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Abstract Invited Reviewers
We present a major public resource of mRNA splicing mutations validated 1 2
according to multiple lines of evidence of abnormal gene expression. Likely
mutations present in all tumor types reported in the Cancer Genome Atlas o
(TCGA) were identified based on the comparative strengths of splice sites ) report
in tumor versus normal genomes, and then validated by respectively Verls'on 2
comparing counts of splice junction spanning and abundance of transcript ;’(“)b“'ﬂ'jﬂ‘;%w
reads in RNA-Seq data from matched tissues and tumors lacking these
mutations. The comprehensive resource features 351,423 of these version 1 ' ?
validated mutations, the majority of which (69.1%) are not present in the published report report
Single Nucleotide Polymorphism Database (dbSNP 150). There are 07 Dec 2018
117,951 unique mutations which weaken or abolish natural splice sites, and
244,415 mutations which strengthen cryptic splice sites (10,943 affect both . .
simultaneously). 27,803 novel or rare flagged variants (with <1% population 1 Emanuele Buratti » International Centre for
frequency in dbSNP) were observed in multiple tumor tissue types. Single Genetic Engineering and Biotechnology
variants or chromosome ranges can be queried using a Global Alliance for (ICGEB), Trieste, Italy
Genomics and Health (GA4GH)-compliant, web-based Beacon “Validated
Splicing Mutations” either separately or in aggregate alongside other 2 Francesca D. Ciccarelli "%, Francis Crick
Beacons through the public Beacon Network ( Institute, London, UK
http://www.beacon-network.org/#/search?beacon=cytognomix), as well as King's College London, London, UK

through our website (https://validsplicemut.cytognomix.com/).
Any reports and responses or comments on the
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article can be found at the end of the article.
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Introduction

Next generation sequencing continues to reveal large numbers of
novel variants whose impact cannot be interpreted from curated
variant databases, or through reviews of peer-reviewed biomedi-
cal literature'. This has created a largely unmet need for unequivo-
cal sources of information regarding the molecular phenotypes
and potential pathology of variants of unknown significance
(VUS); in cancer genomes, such sources are critically needed
to assist in distinguishing driver mutations from overwhelm-
ing numbers of bystander mutations. VUS classification criteria
highlight the limitations in genome interpretation due to ambigu-
ous variant interpretation. Of the 458,899 variant submissions
in NCBI's ClinVar database with clinical interpretations, nearly
half (n=221,271) are VUS (as of November 5th 2018). Only
10,784 variants in ClinVar have been documented to affect
mRNA splicing at splice donor or acceptor sites, with 1,063
of these being classified as VUS, and cryptic mRNA splic-
ing mutations are not explicitly described. The current ACMG
criteria’ for variant pathogenicity prevent clinical classification
of most VUS. Functional evidence that VUS either disrupt or
abolish expression of genes has been sought to improve clas-
sification and provide insight into the roles, if any, of individual
VUS in predisposing or causing disease. We present a compre-
hensive data repository for a relatively common mutation type
(cis-acting variants that alter mRNA splicing). Mutations are pre-
dicted with information theory-based analyses’, and supported
with functional evidence that variants in tumor genomes are
specifically associated with abnormally spliced mRNAs that are
infrequent or absent in transciptomes lacking these variants®.

Information theory (IT) has been proven to accurately predict
impact of mutations on mRNA splicing, and has been used to
interpret coding and non-coding mutations that alter mRNA
splicing in both common and rare diseases™~'°. We have described
an IT-based framework for the interpretation and prioritization
of non-coding variants of uncertain significance, which has been
validated in multiple studies involving novel variants in patients
with history or predisposition to heritable breast and/or ovarian
cancer''7".

The Cancer Genome Atlas (TCGA) Pan-Cancer Atlas (PCA)
is a comprehensive integrated genomic and transcriptomic
resource containing data from >10,000 tumors across 33 different
tumor types'®. Here, we utilized IT-based tools for assessment
of high quality sequenced variants in TCGA patients for their
potential impact on mRNA splicing. The accuracy of pre-
dicted mutations was evaluated with an algorithm we previously
developed that compares transcripts from individuals carrying
these variants with others lacking them. The results of these
genome-wide analyses are presented using an online resource
which can be queried through the Beacon Network!”.

Methods

TCGA data acquisition and processing

Controlled-access data was obtained with permission from
the Data Access Committee at NIH for TCGA and from the
International Cancer Genomics Consortium. Patient RNA sequenc-
ing BAM files (tumor and normal, when available) and their
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associated VCF files (GRCh37) were initially obtained from
the CancerGenomeHub (CGhub). Files were later downloaded
through Genomic Data Commons using the GDC Data Transfer
Tool (version 1.3.0), as CGhub was decommissioned mid-project.
Variants in VCF files which did not pass quality control (QC) were
not analyzed.

Information analysis and RNA-Seq validation of splicing
variants

We used the Shannon Pipeline software (which applies IT to
rapidly perform high-throughput, in silico prediction of the
impacts of variants on mRNA splicing)'® to analyze all QC-
passing variants in VCFs from TCGA (>168 million variants) to
evaluate their potential impact on splice site binding strength
(changes in information content, R, measured in bits). Variants
which were predicted to strengthen known natural sites or
weaken cryptic splice sites were excluded from all subsequent
analyses.

To validate the potential impact of Shannon Pipeline-flagged
mutations, Veridical software analyzed genomic variants
(including insertions and deletions) by comparing the RNA-
Seq alignment in the region surrounding the variant with the
corresponding interval in control transcriptomes (normal and
tumor tissue of the same type) lacking the variant*'’. Veridical: a)
counts abnormally spliced reads in RNA-Seq data (categorized
as: cryptic site use, exon skipping, or intron inclusion [containing
or adjacent to the flagged mutation]), b) applies the Yeo-Johnson
transformation to these results, and c) determines the null
hypothesis probability (p-value) that the transformed read count
corresponds to normal splicing. In tumor types where normal
controls were not available, a set of RNA-Seq datasets from
100 different normal tissues from TCGA were used (e.g. a
combination of 5 tissue types: BRCA, BLCA, LUAD, KIRC,
PRAD). Veridical results that were not significant for a par-
ticular variant (p-value > 0.05 for all of the splicing categories)
were not further analyzed. After analysis, Veridical validated
351,423 unique mutations for their direct impact on mRNA
splicing (Table 1). The Shannon pipeline-flagged and Veridical-
filtered results were combined into a single large table
(Dataset 1°"), the source data for the ValidSpliceMut SQL
database and the associated Beacon application.

