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Abstract

Here, we ask the question, “How much information do epigenomic data sets provide about human 

genomic function?” We consider nine epigenomic features across 115 cell types and measure 

information about function as a reduction in entropy under a probabilistic evolutionary model 

fitted to human and nonhuman primate genomes. Several epigenomic features yield more 

information in combination than they do individually. We find that the entropy in human genetic 

variation predominantly reflects a balance between mutation and neutral drift. Our cell-type 

specific FitCons scores reveal relationships among cell types and suggest that ~8% of nucleotide 

sites are constrained by natural selection.

Editorial Summary:

FitCons2 is a new framework that simultaneously clusters genomic sites by epigenomic features 

and evaluates the strength of natural selection on these sites. FitCons2 scores are used to generate 

fitness-consequence maps for 115 human cell types.

Recent technological advances have enabled the generation of massive quantities of genomic 

data describing natural genetic variation as well as diverse epigenomic features such as 

chromatin accessibility, histone modifications, transcription factor binding, DNA 

methylation, and RNA expression1-4. However, the capability to gain insight into key 

cellular functions from this noisy, high-dimensional data has considerably lagged behind the 

capacity for data generation. Indeed, while the available data allows the vast majority of the 

human1 and mouse2 genomes to be associated with some type of “biochemical function,” 

often in a cell-type specific fashion, it is unclear—and highly controversial5,6—to what 
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degree this biochemical function reflects critical roles in cellular processes that have bearing 

on evolutionary fitness, as opposed to representing, say, noisy or incidental chromatin 

accessibility, protein/DNA binding, or transcription. This uncertainty about the true 

biological significance of many high-throughput epigenomic measurements is a critical 

barrier not only for interpretation of the available data, but also for prospective decisions 

about how much new data to collect, of what type, and in what combinations.

In this article, we attempt to address the question of how much information about genomic 

function is provided by general epigenomic “features,” including both genome annotations 

and high-throughput epigenomic data sets. The premise of our approach is that signatures of 

natural selection in DNA sequences can serve as a proxy for genomic function by reflecting 

fitness constraints imposed by cellular functions. We develop a novel information-theoretic 

framework for simultaneously clustering genomic sites by combinations of epigenomic 

features and evaluating the strength of natural selection on these sites. In addition to 

allowing us to measure relative amounts of global information provided by these epigenomic 

features, individually and in combination, this approach produces a collection of 115 cell-

type specific genome-wide maps of probabilities that mutations at individual nucleotides 

have fitness consequences (FitCons maps), which we demonstrate are illuminating in various 

ways. Together, our analyses not only provide a guide for data interpretation and 

experimental design, but they also shed light on the fundamental manner in which biological 

information is stored in the genome.

Our approach to quantifying the information in epigenomic data builds on a growing 

collection of computational methods that attempt to extract biological meaning from large, 

heterogeneous collections of high-throughput genomic data. These include methods that 

cluster genomic sites based on epigenomic patterns7,8, machine-learning predictors of 

pathogenic variants9,10 or molecular phenotypes11,12, and methods that combine epigenomic 

data with patterns of polymorphism or cross-species divergence to identify regions under 

evolutionary constraint13,14. Our contribution to this literature has been to develop a 

probabilistic framework, called INSIGHT 15,16, for measuring the bulk influence of natural 

selection from patterns of polymorphism and divergence at collections of target sites, and 

methods, called FitCons23 and LINSIGHT 24, that combine this framework with epigenomic 

data to estimate the probability that a mutation at any position in the genome will have 

fitness consequences. As we have previously discussed17,18, the usefulness of these methods 

in predicting regulatory sequences or disease-associated variants depends on the imperfect 

assumption that local signatures of natural selection are informative about phenotypes of 

interest. Nevertheless, these evolution-based methods perform well at these tasks, in part 

owing to the crucial advantage of measuring the importance of genetic variants in real 

organisms in their natural environments. Our strategy here is to extend the INSIGHT 
framework to a new method, called FitCons2, that measures epigenomic “information” in 

terms of selective constraint, and allows us to address questions such as, “How much did 

epigenomic data set X reveal about genomic function?” or “Are data sets Y and Z more 

informative in combination than they are individually?”
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RESULTS

FitCons2 clusters sites to maximize information

The original FitCons algorithm17 used a preprocessing step to partition the genome into 

hundreds of clusters on the basis of epigenomic and annotation data alone, without 

consideration of their evolutionary properties. By contrast, FitCons2 simultaneously 

addresses the clustering and evolutionary model-fitting steps, finding clusters of sites that 

are distinct both in their epigenomic and evolutionary properties.

More specifically, the FitCons2 algorithm works by recursively partitioning sets of genomic 

sites into two subsets, according to their associated epigenomic and annotation features 

(Figure 1). For example, at a particular step the algorithm might subdivide a given set of 

genomic sites into sites showing high and low transcriptional activity, based on counts of 

aligned RNA-seq reads, or those showing high and low chromatin accessibility, based on 

DNase-seq data. At each step in the algorithm, all candidate partitions of all current sets are 

considered, based on a collection of pre-discretized data types (Figure 1a&b). The algorithm 

selects the decision rule for partitioning that most improves the goodness of fit of the 

INSIGHT evolutionary model to the set of genomic sites under consideration when the 

model is fitted separately to the two proposed subsets rather than once to the entire set (see 

Methods). The procedure terminates when no partition improves the fit of the model by 

more than a predefined constant threshold (Figure 1c). In this way, the recursive algorithm 

produces a K-leaf binary decision tree that applies to each genomic site, causing the site to 

be assigned one of K labels based on its combination of local features (Figure 1d). When 

applied to all sites, the algorithm defines K clusters of genomic sites that reflect the natural 

correlation structure of both the epigenomic and the population genomic data. The identified 

clusters tend to be distinct from one other in terms of their influence from natural selection 

on the relatively recent time scales measured by INSIGHT, based on both human 

polymorphism and divergence with nonhuman primates. The overall influence of natural 

selection on each cluster is summarized by the associated estimate of the INSIGHT 
parameter ρ, which can be interpreted as the probability that a point mutation will have 

fitness consequences. As in the original FitCons algorithm, these ρ estimates are mapped 

back to the corresponding genomic sites and treated as nucleotide-specific fitness-

consequence (FitCons) scores (Figure 1e).

