in reduced Ne close to exons (see Cutter and

Payseur [2013] for review). Alternatively, it could be driven

by a higher density of regulatory elements under selective

constraint in noncoding sequence near exons, making

INDELs closer to exons more deleterious, and thus reducing

diversity in these regions. However, two lines of evidence pre-

sented here support the former explanation. First, we can re-

capture the relationship between INDEL diversity and distance

from exons when reanalyzing our data set after removing data

up to as much as the nearest 30kb to exons for pins, pdel, and

hdel (although for hins, we lack statistical power). This demon-

strates that the correlation is not solely driven by regions di-

rectly neighboring exons, as might be expected if driven by

purifying selection on regulatory elements, but extends over

larger distances, more indicative of linked selection (supple-

mentary fig. S8, Supplementary Material online). Second,

when we analyze nearly neutral variants (�1 � c � 0) and

deleterious variants (c < �1) separately we see that the rela-

tionship between distance from exons and h is driven by a

significant increase in nearly neutral variants as distance from

exons increases. We see no increase in deleterious variants

close to exons as would be expected if regulatory elements

were disrupted (supplementary fig. S7, Supplementary

Material online). Additionally, this suggests that although a

proportion of INDELs in noncoding regions seem to be

experiencing negative selection, in agreement with our

reported genome-wide noncoding DFE, these variants are

not driving the reduction of diversity in proximity to exons.

The possibility of linked selection reducing diversity is fur-

ther supported by the significant positive correlations we see

between local recombination rate and pins, pdel, and Tajima’s

D (fig. 4). Linked selection can be expected to generate such a

pattern, with linkage decreasing as recombination rates in-

crease, which should drive higher p in high recombining

regions (Corcoran et al. 2017) and a greater enrichment of

low frequency variants in low recombining regions. However,

the mutagenic effect of recombination can also be expected

to generate relationship between p and recombination

(Arbeithuber et al. 2015). To disentangle these two forces,

we conducted partial correlation analyses using INDEL diver-

gence as a covariate. The partial correlation coefficient be-

tween pins and recombination is 0.15, which is significant

and close to the value of 0.18 obtained without using diver-

gence as a covariate. In contrast, the partial correlation coef-

ficient between pdel and recombination rate is 0.077, which is

nonsignificant and more different from the value of 0.12

obtained without partial correlation. This suggests that the

mutagenic effect of recombination has probably played a

role in driving increased INDEL mutation rates in high recom-

bining regions, and that this effect is likely stronger for dele-

tions than insertions. This is in line with results previously

reported in zebra finch (Nam and Ellegren 2012). Yet, the

greater enrichment in low frequency variants in low recom-

bining regions is not an expected outcome of reduced muta-

tion rates. Thus, it seems likely that the true picture is a

combination of both linked selection and mutation variation

shaping patterns of INDEL variability in regions of varying

recombination.

Conclusion

In summary, we see that genome-wide INDELs appear to be

having detrimental effects, with most coding INDELs strongly

deleterious, and a sizeable minority of noncoding INDELs show-

ing signatures of purifying selection. We also show that non-

coding INDEL diversity is constrained through linkage to

selected sites near exons and in low recombining regions,

though some of this can be attributed to the mutagenic effect

of recombination. However, we cannot separate how much of

this trend is driven by positive selection and how much is due to

purifying selection, which would be an interesting avenue for

future INDEL studies.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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