Development of the ValidSpliceMut database and Beacon

We created a publicly accessible Application Programming
Interface (API) (https://beacon.cytognomix.com) that can be
utilized to programmatically query variants passing filter thresh-
olds described above (Dataset 1°”). It was built in accordance
with the GA4GH Beacon v1.0.0 specification, which describes a
Representational State Transfer (REST) API for genetic data
sharing. A Beacon accepts queries using an HTTP request
and returns JavaScript Object Notation (JSON). Our Beacon
implementation is coded in PHP 7.0 and utilizes a MySQL
database (version: 5.7.24) with indexes applied to variant ID,
chromosome, and coordinate fields (GRCh37). The returned
JSON object reports whether the variant was found within our
Beacon dataset as well as metadata including splice site
coordinate, splice type, site type, the IT-based measures R.

i,initial
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Table 1. Unique Flagged Variants by TCGA Tumor Tissue Type*.

TCGA-ACC TCGA-BLCA TCGA-BRCA TCGA-CESC TCGA-CHOL TCGA-COAD TCGA-DLBC
1776 10,100 27,507 26,710 10,410 9600 6497
TCGA-ESCA TCGA-GBM TCGA-HNSC TCGA-KICH TCGA-KIRC TCGA-KIRP TCGA-LAML
12,856 1156 2834 27,340 6733 4747 20,770
TCGA-LGG TCGA-LIHC TCGA-LUAD TCGA-LUSC TCGA-MESO TCGA-OV  TCGA-PAAD
1432 14,981 18,618 2667 284 95,193 1593
TCGA-PCPG TCGA-PRAD TCGA-READ TCGA-SARC TCGA-SKCM TCGA-STAD TCGA-TGCT
90 997 5104 21,107 12,707 19,761 464
TCGA-THCA TCGA-THYM TCGA-UCEC TCGA-UCS TCGA-UVM
57,610 17,063 29,076 11,044 2501

“The number of Veridical-flagged mutations in each The Cancer Genome Atlas (TCGA) cancer data set. Variants shared
between multiple tissue types are counted for each category. Variant and RNA-Seq data were provided by The Cancer Genome

Atlas Pan-Cancer Analysis Project’®.

and R, Sl affected individual IDs, tumor type, Veridical evidence
by type annotated with significance level, and, if known, the
corresponding rsID with its average heterozygosity (dbSNP 150).
The metadata for each variant sent to the Beacon Network is a
concise subset of available results in our database. It includes
the first relevant database entry, meaning that if the variant exists
within multiple individuals only the first will contribute fields to
the metadata. However, among this metadata is a hyperlink to
our local website containing results for any remaining tumors.

We developed the website ValidSpliceMut (Figure 1) to serve
as a local interface to our Beacon, allowing users to manually
search for a variant, by gene name or genome coordinate range.
ValidSpliceMut automatically queries our Beacon, and formats
the results of the search, if any. This website provides a complete
view of variants, including Veridical-based evidence on all data
related to every affected individual. If a variant is associ-
ated with multiple splice sites, the user is presented with a brief
overview of all affected sites and must select a desired site to
continue. To obtain the coordinate of the queried variant in
gene-centric notation, a link is provided which queries the
Mutalyzer APl and generates coordinates for all available
transcripts. ValidSpliceMut only reports transcripts for the gene
affected by the variant.

A results page presents variant-specific data in tabular format and
an expandable list of panels describing the affected individuals.
Each of these panels contains Veridical output in tabular format
for the selected tumor, a link to the tumor metadata at US
National Cancer Institute (by querying the GDC API to obtain a
UUID which is used to construct a link to the GDC data portal),
an Integrative Genome Viewer (IGV) screenshot containing the
variant (IGV screenshots are available for selected variants,
see below), and a histogram which presents the expression
levels of the variant-containing gene compared to all other gene
expression levels across a selected normal tissue type (cre-
ated dynamically using gnuplot 5.0). The tissue expression data
is provided by GTEx (downloaded on 10/22/18). However,

several TCGA tumor types did not have a GTEx equivalent
(CHOL, DLBC, MESO, READ, SARC, THYM and UVM).
The GNF Expression Atlas 2°' was downloaded from the UCSC
Genome Browser and was used for expression data for both
lymph nodes (DLBC) and the thymus (THYM). For the remain-
ing tissues, expression data from the following studies were
obtained from the Genome Expression Omnibus (GEO):
GSE76297 (CHOL), GSE2549 (MESO), GSE15781 (READ)
GSE44426 (SARC), and GSE44295 (UVM).

To generate IGV images presented on the webpage, a bash
script was written to automatically load the RNA-Seq BAM file
of a patient with a mutation of interest into IGV, set the viewing
window within the region of interest (300nt window, centered
on the variant), sorted to bring reads containing the variant of
interest to the top of the screen (to increase chance of visualiz-
ing mutant splice form), followed by a screen capture. The gen-
eration and storage of IGV images for all patient-mutation pairs
would be prohibitive due to limitations in time and server space
requirements. Therefore IGV images showing evidence of
splicing abnormalities were generated only for patient-mutation
pairs which met the most stringent criteria: the mutation was
required to be flagged for junction-spanning cryptic site use,
exon skipping, or intron inclusion (with mutation); the flagged
category must include 5 or more reads in this category; if the
variant is present in the dbSNP database (release 150), the
frequency was required to be < 1% of the population; and the
Veridical results, in which the mutations flagged were required
to exhibit p < 0.01 for at least one form of evidence of a
splicing abnormality. In some cases, the splicing event observed
by Veridical may not be present within the image window as
the automated procedure used to create these images does not
present all evidential sequence reads due to limitations on the
number of reads that are shown. Additionally, reads appear-
ing as exon skipping may instead indicate a pre-existing cryp-
tic site outside of the viewing window (see Table 2; FATI:
2.187521515C>A [c.11641-1G>T] and SMAD3:2.67482748C>G
[c.1155-3C>G]).
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A. { GRCh37 ‘ 11:108214098 G>T m

Or instead: Query by gene or range of coordinates (click to expand) »

VARIANT POSITION

Genomic position (g. notation) Gene-centric HGVS notation (c. notation)

chr11:9.108214098G>T LRG_135t1:c.8418G>T, NM_000051.3:c.8418G>T; NM_138292.3:¢.4374G>T; XM_005271561.1:c.8418G>T;
XM_005271562.1:¢c.8418G>T, XM_005271563.1:¢.8418G>T; XM_005271564.1:c.7374G>T

SPLICE SITE INFORMATION
Splice Site Coordinate R; before mutation € R; after mutation @ Splice Type Site Type
108214099 8.6742 ¥ 5.0805 DONOR NATURALSITE
VARIANT DATA

Gene rsID (dbSNP150) Average Heterozygosity (dbSNP150)
ATM rs762744146 0.0000
INDIVIDUALS

= TCGA-BH-A1ET (BRCA)

View TCGA-BH-A1ET metadata (NCI Genomic Data Commons)
Veridical validated this mutation based on 49 reads, each of which contain segments of two exons, skipping the affected exon.

Veridical validated this mutation based on 112 reads each of which either overlap the splice boundary or are wholly contained within an intron.