When evaluating candidate decision rules, the FitCons2 algorithm measures the goodness of 

fit of the INSIGHT model in terms of its log likelihood. The negated log likelihood, 

however, can be viewed as an estimate of the entropy of the probability distribution induced 

by the model, which in this case can in turn be viewed as a measure of the genetic entropy in 

a human population, generated and maintained since our divergence from our non-human 

primate ancestors (see Discussion, Methods, and Supplementary Text). Therefore, the 

increase in log likelihood associated with a decision rule in the FitCons2 algorithm can be 

interpreted as a reduction in entropy, or equivalently, as a measure of the information gain 
associated with the corresponding bi-partition of genomic sites and the epigenomic data that 

defines the bi-partition.
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Decision tree and maps for 115 cell types

We applied FitCons2 to epigenomic data for human cells from the Roadmap Epigenomic 

Project4, together with population genomic data previously compiled for INSIGHT 16-18, 

consisting of polymorphism data from 54 unrelated humans and phylogenetic divergence 

data from alignments of the chimpanzee, orangutan and rhesus macaque genomes to the 

human reference genome. (Larger data sets of human polymorphism data are now available 

but have negligible impact in this setting; see Methods.) To summarize the Roadmap data 

and associated genomic annotations, we made use of nine feature types spanning a broad 

range of biological processes, levels of genomic resolution, and degrees of cell-type 

specificity, including RNA-seq, DNase-seq, small RNAs (smRNA), chromatin states 

(ChromHMM), annotated coding sequences (CDS) and splice sites (Splice), transcription 

factor binding sites (TFBS), and predicted DNA melting temperatures (MeltMap) (see Table 

1). The cell-type specific “Epigenomic” features were collected separately for each of the 

115 karyotype-normal cell types represented in the Roadmap Epigenomic Project.

The recursive FitCons2 algorithm was applied to these data as described above, except that a 

single decision tree was estimated by averaging across all cell types when evaluating 

candidate decision rules (see Methods). The algorithm identified 61 classes, each defined by 

a distinct combination of epigenetic features and selective pressure (Figure 2 and 

Supplementary Tables 1 & 2). The estimated tree was robust, changing only in minor details 

when re-estimated from random samples of 50% of cell types (Supplementary Figure 1). 

Importantly, while each of the 61 identified classes is associated with a single estimate of ρ 
(representing its FitCons2 score), each class corresponds to a different set of genomic sites 

in each cell type, owing to differences in the cell-type specific features. Therefore, when 

these class-specific estimates of ρ are mapped to the genome, 115 cell-type specific 

FitCons2 maps are obtained. (These maps are available as genome-browser tracks; see 

URLs).

The decision tree estimated by FitCons2 (Figure 2) is richly descriptive about the 

distribution of evolutionarily relevant information across the human genome. The first 

partition (node #1 in Figure 2) is between about 31 Mbp of protein-coding sequences (CDS; 

ρ = 0.641) and the noncoding sites (ρ = 0.067) in the genome. In noncoding regions, the 

second split (node #3) is between a collection of 20 chromatin states associated with 

regulatory and transcriptional activity (ρ = 0.14) and the remaining five states (ρ = 0.055). In 

coding regions, the second split (node #2) is between chromatin states associated with active 

transcription (ρ = 0.70) and ones that are not (ρ = 0.58). In noncoding regions labeled with 

regulation-associated chromatin states, which tend to fall near exons, the next split (node #6) 

distinguishes a small set of nucleotides (685 kbp) associated with splicing (ρ = 0.88) from 

the remaining nucleotides (ρ = 0.14). Subsequent splits make use of MeltMap (node #13), 

RNA-seq (node #18), chromatin states that identify CDS- and UTR-adjacent sites (node 

#12), and annotated TFBSs (nodes #16 & #17). Outside concentrated regulators in 

noncoding regions, MeltMap is used earlier (node #7; in part as a guide to promoters and 

URLs.
Roadmap Epigenomics project, http://www.roadmapepigenomics.org/;
FitCons2 browser track, http://compgen.cshl.edu/fitCons2/
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UTRs), splice sites show up later (node #15), chromatin states are used to identify promoters 

(node #14), and RNA-seq does not appear, presumably because these regions tend to be 

farther from exon boundaries. Interestingly, TFBSs are particularly informative in 

combination with promoter-associated chromatin states (nodes #14 & #19), which signal 

cell-type specific activity. In coding regions, the third level in the tree distinguishes “high 

information” positions (such as start codons and 1st and/or 2nd codon positions) from “low 

information” positions (nodes #4 & #5). Subsequent splits make use of features such as 

RNA-seq and overlap with splice sites. Altogether, FitCons2 identifies a diverse collection 

of clusters in the genome, ranging in size from very small (~60 kbp) to very large (the 

“NULL” class [58] accounts for over 1 Gbp), and with ρ values from <1% to 93%.

A few genomic features contribute most information

The reduction in entropy across the entire decision tree, measured at 58,759 bits, can be 

interpreted as the total information about selection provided by all of the available functional 

genomic data and annotations. Moreover, feature-specific contributions to this total can be 

obtained by summing over all nodes (decision rules) that make use of each feature. These 

estimates (Figure 3a, orange bars) suggest that 62.9% of all of the available information is 

attributable to CDS annotations, followed by 11.0% from ChromHMM, 8.4% from 

MeltMap, 7.2% from Splice, 4.8% from RNA-seq, 2.9% from TFBSs, and < 2% from each 

of DNase-seq, WGBS, and smRNA.

The greedy algorithm used to construct the tree, however, will tend to overestimate the 

information attributable to features selected early in the process at the cost of features 

selected later. Therefore, we also considered (1) the marginal contribution of each feature in 

the absence of all others (gray bars in Figure 3a); and (2) the reduction in the total 

information when each feature is individually removed from the analysis (blue bars). The 

marginal method attributes 36.6% of all available information to RNA-seq, whereas the 

reduction method finds that only 3.7% of the available information is specific to RNA-seq. 

This difference reflects the strong correlation of RNA-seq with CDS annotations. Under the 

marginal method, the contribution of ChromHMM rises to 17.7% (from 11.0%) and that of 

DNase-seq to 5.9% (from 1.8%), suggesting substantial correlation of these covariates with 

one another and/or CDS and RNA-seq. Under the reduction method, the contribution of 

ChromHMM falls to 3.3%, that of DNase-seq to 2.0%, and that of Splice to 0.3%, with other 

features being less dramatically affected. Altogether, this analysis shows that the largest 

share of information about sites that are under selection comes from CDS annotations and 

RNA-seq data, with ChromHMM coming next and DNase-seq third, but these features are 

highly correlated with one another. The other features contribute smaller amounts of total 

information but are less correlated.

Entropy is primarily determined by mutation and drift

The entropy measured by FitCons2 reflects a balance of mutation (which acts to increase 

entropy) with drift and natural selection (which act to reduce entropy)19,20. We attempted to 

separate the contributions of natural selection and the neutral processes of mutation and drift 

by applying FitCons2 to a subset of sites assumed to be free from selection for our 

INSIGHT analyses. To allow for heterogeneity across the genome in mutation rates and 
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selection at linked sites, we separately considered such “neutral” sites in each of the 61 

clusters identified by FitCons2 (Methods). By contrasting the entropy per nucleotide site for 

these neutral sites with the entropy per site for all nucleotides in each cluster, we were able 

to quantify the reduction in entropy (gain in information) specifically associated with natural 

selection per cluster.

Across the entire genome, we estimated the neutral entropy per site to be 0.1234 bits, but the 

actual entropy per site to be 0.1189 bits, indicating a reduction of 0.0045 bits per site from 

natural selection (Supplementary Table 3). Thus, according to the INSIGHT model, natural 

selection only reduces the entropy in genetic variation that derives from neutral processes by 

~3.6%. However, the relative contributions of neutral processes and natural selection differ 

considerably by cluster. For example, in cluster 04, which represents splice sites in strongly 

transcribed coding regions, the neutral entropy per site is estimated at 0.0783 bits, and the 

observed entropy at 0.0237 bits, a reduction of ~70%. By contrast, in cluster 58, the 

“NULL” class, the neutral entropy per site is 0.1282 bits and the observed entropy is 0.1248 

bits, a reduction of only 2.7%. In general, the reductions in entropy per site due to natural 

selection are well correlated with estimates of ρ (Supplementary Figure 2).

Some genomic features exhibit synergy

The FitCons2 framework also allows us to ask if there are combinations of features that 

exhibit synergy, in the sense that they yield more total information about natural selection in 

combination than they do individually. We looked for synergy using a simple pairwise 

measure defined as the excess in information, in bits, obtained by considering a pair of 

features together in comparison to the information obtained by considering each feature 

separately (see Methods). This measure is positive when the combination of two features 

allows for a better explanation of genome-wide variation as measured by INSIGHT, and it is 

equal to zero when this combination offers no improvement over the individual features (as 

when the features are nonoverlapping). This measure can be negative if two features provide 

redundant information about how the genome should be partitioned to account for patterns 

of variation (as when they are strongly correlated along the genome).

We found that most pairs of annotations displayed at most weak synergy (Figure 3b), 

probably because they tend to identify largely nonoverlapping regions of the genome, and/or 

to account for few bases overall (as with TFBS, smRNA, and Splice). By contrast, pairs of 

cell-type specific epigenomic features often displayed substantial synergy, with DNase-seq, 

in particular, showing synergy with all other epigenomic features. When pairs of annotations 

and cell-type specific epigenomic features were considered, synergy was generally negative 

or weakly positive, with the exception of DNase-seq, which showed strong positive synergy 

with all annotations, likely because it signals cell-type specific activity (see Discussion). 

Altogether, DNase-seq stands out in this analysis as the largest single contributor to synergy, 

with respect to both annotations and other epigenomic features. ChromHMM and WGBS 

show some similar trends but to a lesser degree, whereas RNA-seq appears to be the most 

redundant with other features. These observations have implications for future efforts in data 

collection and analysis (see Discussion).
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Applications of cell-type specific FitCons2 scores

The average FitCons2 score per site, across cell types and positions, is 0.082, indicating that 

an expected ~8% of nucleotide sites are subject to natural selection, in reasonable agreement 

with previous measures based on population genetic and phylogenetic data17,21. These 

selected sites include an expected 64% of all protein-coding bases (CDS) and 7.6% of all 

noncoding bases, with more than 90% of sites expected to be under selection falling in 

noncoding regions. Overall, the highest-scoring positions are in splice sites of annotated 

genes, followed by protein-coding sequences (CDS), TFBSs, 3’ and 5’ untranslated regions 

(UTRs), and promoters, with only slight elevations above the background in other annotated 

elements (Figure 4). These annotation-specific score distributions are often multimodal in a 

manner that reflects informative combinations of features in the decision tree. For example, 

the distribution for TFBSs has modes that reflect the partitioning of individual motif 

positions by information content and the combination with DNase-seq data. Similarly, the 

UTR and promoter distributions have modes reflecting locally elevated scores, from binding 

sites, DNase-seq, RNA-seq, WGBS, and related features. Interestingly, the annotation-

specific bulk distributions are highly similar across cell types (Supplementary Figure 3). 

Nevertheless, the position-specific scores differ considerably across cell types and are 

informative about cell-type relationships, owing to differences in cell-type specific activity. 