Evidence Type Cryptic @ Anti-Cryptic @ Exon Skipping @ Intron Inclusion € Intron Inclusion with Mutation €
Junction spanning 0 0 49 (p=0) 4 (p=0.1708) 0
Read Abundance 0 0 0 112 (p=0.0002) 0
Associated IGV Screenshot Tissue-specific Expression Histogram
V%_-_-___--Tl_!_-___-_-—_-_-_-_ 1l v
B 154 pi53 piag P13 PIZ  piidi Q123 | qia4 Qe G2 G223 23.1 C Breast - Mammary Tissue (GTEx)
[ 300 bp .
108,214,000 bp 108,214,100 bp ) 108,214,200 bp
e = - 100000
UNGID_11...Goverage I contains gene of interest

10000 N

1000

UNCID_1128458.6038
2e-0793-4084-bce3-4
4c2ec88931.50rted_g
nome_alignments barr

=)
S]

# of genes (log,,)

TAOTRONYRr e e22 RIRERERES
CraOTLoOr® S ot norooor R 0on®o
1 T rmrrrs s s rres - AN NNNNNN
Sequence - r
RefSeq Genes Expression Range - Breast - Mammary Tissue (GTEx) (Transcripts Per Kilobase Millions)

ATM

Figure 1. Screenshot of ATM:g.108214098G>T Results Provided By ValidSpliceMut Website. (A) The ‘Variant Position’ heading
displays the variant of interest in g. notation, and provides a link which queries the Mutalyzer API to obtain the variant coordinate in a
gene-centric ¢c. mutation format. Variant-specific and splice site-specific tabular results are presented under the headings “Splice Site
Information” and “Variant Data”. Results are organized by TCGA sample IDs harboring the mutation within a series of expandable panels. A
link is provided to patient tumor metadata on the GDC data portal. Each panel consists of read counts and p-values by Veridical evidence
type. Significant p-values (< 0.05) are highlighted in bold. Evidence types deemed “strongly corroborating” (Viner et al. 2014) are color
coded and correspond to the dynamically generated text appearing above the table. (B) An integrative genome viewer (IGV) image showing
alignment of expressed sequence reads. IGV screenshots are provided only for mutations present <1% of population (in doSNP 150), with
> 5 junction-spanning reads, and are highly significant (p < 0.01) for cryptic splicing, exon skipping, and/or intron inclusion with mutation.
A specific IGV screenshot for this sample captures the region surrounding the mutation. Here, several RNA-Seq reads show skipping of the
affected exon. (C) A dynamically generated histogram presents expression levels of all genes for a selected normal tissue type. Genes are
grouped into bins based on expression level, denoted on the x-axis. The number of genes present in each bin is shown on the y-axis (log,,
scale). The histogram key indicates the expression range of the variant-containing gene. Tissue type can be changed via a drop-down list.
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Table 2. Validated Splicing Mutations in COSMIC Cancer Gene Census genes in TCGA tumor genomes.

Gene

CASC5

DNMT3A

STAG2

STAG2

ATM

BARD1

GATA3

TP53

POLD1

SMAD3

PIK3R1

FATH

TGFBR2

PBRM1

PBRM1

SETD2

RB1

RBM10

Splice Mutation
15:40942786G>A
(c.6212+5G>A)

2:25467022A>G
(c.1851+2T>C)

X:123176495G>A
(c.462G>A)
X:123200024G>A
(c.2097-1G>A)

11:108214098G>T
(c.8418G>T)

2:215645882A>T
(c.716T>A)

10:8115701G>C
(c.1048-1G>C)

17:7577609C>T
(c.673-1G>A)

19:50920353A>G
(c.3119A>G)

15:67482748C>G
(c.1155-3C>G)

5:67591246A>G
(c.936-2A>G)

4:187521515C>A
(c.11641-1G>T)

3:30729875G>A
(c.1397-1G>A)

3:52682355C>G
(c.813+5G>C)

3:52685756A>G
(c.714+2T>C)

3:47079269T>A
(c.7239-2A>T)

13:49027249T>A
(c.1814+2T>A)

X:47006900G>T
(c.17+3G>T)

R, (bits)

48>17
(Natural Site)

3.6 >-35
(Natural Site)

6.5>35
(Natural Site)

19.5> 8.6
(Natural Site)

8.7 >5.1
(Natural Site)

0.9 > 3.1
(Cryptic Site)

09>-10.7
(Natural Site)

6.0 >-4.9
(Natural Site)

8.6 > 6.1
(Natural Site)

11.9>3.1-40>7.7
(Natural |
Cryptic)

75>-73
(Natural Site)

53>-24
(Natural Site)

84 >-25
(Natural Site)

6.8>29
(Natural Site)

7.7>0.7
(Natural Site)

98>21/64>90
(Natural |
Cryptic)

4.9 >-13.7
(Natural Site)

7.8>41
(Natural Site)

Tumor

AML

AML

BLCA

BLCA

BRCA

BRCA

BRCA

BRCA

COAD

COAD

GBM

HNSC

HNSC

KIRC

KIRC

KIRC

LUAD

LUAD

Observed Splicing Event

The natural donor site of CASC5 exon 19 (NM_144508.4) is weakened,
leading to a significant increase in intron inclusion.

The natural donor site of DNMT3A exon 15 (NM_022552.4) is abolished,
resulting in a significant increase in total exon skipping and intron
inclusion.

The natural donor of STAG2 exon 6 (NM_006603.4) is weakened, and a
significant amount of exon 6 skipping is observed.

The natural acceptor of STAG2 exon 21 (NM_006603.4) is weakened,
resulting in a significant increase in exon 21 skipping.

A natural donor site is weakened, leading to a significant increase in
ATM exon 57 (NM_000051.3) skipping events. Some reads with mutation
are involved in wildtype splicing (leaky splicing).

The mutation strengthens a cryptic site within BARD7 exon 4
(NM_000465.2). Reads which use activated cryptic site contain the
mutation (one exception). Some reads with mutation are involved in

wildtype splicing (leaky splicing).

The mutation abolishes the natural acceptor of GATA3 exon 6
(NM_002051.2). This both increases the use of a pre-existing exonic
cryptic splice site (4.2 > 5.6 bits; leads to an 8nt deletion) and
significantly increases total intron inclusion.

A natural acceptor site is abolished, activating a cryptic site 49nt
upstream (R =5.2 bits) of TP53 exon 7 (NM_000546.5).

The natural donor of POLD1 exon 25 (NM_002691.3) is weakened,
leading to a significant increase in total exon skipping.

This mutation both weakens the natural acceptor of SMAD3 exon 9
(NM_005902.3) and creates a cryptic site (does not appear to be
used). A significant amount intron inclusion reads are observed. Use
of a distant pre-existing cryptic acceptor (9.6 bits; 3598nt from natural
acceptor) was.