We find that hierarchical clustering of cell types based on their FitCons2 scores recovers 

many known relationships among them (Supplementary Figure 4, Supplementary Text).

The FitCons2 scores across the human genome can be viewed and downloaded via a UCSC 

Genome Browser track. This track reveals elevated scores at many enhancers and promoters 

as well as genes and it often highlights unannotated regulatory elements (Figure 5; see also 

Supplementary Figures 5–9). Indeed, despite being designed as an evolutionary measure, the 

FitCons2 scores are useful as predictors of genomic function at individual nucleotides, 

comparing reasonably well to other computational methods in the identification of bound 

TFBSs and pathogenetic single-nucleotide variants (Supplementary Text and Supplementary 

Figures 10–13). By zooming into the base level in the browser, it is possible to observe high-

resolution texture corresponding to features such as individual codon positions, TFBSs, and 

splice sites (Figure 5a-d). The browser track includes subtracks for the FitCons2 scores in 

each of the 115 cell types, which can easily be compared to assess cell-type specificity. In 

addition, the track includes an “integrated” score that summarizes the scores across all cell 

types (see Methods) and highlights both cell-type specific activity and activity shared across 

cell types (Supplementary Figure 7). This score provides a useful summary when it is not 

clear to the user what cell type is most relevant in evaluating the functional significance or 

evolutionary importance of a given site, or when scores are needed for a known cell type that 

is not among those for which epigenomic data is available.

DISCUSSION

In this article, we have presented a method for simultaneously clustering genomic sites 

based on epigenomic features and estimating the probabilities that mutations at those sites 

will have fitness consequences. Our recursive bi-partitioning algorithm finds clusters of 

genomic sites that not only share epigenomic features but at which mutations also have 

Gulko and Siepel Page 7

Nat Genet. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



similar fitness effects. This procedure produces interpretable maximum-likelihood estimates 

of key evolutionary parameters for each cluster, including the FitCons2 score, ρ. The 

interpretability of the FitCons2 scores represents a key advantage in comparison with other 

available scores for functional relevance or pathogenicity9-14. Another major advantage is 

that these scores can be separately computed for many cell types to reflect differences in 

epigenomic features.

Importantly, FitCons2 also allows us to evaluate how informative these features are, both 

individually and in combination. The individual contributions to information, predictably, 

are dominated by CDS annotations, but broad, diffuse cell-type specific epigenomic features 

(e.g., ChromHMM, RNA-seq, and WGBS) and more focused annotations (e.g., Splice and 

TFBS) also make substantial contributions. The RNA-seq feature stands out as being highly 

informative by itself but only weakly informative when conditioning on other features, 

owing to its high degree of redundancy. DNase-seq shows, by far, the most synergy with 

other features, including both annotations and other cell-type specific epigenomic features, 

apparently because it can distinguish between “active” and “inactive” elements in a cell-type 

specific fashion. For example, the combination of DNase-seq and our cell-type general 

annotations of TFBSs provides information about which binding sites are, and are not, 

occupied in each cell type. This property of DNase-seq suggests that it is a particularly 

valuable data type to collect in studies in which the budget for functional genomics is 

limited, because it will enhance the value of other features.

A strength of our method is that it nominally provides cell-type specific FitCons2 scores. It 

is worth emphasizing, however, that the notion of cell-type specific “fitness” must be 

interpreted cautiously. Strictly speaking, a cell-type specific score ρ indicates that a 

nucleotide has an epigenomic “signature” in that cell type that, on average, is associated 

with a probability ρ of mutational fitness consequences. That measure, however, is based on 

patterns of genetic variation across a population and ultimately reflects natural selection at 

the level of whole organisms not individual cell types. Thus, differences across cell types in 

FitCons2 scores really represent differences across cell types in the way sites are grouped by 

their epigenomic fingerprints, and capture differences in cell-type specific “importance” 

only through these groupings. Nevertheless, these cell-type specific maps are useful in that 

they effectively capture cell-type specific activity, allow for sensitive detection of cell-type 

specific elements, and reflect the global correlation structure of epigenomic data across cell 

types.

The question of how much information is contained in the human genome is not a new one, 

but that question is typically taken to mean how many bits would be required to encode a 

single “reference” genome. The answer for the human genome (hg19) is roughly 5.7 billion 

bits for a simple single-base encoding, or as few as 5.2 billion bits if dependencies between 

neighboring bases are considered (see Supplementary Text). From an evolutionary 

perspective, however, this method of measuring information produces a vast overestimate, 

because most nucleotides in the human genome apparently have no effect on fitness and 

therefore are not truly “informative” (see also ref. 22). In addition, human genomes are 

highly correlated with one another and with the genomes of other primates; given one 

human genome, another human genome contains much less information that it does alone. 
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For these reasons, we use a population-based measure of information, and condition on the 

genome sequences of nonhuman primate outgroups. By making use of a set of putatively 

neutral sites, we can further decompose the information in a human population into a neutral 

component (due to a balance between mutation and drift) and component specifically 

associated with natural selection. Thus, we obtain an approximate measure of the fitness-

relevant genetic information in a population of humans, generated and maintained since the 

human/chimpanzee divergence.

This decomposition reveals that the population-genetic entropy in a collection of human 

genome sequences, given their primate relatives, is primarily determined by a balance 

between mutation and genetic drift, with a small reduction from natural selection. This 

qualitative observation is not surprising, since it is well known that a small minority of 

nucleotides in the genome are under selection, but it is nevertheless striking that the absolute 

reduction in entropy, or the information, associated with natural selection is only ~13 million 

bits, or ~1.6 MB—about the size of a typical smartphone snapshot or email attachment. 

Thus, the fitness-relevant genetic information in a human population, given nonhuman 

primate genomes, is minimal on the scale of modern digital information, and dramatically 

smaller than the storage requirements for a single human genome sequence.

ONLINE METHODS

Comparative and population genomic data

We measured natural selection using INSIGHT and data describing both genetic divergence 

across primates and polymorphism within human populations. We reused the same data 

from several previous INSIGHT-based analyses15-18 (see ref. 16 for complete details). 