The natural acceptor of PIK3R1 exon 8 (NM_181504.3) is abolished,
which promotes a significant increase in exon 8 skipping.

The natural acceptor of FATT exon 22 (NM_005245.3) is abolished,
resulting in both intron inclusion (total intron inclusion and the use of a
2.3 bit cryptic site 82nt upstream of natural acceptor) and use of two

exonic cryptic sites (237nt and 234nt from natural acceptor; Ri=1.0 bits
and -0.2 bits, respectively).

TGFBR2 exon 6 natural acceptor (NM_003242.5) is abolished, leading
to multiple splicing events: intron inclusion, use of three cryptic sites
(85nt exonic [R=3.7 bits], 30nt and 972nt intronic [R=0.4 bits and
11.2 bits, respectively]), and exon 6 and 7 skipping (uses a novel exon
~55kb downstream of exon 7).

The natural donor of PBRM1 exon 8 (NM_018313.4) is weakened, which
leads to a significant increase in exon 8 skipping.

The natural donor of PBRM1 exon 7 (NM_018313.4) is abolished,
resulting in a significant increase in total exon skipping.

This mutation both significantly weakens the natural acceptor of SETD2
exon 18 (NM_014159.6) while strengthening a 4nt exonic cryptic site,
which is used.

The natural donor of RB7 exon 18 (NM_000321.2) is abolished, leading
to a significant increase in both exon skipping and intron inclusion. All
intron inclusion reads contain the mutation of interest.

The natural donor of RBM10 exon 2 (NM_005676.4) is weakened,
leading to a significant increase in exon 2 skipping.

Page 6 of 18


https://validsplicemut.cytognomix.com/view.php?targets=125911+192285+323326+369590+410710&referenceName=15&alternateBases=A&start=40942786&referenceBases=G&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=129064&referenceName=2&alternateBases=G&start=25467022&referenceBases=A&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=6613+11184&referenceName=X&alternateBases=A&start=123176495&referenceBases=G&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=5767+10663
https://validsplicemut.cytognomix.com/view.php?targets=113176&referenceName=11&alternateBases=T&start=108214098&referenceBases=G&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=106570+208638&referenceName=2&alternateBases=T&start=215645882&referenceBases=A&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=114544&referenceName=10&alternateBases=C&start=8115701&referenceBases=G&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=116892+168150+279296+279297+490653+740013
https://validsplicemut.cytognomix.com/view.php?targets=183505&referenceName=19&alternateBases=G&start=50920353&referenceBases=A&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=183217
https://validsplicemut.cytognomix.com/view.php?targets=183217
https://validsplicemut.cytognomix.com/view.php?targets=179242
https://validsplicemut.cytognomix.com/view.php?targets=180982+322528+576042&referenceName=5&alternateBases=G&start=67591246&referenceBases=A&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=168039&referenceName=4&alternateBases=A&start=187521515&referenceBases=C&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=168059&referenceName=3&alternateBases=A&start=30729875&referenceBases=G&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=22905&referenceName=3&alternateBases=G&start=52682355&referenceBases=C&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=23177&referenceName=3&alternateBases=G&start=52685756&referenceBases=A&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=18829+50609+166980
https://validsplicemut.cytognomix.com/view.php?targets=23090
https://validsplicemut.cytognomix.com/view.php?targets=18829+50609+166980
https://validsplicemut.cytognomix.com/view.php?targets=57714&referenceName=13&alternateBases=A&start=49027249&referenceBases=T&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=55844&referenceName=X&alternateBases=T&start=47006900&referenceBases=G&assemblyId=GRCh37&includeDatasetResponses=HIT
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Gene Splice Mutation R, (bits) Tumor Observed Splicing Event
RBM10 exon 3 (NM_005676.4) natural donor is abolished. RNAseq
RBM10 X:47028898G>T 8.7>-99 LUAD reads which overlap the exon-intron junction are observed (all reads
(c.201+1G>T) (Natural Site) contain mutation). Use of cryptic donor (61nt upstream of donor; R=1.7
bits) is observed as well.
; The mutation creates a 5.4 bit cryptic donor within DDX5 exon 4
DDX5 17(224542205(?&%(?)?&% (Cr1 ‘3ti>c %idtre) PRAD  (NM_004396.3), which would lead to a 4nt deletion of exon 4. Note that
‘ yp wildtype splicing is still the dominant isoform observed.
PTEN 10:89690802G>A 85>-23 PRAD The natural acceptor of PTEN exon 5 (NM_000314.4) is abolished,
(c.210-1G>A) (Natural Site) leading to an increased amount of total exon 5 skipping.
NRAS 1:115258669A>G 8.1>11 SKCM The mutation abolishes the natural donor of NRAS exon 2
(c.111+2T>C) (Natural Site) (NM_002524.4), which promotes a significant increase in exon 2 skipping
The mutation weakens PPP6C exon 2 (NM_002721.4) natural donor,
PPPEC 9:127933364C>T 6.7>3.7 SKCM leading to increased intron inclusion. All reads which cross the junction
(c.171G>A) (Natural Site) contain the mutation. A intronic cryptic site is also activated (110nt
downstr.; R=6.4 bits).
PPPEC 9:127923119C>G 6.8>-11.8 SKCM This mutation abolishes the natural donor of PPP6C exon 3
(c.237+1G>C) (Natural Site) (NM_002721.4), resulting in a significant increase in exon 3 skipping.
) A cryptic donor within BAP1 exon 4 (NM_004656.3) is strengthened,
BAP1 8524425121 -C 1.9>51 UVvM leading to a significant increase in its use. Its use leads to a 27 nt

(c.233A>Q) (Cryptic Site)

deletion of exon 4.

Example mutations which alter splicing in tumor-associated genes found in patients with the same tumor type. Mutations are linked to their page on
https://validsplicemut.cytognomix.com/, which provides additional material such as RNAseq images of the regions of interest. GRCh37 coordinates provided.

Dataset validation and discussion

We have derived a GA4GH-standardized, searchable web
resource for a large set of validated mRNA splicing variants
present in diverse tumor types. All variants passing QC in TCGA
cancer patients were analyzed with the Shannon pipeline'®.
This revealed that 1,297,242 variants were predicted to have sig-
nificant impacts on normal mRNA splicing (347,549 natural
and 985,112 cryptic splice sites; 35,419 affecting both types).
Subsequent RNA-Seq analysis with Veridical® provided evi-
dence of abnormal gene expression specifically associated with a
subset of these variant(s), identifying 351,423 unique mutations.
Results are searchable through either the Beacon Network, or our
publicly-accessible webpage.

Our results contrast with another TCGA study that investigated
alternative mRNA splicing” and demonstrated a limited set
of non-constitutive exon-exon junctions attributable to cis-acting
splicing mutations (n = 32). The 2,736 novel or rare variants
that we report which specifically activate cryptic splicing (sig-
nificant ‘junction-spanning cryptic site use’ reads found by
Veridical), exceed the number reported in another study that
analyzed all available TCGA tumor transcriptomes (n=1,964)>.

Validated variants (which we define as mutations) were also
tallied by tumor tissue type in our study (Table 1). 33.6% of
unique mutations (n=117,951) significantly weaken natural splice
sites, while 69.6% (n=244,415) strengthen novel or pre-existing
cryptic sites. 242,983 mutations (69%) are absent from dbSNP
150. 73,975 mutations (21%) are present in <1% of the popu-
lation, of which 27,803 of these (and those not present in
dbSNP) were present in multiple tumor types. Valid mutations
lacking rsIDs represent either novel or recently observed

variants. This low level of dbSNP saturation is consistent with
the idea that many currently unknown mRNA splicing muta-
tions may yet be discovered through additional sequencing
studies.

In Table 2, we highlight a subset of validated splicing mutations
(n=25) which were identified in known driver genes implicated
in the COSMIC (Catalogue Of Somatic Mutations In Cancer)
Cancer Gene Census catalog (CGC)™. These mutations are
associated with either increased exon skipping, intron inclu-
sion, and/or cryptic site use. Mutations in Table 2 are hyperlinked
to the ValidSpliceMut webpage which provides additional infor-
mation, including expression evidence supporting predictions
made by the Shannon pipeline.

Many mutations generated multiple types of abnormal read
evidence present in mis-spliced transcripts. Interestingly, a
subset of mutations (n=28) produced evidence for every type
of abnormal splicing reported by Veridical. Dataset 2 (see
Data Availability) describes 11 representative mutations that
simultaneously increase exon skipping, intron inclusion, and
activate (or significantly increase utilization of) a strengthened
cryptic site. In all but one instance, the mutation weakens the
natural site while simultaneously strengthening a nearby cryp-
tic site. The one exception involves the gene SAP30BP, where
simultaneously occurring mutations in the same read (in linkage
disequilibrium; separated by 4 nucleotides) independently cause
two separate splicing changes: g.73702087G>A (c.661-1G>A;
abolishes the natural acceptor of exon 10) and g.73702091G>A
(c.664G>A; creates a weak cryptic acceptor site). The combined
splicing impact of these variants is significant exon skipping,
intron inclusion, and use of the activated cryptic site.
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https://validsplicemut.cytognomix.com/view.php?targets=54388&referenceName=X&alternateBases=T&start=47028898&referenceBases=G&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=19017+60799+327789+327790+405494+576619&referenceName=17&alternateBases=T&start=62500098&referenceBases=TACAG&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=61622&referenceName=10&alternateBases=A&start=89690802&referenceBases=G&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=73858&referenceName=1&alternateBases=G&start=115258669&referenceBases=A&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=72760&referenceName=9&alternateBases=T&start=127933364&referenceBases=C&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=75296&referenceName=9&alternateBases=G&start=127923119&referenceBases=C&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/view.php?targets=17306+17307+819156&referenceName=3&alternateBases=C&start=52442512&referenceBases=T&assemblyId=GRCh37&includeDatasetResponses=HIT
https://validsplicemut.cytognomix.com/
https://beacon-network.org/#/
https://validsplicemut.cytognomix.com/
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/census

Because of the requirement for expression validation, this
resource presents a set of splicing abnormalities in which we
have the highest confidence. We anticipate that some correct pre-
dictions of the Shannon pipeline may have not been validated by
Veridical due to the limitations of mRNA detection; for exam-
ple, either low expression of the gene harboring the mutation
or nonsense-mediated decay of the corresponding transcript
could be consistent with the effects of a valid splicing mutation,
but in the absence of a sufficient number of abnormal reads, the
mutation could not be confirmed. Furthermore, at the time that
the current analysis was performed, the available Shannon pipe-
line version did not report regulatory splicing variants adjacent to
constitutive and cryptic splice sites which influence exon defi-
nition. Due to the substantial processing required for the
complete TCGA dataset, the present analysis does not incorporate
the effects of these variants on exon definition, which we have
modeled by IT®; it does not predict the relative abundance of leaky,
natural and cryptic isoforms, though such information might be
inferred from the expression data on each tumor. The current
version of Shannon pipeline does integrate predictions of
splicing regulatory sequences and accounts for relative abun-
dance of mRNA isoforms by exon definition, and is available
through the MutationForecaster system.

The Validated Splicing Mutation resource should substantially
contribute to reducing the number of outstanding VUS in tumor
(and possibly some germline) genomes, and substantially increases
the number of functional variants with previously unappreci-
ated consequences to mRNA splicing, in particular, activation of
cryptic splice sites. In our previous study'’, a subset of the TCGA
breast cancer patient data was evaluated with IT-based tools,
identifying 988 mutations as significantly altering normal
splicing by Veridical (19% of total mutations flagged by IT).
This database greatly expands the size of the repository. Here,
a higher ratio of rare or novel mutations have been validated by
Veridical (24% of total mutations were flagged by IT). The
higher yield found could be related to the same mutation being
present in multiple samples from the same tumor type and
other tumor tissues, which would be expected to increase the
probability of observing abnormally expressed splice forms for
the mutation.

bioRxiv
An earlier version this article is available from bioRxiv: https://doi.
org/10.1101/4744522

Software availability
Archieved code and scripts used as part of this study are available
from Zenodo,

Zenodo: Validated Splicing Mutations Beacon API http://doi.
org/10.5281/zenodo.1579898%

Zenodo: Validated Splicing Mutations Website

org/10.5281/zenodo.1579822%

http://doi.

F1000Research 2018, 7:1908 Last updated: 17 MAY 2019

Zenodo: Expression Data Processing, Histogram input generation
and IGV Bash Script Generating Programs http://doi.org/10.5281/
zenodo.1582421%

All software is licensed under a Creative Commons Attribution-Non
Commercial-ShareAlike 4.0 International Public License

Data availability

Zenodo: Dataset 1. Validated natural and cryptic mRNA
splicing mutations. Source data computed by the Shannon pipeline
and Veridical, displayed on the ValidSpliceMut website (https:/
validsplicemut.cytognomix.com/). DOI: http://doi.org/10.5281/
zenodo.1488211%

Zenodo: Dataset 2. Mutations which lead to multiple types
of aberrant splicing. Representative set of mutations which
significantly alter splicing in all evidence types analyzed by
Veridical (i.e. cryptic splice site use, exon skipping, intron
inclusion). Mutations are linked to their page on https:/
validsplicemut.cytognomix.com/, which provides additional mate-
rial such as RNA-Seq images of the regions of interest. DOI:
https://dx.doi.org/10.5281/zenodo.148994 1%

License: CCO 1.0

Consent

Controlled-access TCGA sequence data was accessed with
permission from NCBI (dbGaP Project #988: “Predicting
common genetic variants that alter the splicing of human gene
transcripts”; Approval Number #13930-11; PI: PK Rogan) and
the International Cancer Genome Consortium (ICGC Project
#DACO-1056047; “Validation of mutations that alter gene
expression”).
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The paper entitled "Pan-cancer repository of validated natural and cryptic mRNA splicing mutations”

by Shirley, Mucaki and Rogan describes an extensive analysis of pancancer somatic variants in samples
of the TCGA dataset to identify mutations that affect splicing. To this aim, the authors combine the
methods that they previously developed to predict mutations affecting splicing, with a validation of their
effect on matched mRNA data from TCGA.