Briefly, these data consist of genome assemblies for chimpanzee (panTro2), orangutan 

(ponAbe2), and rhesus macaque (rheMac2) aligned to the human reference genome (hg19), 

together with human polymorphism data extracted from the high-coverage “69 Genomes” 

data set from Complete Genomics, which was reduced to 54 unrelated samples. Genomic 

sites were rigorously filtered to eliminate repetitive sequences, recent duplications, CpG 

sites, and regions not showing conserved synteny across primates. Our analysis considered 

only the autosomes (chromosomes 1–22) because of substantial differences in mutation rates 

and distributions of selective effects on the sex chromosomes (X and Y). INSIGHT was run 

using putatively neutral regions identified by starting with all noncoding sites and excluding 

annotated RNA genes, TFBSs, phastCons-predicted evolutionarily conserved elements, and 

immediate flanking regions15,16. Notably, while much larger population genomic data sets 

are now available30-33, our experiments have shown that the use of even ~20 times more 

human individuals makes a negligible difference in estimates of the key parameter ρ, owing 

to the efficiency with which INSIGHT pools information across sites in the genome and the 

property that much of the information about natural selection derives from divergence rather 

than polymorphism (data not shown). Therefore, we opted to reuse a data set that has 

already been extensively processed and validated, and whose properties are well known to 

us.
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Genomic features

We considered the nine genomic features described in Table 1 (ee also the Life Sciences 

Reporting Summary). For the four epigenomic features, we obtained the imputed RNA-seq, 

DNase-seq, WGBS, and ChromHMM data sets for each of the 127 cell types (numbered 

E001–E129, with E060 and E064 omitted) represented in the Roadmap Epigenomic Project 

data4 (see URLs). After initial processing, seven cell types were discarded due to 

deficiencies in data quality (E001, E003, E017, E027, E098, E104, and E113), and five 

additional cell types were discarded due to abnormal karyotypes (E114, E115, E117, E118, 

and E123), which could lead to alignment difficulties and major epigenomic perturbations. 

For each of the remaining 115 cell types, the “consolidated imputed” RNA-seq and DNase-

seq data (representing log RPKM and p-values, respectively) were discretized into 4 levels 

each, using an exhaustive search over possible partition boundaries with an entropy-based 

objective function (see Supplementary Text for details). The labels from the 25-state version 

of the Roadmap ChromHMM analysis4 were used directly as feature values. The raw WGBS 

data was partitioned into two classes, corresponding to hypomethylated and non-

hypomethylated regions, using the HMR program from the MethPipe package34.

The five annotations were defined as follows for all cell types. The protein-coding gene 

(CDS) and Splice annotations were derived from the GENCODE V19 database27, 

considering only “KNOWN” “protein_coding” transcripts with a single annotated start and 

stop codon. Based on CDS annotations, we labeled positions as falling in start codons, 

codon position 1, codon position 2, codon position 3, and noncoding positions. A position 

belonging to more than one class across isoforms was assigned to the class under greatest 

constraint (start > 2 > 1 > 3 > noncoding). For the splice feature, we considered the fifty 

intronic sites flanking each annotated CDS exon boundary and labeled them, by distance 

from the exon boundary, as under high, medium, low, or no average constraint, based on 

pooled data from all splice sites (Supplementary Text). The two positions within CDS 

immediately adjacent to the exon boundary displayed similar levels of constraint to the 

“high” intronic class and were included with them. Based on an initial exploratory analysis 

of potentially relevant genomic features, we also identified predicted DNA melting 

temperature (MeltMap) as a feature that correlates significantly with selective constraint, 

although it is likely that this relationship is at least partially explained by the strong 

correlation of melting temperature with G+C content, which in turn correlates strongly with 

the presence of functional elements in the genome. In particular, we observed minimal 

selective pressure at intermediate melting temperatures and elevated selective pressure at 

more extreme melting temperatures (Supplementary Text). Based on these observations, we 

discretized the predicted melting temperature into five levels ranging from “very low” to 

“very high”, with constraint levels such that {very low, very high} > {low, high} > medium.

Because they were available for only a limited collection of cell types, the transcription 

factor binding site (TFBS) and small RNA-seq (smRNA) features were based on pooled data 

and treated as annotations. For the TFBSs, we combined 588,958 binding sites from 

Ensembl Regulatory build V75 (ref. 35) with 2,595,018 predicted sites we had previously 

assembled using ENCODE data16. Both sets were derived from ChIP-seq peaks, with 

bioinformatic motif-matching to identify likely TFBSs under the peaks (see ref. 16). After 
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merging overlapping predictions, the final set consisted of 1,994,905 TFBSs spanning 

23.6Mbp and representing 86 TFs. We partitioned nucleotides into four constraint classes 

based on the information content of the corresponding position in the position weight matrix 

for the TF in question (Supplementary Text). The smRNA data set was based on a 

combination of the UCSF-4Star composite, the UCSF Brain Germinal Matrix, the UCSC 

Penis Foreskin Keratinocyte (PFK) composite, and smRNA data from ENCODE for the 

CD20 and HUVEC cell types. Sites were also partitioned into four levels of constraint based 

on smRNA data (Supplementary Text).

Recursive bi-partitioning algorithm

The FitCons2 algorithm begins with the complete set of genomic sites and an associated 

collection of D functional genomic and annotation-based features. Each genomic site is 

labeled with a particular combination of features, a D-dimensional vector known as that 

site’s functional genomic fingerprint. As described above, each of the D feature types i is 

discretized into mi possible values, where mi ranges between 2 and 25. If these possible 

values do not have a natural ordering, they are ordered according to their marginal 

information about natural selection, as measured by the ρ parameter from INSIGHT. (This 

ordering by ρ is actually performed dynamically at every node in the tree, to allow for 

changes conditional on previous partitions; see Supplementary Text.) Thus, each nucleotide 

is assigned one of ki possible ordered values for each of D feature types, i ∈ {1, …, D}.

The algorithm then considers a family of possible decision rules for splitting the set of 

genomic sites into two subsets. Each candidate decision rule is based on a single feature type 

and a threshold. For example, RNA-seq read counts are summarized by four feature values, 

corresponding to (1) no reads, and (2) low, (3) medium, or (4) high read counts. The 

algorithm considers partitioning the genome by the decision rules 1∣234, 12∣34 and 123∣4, 

where uv ∣ xy indicates a partitioning between sites labeled u or v and sites labeled x or y. 

Because the feature labels are ordered, the number of possible decision rules for each feature 

type i is always linear in mi. These possible rules must be considered for each of the D 
feature types.

The algorithm selects the decision rule that maximizes the gain in information about natural 

selection. This choice is made by fitting the INSIGHT model separately to the two subsets of 

genomic sites defined by each candidate decision rule, and deriving a measurement of gain 

in information from the likelihoods of these models (see below). Choosing partitions that 

maximize this gain in information has the effect of maximizing the degree to which the 

resulting two subsets of sites are homogeneous and distinct from one other in terms of their 

influence from natural selection. Importantly, the gain in information associated with each 

candidate decision rule is computed as an average over all cell types, that is, by weighting 

each genomic position by the number of cell types displaying the specified feature value (or 

range of values) in the INSIGHT likelihood function. In this way, the decision tree is fitted 

to all cell-type specific data sets simultaneously.

The same procedure is then applied recursively to each of the two subsets of sites, and in 

turn, to subsets of those subsets, until no subset meets the criterion for further partitioning. 

Thus, a binary tree is defined with internal nodes representing decision rules and leaves 
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representing particular combinations of decision rules (Figure 1). Furthermore, these leaves 

define genomic clusters that are maximally homogeneous and distinct in selective pressure. 

(This greedy algorithm finds a local maximum, but not necessarily a global maximum, 

according to the objective function used.) Because the algorithm is driven both by the 

genomic features and the patterns of genetic variation, it tends to find clusters that reflect the 

natural correlation structure of both the functional genomic and population genomic data.

In practice, we initially had the recursive algorithm terminate when no remaining candidate 

decision rule provided more than 5 bits of information, which produced a tree with 195 

leaves. To obtain a smaller and more interpretable tree, however, we then pruned the tips of 

the tree based on a 50-bit threshold (meaning that we eliminated external branches until all 

corresponded to increase of information of at least 50 bits, as if we had used that as our 

original stopping criterion). Each step of the recursive algorithm can be viewed as a 

likelihood ratio test with four degrees of freedom (three free parameters and an addition 

degree of freedom for the choice of partition), so a 50-bit (69.4-nat) threshold corresponds to 

a nominal p-value of approximately 3 × 10−14. Even allowing for the hundreds of tests 

carried out by the algorithm, this threshold is still conservative. For efficiency, at each step 

of the algorithm, all internal nodes at a given tree depth are examined in parallel. Execution 

of the full algorithm completed in about 57 hours of wall clock time on a shared computer 

cluster.

This algorithm was additionally adapted for use in computing the “cell-type integrated” 

scores, as described in the Supplementary Text.

Statistics and Data Analysis

Measuring entropy with INSIGHT—As detailed in the Supplementary Text, we measure 

“information” in terms of the entropy of a distribution, P(X ∣ θ), where X is a collection of 

human genome sequences and θ is a parameter set that governs the distribution, implicitly 

conditioning also on O, a collection of closely related nonhuman primate “outgroups”. We 

use the INSIGHT probabilistic evolutionary model15 to define P(X ∣ θ). Importantly, 

INSIGHT provides an approximate measure of the genetic entropy not only of the sample X 
but of the population from which X is drawn (Supplementary Text).

The INSIGHT model is fitted to a collection of genomic sites by maximum likelihood. In the 

limit of a large number of sites, the maximized log likelihood of the model is closely related 

to the entropy of the distribution P(X ∣ θ), as follows. Conditional on the parameter set, θ, 

and the assumed block structure, INSIGHT assumes independence of nucleotide sites, with 

P(X ∣ θ) = ∏i P(Xi∣θ). Thus, the maximized log likelihood can be written 

ℒ(θ , X) = maxθ log P(X ∣ θ) = maxθ∑i log P(Xi ∣ θ). The entropy of X ∣ θ , in turn, can be 

written, H(X) = − C∑xP(x ∣ θ ) log P(x ∣ θ ), where the sum is over all possible alignment 

columns x and C is the number of columns in the actual alignment X. Assuming the model 

fits the data well, in the sense that the distribution of alignment columns under the model is 

close to the empirical distribution in X, then as C grows large,
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ℒ(θ ; X) = ∑
i

log P(Xi ∣ θ ) ≈ C∑
x

P(x ∣ θ ) log P(x ∣ θ ) = − H(X) .

In other words, the negative log likelihood under INSIGHT is an estimator for the 

population genetic entropy. Throughout this article, we assume base-2 logarithms and 

express entropy in bits. The estimated entropy can be partitioned into neutral and selective 

components, as detailed in the Supplementary Text.

In practice, we often compute the log likelihood as an average across cell types, which can 

be interpreted as the expected complete data log likelihood under a mixture model with a 

uniform prior. Specifically, for a collection of sites X, we assume,

ℒ(θ ; X) = ∑
i

∑ j ∈ Ji
log P(Xi ∣ θi, j)

∣ Ji ∣ ,

where Ji is the set of cell types for which data is available at genomic position i and θ i, j

denotes the INSIGHT model parameters associated with the features in cell type j at position 

i.