The study is technically sound and follows a line of investigation that has been a long standing interest of
the authors. Despite this, | have a number of comments that hopefully will help strengthen the study:
1. The authors write that their IT-based framework to predict slicing variants "has been validated in

multiple studies" and they refer to numerous papers. However, in all of them they act as
co-authors, showing that their method is mostly used by themselves and their collaborators. This is
not necessarily a problem, but it would certainly strengthen the study if the authors would perform a
comparative assessment of their performance with other available methods to predict splicing
mutations, for example those in doNSFP. This will provide a less biased interpretation of the final
results.

. Somehow related to the previous point, the authors mention that their results "contrast with another

TCGA study that investigated alternative mRNA splicing". In my opinion this point should be further
explored: what are the main differences and what is the extent of overlap in concordant
predictions? What are the possible reasons for these differences? This is important because the
cited paper in Cancer Cell analysed the same dataset of mutations.

. The authors notice that the number of variants which activate cryptic splicing exceed the number

reported in a recently published study in Cell Reports. Similarly to before: what is the extent of
overlap between the two datasets? Stating that a dataset is bigger than another one is not
necessarily an indication that it is better.

. The authors validate ~27% of predicted splicing variants using the mRNA data (351k validated of

the 1.2M predicted). This is a surprisingly low fraction. Later in the manuscript, the authors briefly
discuss about the possible reasons of such a discrepancy. One of them is the possible occurrence
of nonsense mediate decay which will not confirm the mutations because no or very few reads will
be detected. However, as the authors acknowledge, the absence of supporting reads only in
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mutated individuals as compared to the presence of reads in WT sample would be a strong
indication of the effective role of these mutations on splicing. This can be quantified from the same
RNAseq data and in my opinion should be done.

5. In general, the authors seem to exclude that their prediction method could lead to false positives.
Rather they justify the poor overlap with limitations of mMRNA detection. If this is the case, this
should be quantified and probably a comparison with other prediction methods could help.

6. Of the >351k mutations with an effect on splicing supported by RNA data, only 35 affect CGC
genes. Is this only a subset of mutations affecting driver genes or is it the complete list? In the
former case, | would suggest that the authors provide the full list as supplementary data. In the
latter case, the authors should discuss the implication of such a low number. Considering that
there are >700 CGC genes, does it mean that aberrant slicing is very rarely a driver event? Is the
overwhelming majority of splicing variants passenger?

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Partly

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Computational cancer genomics

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Peter Rogan, University of Western Ontario, London, Canada

We thank the reviewer for their valuable comments. Our responses follow:

1. The authors write that their IT-based framework to predict slicing variants "has been validated in
multiple studies" and they refer to numerous papers. However, in all of them they act as
co-authors, showing that their method is mostly used by themselves and their collaborators. This is
not necessarily a problem, but it would certainly strengthen the study if the authors would perform a
comparative assessment of their performance with other available methods to predict splicing
mutations, for example those in dbNSFP. This will provide a less biased interpretation of the final
results.

Response: We have previously compared our mutation prediction methods with others. Mucaki et
al. Hum. Mut. 34:556-65 (2013) showed that IT-based single mutation and exon definition methods
performed as well or better than MaxEntScan and Human Splice Finder websites. MaxEntScan
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computes relative entropy which is similar to IT, except it applies a correction for local base
composition (which does not measure free energy, in contrast with IT: J. Theor. Biol. 201:87-92,
1989). Human Splice Finder does not measure changes in binding affinity and its basis is ad hoc.
We also reviewed all articles (300+) which have used IT-based tools to predict changes in splicing
(Caminsky et al., F1000Research 3:282, 2014). This reference covers the vast majority of studies
that used IT-based bioinformatic tools for mutation analysis and, compared results obtained using
these tools with other available software. The cited studies included a large proportion of mutations
that we, ourselves, did not coauthor, or were analyzed by others, removing an obvious source of
bias.

Regarding potential bias in our results, the IT-based position weight matrices (iPWMs) of splice
recognition sites that we derived and use are based on a comprehensive set of splice sites
spanning all known coding genes (see appendix of Rogan et al. Pharmacogenetics & Genomics
13(4):207-18, 2003). Other bioinformatic methods for splice site detection are based on many
fewer splice sites for PWMs and are much more likely to be subject to bias based on how those
sites were chosen. Also, the determination of information content in natural and mutated splice
sites obeys the second law of thermodynamics (Schneider, J. Theor. Biol. 189:427-41, 1997);
information contents have been formally proven to be related to binding affinities of splice site to
splicesomes and splicing factors. MaxEntScan differs from IT because it applies a correction for
local base composition, which is energetically and biochemically irrelevant to binding site affinity,
and is therefore, biased.

As comparisons of IT with other methods have been covered previously, and the F1000Research
Data Note article format is intended to specifically present results using the new resource we
describe, in our opinion, reevaluation of other algorithms would not add anything of value to this
manuscript.

2. Somehow related to the previous point, the authors mention that their results "contrast with
another TCGA study that investigated alternative mRNA splicing”. In my opinion this point should
be further explored: what are the main differences and what is the extent of overlap in concordant
predictions? What are the possible reasons for these differences? This is important because the
cited paper in Cancer Cell analysed the same dataset of mutations.

Response: The paper being referred to in the reviewer's comment is Kahles et al., Cancer Cell.,
34(2):211-224.e62018. This paper reports: “In a joint analysis of cis and trans associations with
50% prior on each type, we identified 32 cis- and seven trans-sQTL (Bonferroni corrected p <
0.05).” Information regarding these cis- sQTLs can be found here:
https://api.gdc.cancer.gov/data/3920a044-6874-4049-8010-55f0922243b7.

However, the document that provided does not indicate that these are actual splicing mutations.
The document contains SNP coordinates, but not sequence changes. An assessment of known
rsIDs at these coordinates only accounted for only 7 of the variants in our database. In fact, none of
the substitutions (nor the rsIDs) in the article could be related back to changes in mRNA splice
strength. It is not possible to comparison the results presented in this paper to those in Kahles et al.
(2018).

3. The authors notice that the number of variants which activate cryptic splicing exceed the number
reported in a recently published study in Cell Reports. Similarly to before: what is the extent of
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overlap between the two datasets? Stating that a dataset is bigger than another one is not
necessarily an indication that it is better.