Information associated with features

Suppose a genomic feature F allows sites to be partitioned into those having a label (or set of 

possible labels) A, XF=A = {Xi∣F(Xi)=A}, and the complement of that set, XF≠A = {Xi∣F(Xi)

≠A}. A new entropy can be computed based on this partitioning by fitting the INSIGHT 
model separately to XF=A and XF≠A, with two separate sets of free parameters: 

H(X; F ∕ A) ≈ − ℒ(θF = A; XF = A) − ℒ(θF ≠ A; XF ≠ A). This entropy, H(X;F/A), must 

always be less than or equal to the original entropy, H(X) (modulo optimization error). The 

reason is that the pair of INSIGHT models for the two subsets, XF=A and XF≠A, directly 

generalizes the single model applied to all sites and must fit the data at least as well, 

meaning that it will yield a maximized log likelihood at least as large. Thus, 

ℒ(θF = A; XF = A) + ℒ(θF ≠ A; XF ≠ A) ≥ ℒ(θ ; X), which implies H(X; F/A) ≤ H(X). We can 

therefore define the nonnegative quantity, 

ΔH(X; F ∕ A) ≔ H(X) − H(X; F ∕ A) ≈ ℒ(θF = A; XF = A) + ℒ(θF ≠ A; XF ≠ A) − ℒ(θ ; X) = Δℒ
(F ∕ A; X)

, 

as the “information” associated with feature F having label A. This is the measure used for 

the information associated with each decision rule in our recursive bi-partitioning algorithm.

In some cases, it is also useful to have a measure of the overall “marginal” information 

associated with a feature F, considering all of its possible values (e.g., see Synergy, below). 

For this measure, we use:
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ΔH(X; F) ≈ ∑
a

ℒ(θF = a; XF = a) − ℒ(θ ; X) .

Synergy

We define the pairwise synergy between features F and G as,

S(F, G) ≔ ΔH(X; F, G) − [ΔH(X; F) + ΔH(X; G)],

where ΔH(X;F) and ΔH(X;G) represent the marginal information associated with F and G, 

respectively, and ΔH(X; F, G) is computed analogously by considering the Cartesian product 

of feature values for F and G. S(F, G) is positive when there is synergy between F and G, 

meaning that more information can be obtained by considering them together than by 

considering each of them separately; negative when they are “redundant” or highly 

correlated; and zero when they are, in a sense, orthogonal or “independent”. Notice that S(F, 

G) is similar in spirit to mutual information but conceptually distinct, because it is based on 

probabilities of a fixed data set X conditional on various values of the features F and G, 

rather than being based on a probability distribution for F and G.

In computing S(F, G), some special handling is required for sites at which features have a 

“null” value (meaning a signal that is absent or at background levels), as detailed in the 

Supplementary Text.

Annotation-specific distributions of FitCons2 Scores

The cell-type specific bulk distributions of scores for various annotation types (Figure 4 and 

Supplementary Figure 3) were based on regions “active” in each cell type of interest. For 

annotations associated with protein-coding genes (CDS, splice site, 5’ & 3’ UTR, promoter, 

and intronic), we defined “active” elements as ones associated with the top third of all 

annotated genes after ranking them by RPKM based on cell-type matched RNA-seq data. 

TFBSs were considered active if they coincided with ChIP-seq peaks in the matched cell 

type. The notion of cell-type specific “activity” was not applied to intergenic sites. We took 

care to exclude any positions that overlapped annotated CDSs from all other categories.

Code availability

The source code for FitCons2 is available on GitHub at https://github.com/CshlSiepelLab/

FitCons2 under the simplified BSD license.

Data availability

All raw data for this study is publicly available from sources detailed in the Supplementary 

Text. The cell-type specific and integrated FitCons2 scores are available as UCSC Genome 

Browser tracks at http://compgen.cshl.edu/fitCons2/. Additional data generated during the 

course of our analyses can be obtained from the corresponding author [AS] by request.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Conceptual diagram of FitCons2 algorithm.
(a) Two types of genomic features are considered: four cell-type specific Epigenomic 

features (×115 cell types) and five Annotations (Table 1). In pre-processing, the raw data 

sets are discretized into 2–25 classes, which are ordered by estimates of ρ (Methods, Table 

1). (b) The algorithm builds a decision tree by recursively partitioning “active sets” of 

genomic positions. Each binary partition is defined by applying a threshold to an ordered, 

discretized feature (gray arrow). The algorithm selects the active set (leaf) and binary 

partition that are maximally informative about selection. Information is measured by the 

increase in log likelihood (Δℒ) under the INSIGHT model (Methods). The algorithm 

averages over cell-type specific locations for the Epigenomic features. (c) The recursive 

process is repeated until the improvement in information fails to exceed a minimal threshold. 
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(d) The end result is a K-leaf decision tree such that each internal node represents a binary 

decision rule and each leaf corresponds to a combination of decision rules that can be 

applied to each nucleotide site in the genome. Each of these K combinations of decision 

rules induces a cluster of genomic sites that share a particular epigenomic “fingerprint”. 

Each of these K clusters is also associated with an estimate of ρ (its FitCons2 score). (e) 

These estimates of ρ can be mapped back to the genome sequence separately for each cell 

type. An “integrated” score that summarizes all cell types is also computed (Methods).

Gulko and Siepel Page 18

Nat Genet. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Decision tree and clusters for the human genome.
The decision tree obtained by applying FitCons2 to the human genome sequence (hg19 

assembly; autosomes only). Nodes (ovals) represent decision rules (bi-partitions) and are 

labeled with the feature on which each rule is based as well as the associated increase in 

information (in bits). Nodes are colored by feature type. Edges extending from parent nodes 

to children are labeled with descriptions of partitions, their sizes in millions of basepairs 