Response: Jayasinghe et al. Cell Rep.;23(1):270-281.e3 (2018) identified 2056 variants in TCGA
patients which activated cryptic splice sites, of which 1964 were confirmed by manual review of
RNAseq data using the Integrated Genome Viewer (IGV). The data provided (Supplementary
Table S1; “Passed Manual Review” tab) was sufficient to perform a comparison with our results.
We scanned their manually reviewed variants using the Shannon Pipeline (SP). Despite reporting
1964 manually reviewed mutations, 50 mutations are shared between multiple patients (there are
1914 unique mutations total). 1510 of these mutations were found to alter at least one mRNA
splice site (natural or cryptic), of which 1176 met our SP filtering criteria (either decreased natural
site strength or cryptic splice sites strengthened by >2 bits and exceeding the strength of the
nearest natural site of the same polarity).

We considered the possibility that splicing mutations in Jayasinghe et al. that were not flagged by
SP could have instead altered the strength of splicing regulatory factor binding sites (SRFs). The
high-throughput IT-based variant analysis tools needed to address this question were not available
at the time the TCGA genomic data were processed. We recently introduced a new version of SP
which is capable of analyzing variants impacting both constitutive splice sites and SRFs (including
SRSF1, SRSF2, SRSF5, SRSF6, hnRNPA1, ELAVL1, PTB and TIA1). Upon analysis of the
variants in Jayasinghe et al. for IT-derived changes in natural, cryptic and SRF binding site
strengths, 1746 of the 1914 (91.2%) were found to be significant. It is conceivable that remaining
unclassified variants may affect binding by splicing factors for which we have not yet derived
iPWMs (i.e. SRSF7).

Of the 1176 variants meeting our filtering criteria, 824 were flagged by Veridical (70.1%).
Interestingly, 27 Veridical-flagged mutations alter the same genomic coordinate in different
tumours and another 64 affect the adjacent genomic coordinate within the same splice site in other
individuals. We further investigated the remaining mutations (those evaluated, but not flagged) to
better understand the discrepancy. In approximately 10% of cases, Veridical did not find any
alternative validating cryptic splicing events in the region that contrasted with the read distribution
in the set of control transcriptomes. For example, chr9:35389842G>C in TCGA-CN-5370 was
expected to abolish the natural acceptor site of UNC13B exon 24, however the read counts for
intron inclusion in the RNAseq data were too sparse to be deemed significant (p=0.33).

Jayasinghe et al. also found mutations in TCGA patients that were not evaluated in our study. This
could occur for either because the RNASeq BAM file for a particular TCGA patient failed to
download, or the “key” file that associates the BAM file to its TCGA name was incomplete in some
tumors (i.e. TCGA-CG-4436; TCGA-STAD), due to both the BAM file name and header lacking this
information. This would not impact the accuracy of the data that is present in our database or that
we report, only the level of concordance between our results and those of Jayasinghe et al.

When comparing this dataset with our own, we discovered an instance where discrepant RNAseq
data for the same tumour in the same TCGA patient led to different IT results. Originally, Veridical
did not find a significant splicing change in POLR1B exon 14 at the +1 position, a G>A mutation
g.113331138G>A, present in patient TCGA-Z6-AAPN in the ESCA dataset. When we manually
reviewed the RNAseq BAM file used in this analysis, alternate or exon skipped splice forms were
not observed, confirming the results reported from Veridical. In fact, TCGA deposited two separate
BAM files containing RNAseq data for this same patient:
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“TCGA-Z6-AAPN-01A-11R-A406-31_rnaseq.bam” and
“UNCID_2681450.b17c4505-8a84-4cdd-8782-fbc456deb2a6.sorted_genome_alignments.bam”.
The latter BAM file shows evidence of both predicted exon skipping and activation of a cryptic
acceptor site 12 nt downstream of exon 14 of POLR1B. Comparison of SNPs between these BAM
files in other genes did not show any evidence of sample switching or contamination. Although this
issue does not appear to be widespread in the TCGA dataset, such discrepancies exceed the
scope of our study, and rightfully should be addressed by TCGA.

Nevertheless, this discovery did prompt us to re-analyze the TCGA-ESCA variants through
Veridical using the second set of BAM files, and we have now included those results to
ValidSpliceMut. In this new set, the previously mentioned POLR1B mutation is deemed significant
due to increased exon skipping (86 reads showing exon skipping; p=0.0000).

4. The authors validate ~27% of predicted splicing variants using the mRNA data (351k validated
of the 1.2M predicted). This is a surprisingly low fraction. Later in the manuscript, the authors
briefly discuss about the possible reasons of such a discrepancy. One of them is the possible
occurrence of nonsense mediate decay which will not confirm the mutations because no or very
few reads will be detected. However, as the authors acknowledge, the absence of supporting
reads only in mutated individuals as compared to the presence of reads in WT sample would be a
strong indication of the effective role of these mutations on splicing. This can be quantified from the
same RNAseq data and in my opinion should be done.

In the revision of this paper, the fraction of validated predicted splicing variants in the
ValidSpliceMut database increased from 27% to 31%, as a result of a series of improvements in
the software used for processing. SP was significantly upgraded over the course of this project,.
The previous iteration would incorrectly report information changes at pre-existing splice sites
adjacent to certain mutations. These sites were characterized by genomic coordinates that were
altered by insertions or deletions (indel), regardless of whether the site overlapped or included the
sequence change. In such instances, some altered natural splice sites could be designated as
cryptic sites. SP also reported changes at cryptic acceptor and donor sites in the first and last
exons of a gene, respectively, which were not likely to have a meaningful impact on splicing.
Therefore, all datasets processed prior to this upgrade were reanalyzed for indel variants. The
TCGA ESCA dataset was reprocessed with a second set of RNAseq BAM files (see above
response to point 3), which increased the fraction of flagged mutations for that tumor type. Finally,
we processed an additional 7 tumor datasets from ICGC and included the validated mutations in
our primary beacon database. The statistics of mutations, their distributions and support have been
updated in the present version of the manuscript.

From our perspective, the proportion of variants validated is not “a surprisingly low fraction". The
results reported here are consistent with our previous published studies (Dorman et al., Sci. Rep.
4: 7063, 2014). Aside from NMD, as demonstrated below, some mutations that significantly alter
splice site strength may not have been flagged by Veridical as a consequence of low levels of
expression of the gene in the tumor (or controls) itself. Furthermore, Veridical cannot make an
accurate assessment of the region of interest in control samples if these lack sufficient read
abundance levels to determine the probability (p-value) of observing expression in the
mutation-containing vs control samples. Also, our analysis did not take into account other impacts
of the variant on sequences that influence exon definition, such as binding to splicing regulatory
factors or mRNA secondary structure. In our response to point 3, we described a discrepancy in
BAM file sources, which could also lead to a lower fraction of confirmed variants. Finally, miscalled
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variants (despite the stringent quality control criteria applied to select variants) could contribute to
the fraction of variants not supported by Veridical analysis. Such technical artifacts have been
shown to be quite common in exome sequencing in areas of the genome characterized by low
mappability (from Shi et al., Cell Rep. 2018 Nov 6;25(6):1446-1457, 2018): “Examination of the
genomic locations of mutations revealed that 41.1% of the artifactual somatic mutations occurred
in regions of low mappability compared with only 6.4% for the validated somatic heterogeneous
mutations.”