(Mbp), and corresponding estimates of ρ. Edge widths are proportional to log(size). Dashed 

circles indicate successive binary partitions based on MeltMap that effectively create three-

way splits. For simplicity, only the first 4–5 levels of the tree are shown in detail. The 61 

leaves of the tree (at right) are labeled by unique identifiers, estimates of ρ, sizes in Mbp, 

and brief descriptions of the associated clusters (see Supplementary Tables 1 & 2 for 

additional details). Heatmap to left of cluster IDs displays relative enrichments for several 

annotations (Coding Sequences [CDS], Untranslated Regions [UTRs], Promoters, 

Enhancers, annotated Transcription Factor Binding Sites [TFBS], Splice sites, DNase-seq, 

and RNA-seq data).
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Figure 3. Information and synergy.
(a) Information about natural selection is attributed to each individual genomic feature by 

three methods: (1) summing over the associated decision rules in the tree (tree, orange); (2) 

measuring the information of the feature in isolation (marginal, gray); and (3) measuring the 

reduction in total information when that feature is excluded from the complete tree 

(reduction, blue). These measures are similar when a feature is largely orthogonal to other 

features (e.g., MeltMap) but different in the presence of strong correlations with other 

features (e.g., RNA-seq, ChromHMM). All estimates are based on log likelihoods computed 

from genome-wide data (Methods). (b) Synergy between all pairs of features measured as 

the excess in information obtained by considering a pair of features together relative to the 

information obtained by considering the two features separately (Methods). Each cell gives a 

value in bits. Cells are colored on a spectrum from red (large negative values, indicating 

redundancy) to green (large positive values, indicating synergy). Note that the matrix is 

symmetric.
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Figure 4. Annotation-specific distributions of FitCons2 scores.
Violin plots showing genome-wide score distributions for annotated coding regions (CDS), 

5’ and 3’ untranslated regions (UTRs), splice sites, transcription factor binding sites (TFBS), 

core promoters, and remaining intronic and intergenic regions. Scores are for GM12878 

cells and reflect regions “active” in that cell type (see Methods). These annotation-specific 

marginal score distributions are highly similar across cell types, despite differences in 

regions of the genome they summarize owing to cell-type specific activity (see 

Supplementary Figure 3). Splice sites were defined as the two intronic bases immediately 

adjacent to exon boundaries. Promoters were defined as 1,000 bp upstream of annotated 

transcription start sites. TFBS annotations based on ENCODE ChIP-seq data were obtained 

from ref. 16. Violin plots were generated with the R command ggplot2∷geom_violin(), with 

parameter adjust=0.50. The dots represent the means of the distributions. The numbers of 

nucleotide sites considered for each class are 1.782 billion (Intergenic), 117.9 million 

(Intronic), 8.236 million (Promoter), 816.8 thousand (5’ UTR), 3.872 million (3’ UTR), 

4.810 million (TFBS), 5.222 million (CDS), and 424.3 thousand (Splice Site).
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Figure 5. Genome Browser display.
UCSC Genome Browser display for a region of chromosome 22 overlapping the 5’ end of 

the gene encoding caspase recruitment domain-containing protein 10 (CARD10), which 

participates in apoptosis signaling and activates NF-KB via BCL10. FitCons2 scores (dark 

blue, near middle) are shown for the ES-WA7 (embryonic stem cell from blastocyst) cell 

type. Annotation features are shown above the FitCons2 scores and cell-type specific 

epigenomic features are shown at bottom. For reference, predicted enhancers from 

EnhancerAtlas23 (longer bars) and FANTOM524,25 (shorter bars; in both cases, brown 

indicates enhancers specifically associated with CARD10), eQTL from GTEx26 (brown 

indicates specific association with CARD10), and the gene annotation from GENCODE27 

(top) are also shown. Insets show zoomed-in displays of (a) an apparent cluster of enhancers 

showing a high DNase-seq signal, ChromHMM states suggesting regulatory activity 

(orange: enhancer; red: promoter), and a high concentration of TFBSs; (b) the core promoter 

and transcription start site showing similar indications of regulatory activity; (c) a 5’ splice 

site and adjoining CDS and intronic sequences; and (d) GWAS and eQTL hits coinciding 

with a TFBS. Additional examples are shown in Supplementary Figures 5–7. A more 

detailed legend is provided in Supplementary Figures 8–9.
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Table 1:

Summary of Epigenomic and Annotation Features Used by FitCons2

Name Description Type1 Levels2 Source

CDS Coding sequences Annotation 5: Start, Codon pos. 1,2,3, Non GENCODE27

Splice Splice sites Annotation 4: Core, Prox, Dist, Non GENCODE27

MeltMap3 Predicted DNA melting temperature Annotation 5: VHi, Hi, Med, Lo, VLo ref. 28

TFBS Transcription factor binding sites Annotation4 4: Hi, Med, Lo, None5 Ensembl29 & ref. 16

smRNA Small RNAs Annotation4 4: Hi, Med, Lo, None
ENCODE & Human Epigenome 

Atlas6.

RNA-seq Transcription Epigenomic 4: Hi, Med, Lo, None Roadmap

DNase-seq Chromatin accessibility Epigenomic 4: Hi, Med, Lo, None Roadmap

ChromHMM7 Chromatin modifications Epigenomic 25: (see ref. 4) Roadmap

WGBS DNA methylation Epigenomic 2: Hypo, non-Hypo Roadmap

1Annotations are shared across all cell types, whereas Epigenomic data sets are specific to each cell type (115 instances of each)
2Number of discrete levels followed by level labels. Features that had no natural ordering (CDS, Splice, MeltMap, TFBS, ChromHMM) were ordered by estimates of ρ (see Methods)
3Predicted DNA melting temperature (MeltMap) is highly correlated with G+C content on a global level but carries additional local information. Predictions depend on the DNA sequence only and are therefore considered “Annotations”.
4Owing to sparse data, the TFBS and smRNA features were based on data pooled across cell types and therefore were treated as Annotations rather than as cell-type specific Epigenomic data (see Methods)
5Grouped by information content of motif position (see Methods)
6Based on ENCODE cell types CD20 and HUVEC, and Human Epigenome Atlas V9 samples BGM (Brain Germinal Matrix), UCSF4 
embryonic stem cells, and PFK (Penis Foreskin Keratinocyte).
7Based on the 25-state version of the Roadmap ChromHMM model, which makes use of 11 histone marks and DNase-seq data (imputed where necessary).
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