As indicated in our response to point 3, the previous version of this paper only evaluated variants
for theirimpact on constitutional mRNA splice sites and cryptic sites, and excluded impacts of
mutations at splicing regulatory factor binding sites (SRFs). The scope and time required to assess
SRFs precluded the reanalysis of all datasets for such changes. However, to address the issue
raised by the reviewer, we evaluated the degree to which ignoring SRFs would affect the overall
discovery of splicing-related variants. The updated version of the Shannon Pipeline (SP) with this
capability was used to examine 1050 mRNA splicing variants that have been demonstrated to
affect exon recognition (Cheung et al., Mol Cell. 2019 Jan 3;73(1):183-194.e8). These splicing
variants were experimentally validated using a high throughput, multiplexed splicing minigene
reporter assay in that study. SP reported a change in splicing and/or SRF binding strength for 1017
of these 1050 mutations (96.9%; where change in SRF strength was = 3 bits). After accounting for
SRF location (e.g. exonic TIA1 sites were eliminated, since these have not been proven to have
splicing effects; see Table 1 of Caminsky et al., F1000Res.;3:282, 2014, for a full description of
each SRF), the number of flagged variants was reduced to 940 (89.5%). Based on changes in
constitutive splice site strength alone, 447 variants were flagged (435 weaken natural sites, 14
strengthen cryptic sites to a level exceeding the nearest natural site). Therefore, 46.3% of the
constitutive mutations at natural or cryptic splice sites were also flagged by SP. This suggests that
the lower predictive accuracy of SP in our original submission was, in part, due to the limitations in
its ability to detect pathogenic mutations in SRF binding sites.

We addressed the reviewer’s suggestion to compare expression of the same gene in tumours with
Veridical-validated mutations with other tumors with SP-predicted mutations in the same gene that
were not experimentally validated. To perform the analysis, we obtained pre-processed mRNA
expression data from the same RNAseq sources of TCGA patients from cBioPortal (
www.cbioportal.com; provisional datasets were used, which contained largest number of patients
for each tumor type). We extracted these gene expression values with a software program we
wrote that determined transcripts per million (TPM) for each gene containing a SP-flagged variant.
Expression values for gene present multiple times (due to the presence of multiple splice
isoforms) were averaged for the particular tissue from which they were derived.

We separated mRNA expression values for each gene in TCGA patients into the Veridical-flagged
vs. non-validated SP-predicted mutation categories, and performed a Student’s t-test on the two
groups. The expression values of 58.2% of genes were statistically distinct with 90% confidence;
>2 patients per category per gene). With at least 10 patients per category, the number of
statistically different genes increased to 69.3%. Among these genes, patients with
Veridical-flagged variants had higher overall gene expression in 99.7% of cases. These inherent
differences in expression suggest that the failure to validate predicted mutations may be related to
little or no expression of these genes in tumour and/or control samples, rather than to accuracy of
IT prediction methods. Non-sense mediated decay could be responsible for the decreased
expression of these mutated genes in the tumour genomes that carry them, or the failure to
validate could be related to low levels of expression of these genes in the particular tissues from
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which the tumours were derived. This analysis is now described in the revised manuscript
(‘Dataset validation and discussion,’ para. 8).

Note: The gene expression data from cBioPortal had some limitations: 4196 genes containing
variants flagged by SP are not present in the mRNA expression datasets, though the vast majority
occurred in non-coding RNAs (i.e. 145 microRNAs, 194 LINC RNAs) or other uncharacterized
RNAs (e.g. 324 ‘LOC’ RNAs). Furthermore, certain TCGA patients that we analyzed were not
available in cBioPortal among the available expression datasets (2 TCGA-BRCA, 18
TCGA-COAD, 19 TCGA-GBM, 1 TCGA-HNSC, 1 TCGA-LUAD, 119 TCGA-OV, 4 TCGA-READ, 4
TCGA-STAD, 4 TCGA-THCA, and 7 TCGA-UCEC patients). Nevertheless, sufficient data were
obtained for the analysis that we carried out.

Furthermore, this analysis has other caveats, especially regarding the accuracy of RNAseq
quantification between samples, even upon normalization of the data. The vast majority of TCGA
tumor samples do not have a matched normal counterpart, and many TCGA tumor datasets (e.qg.
TCGA-LAML) do not provide any normal control RNAseq data at all. While we could perform an
analysis in which the tumor is compared to a set of normals for the same tissue, variation in
expression between different individuals would obfuscate evidence of any apparent NMD caused
by the mutation. A 50% reduction of expression (or less) may not be observable under these
conditions.

5. In general, the authors seem to exclude that their prediction method could lead to false positives.
Rather they justify the poor overlap with limitations of mMRNA detection. If this is the case, this
should be quantified and probably a comparison with other prediction methods could help.

Response: We have quantified RNA expression in tumors for mutations that were validated by
Veridical vs those which were not (see response to point 4). Regarding false positives: An
extensive comparison of Information Theory to other bioinformatic programs which evaluate
variants for splicing impact (MaxEntScan and Human Splice Finder) has been performed (Mucaki
et al. 2013; Caminsky et al. 2014; see response to point 1). False positives are extremely rare
because strength of binding sites (in bits) is directly related to their binding affinities; we have
demonstrated that unused cryptic splice sites in the vicinity of natural splice sites are significantly
weaker. Based on our experience and published analyses of a genome-wide site of binding sites
(Rogan et al. 2003), such decoy splice sites are nearly always at least 4 bits (274 or 16 fold)
weaker than sites that are actually recognized by spliceosomes.

The predictive accuracy of the IT methodology for detecting expression-validated mutations was
determined to be 87.9% (762 of 867 variants from 122 different publications; changes to SRFs
were included in this variant dataset; Caminsky et al. 2014). This value is similar to the predictions
made to those of Cheung et al. (2019), where we predicted splice site and/or SRFs changes to
89.5% mutations experimentally validated to cause exon definition events.

The performance of IT-based methods for predicting splicing mutations has been well established
over the past two and a half decades. Re-evaluation of its accuracy is not necessary, and this
issue is, at best, only tangentially relevant, to the purpose of presenting the resource described in a
Data Note article.

6. Of the >351k mutations with an effect on splicing supported by RNA data, only 35 affect CGC
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genes. Is this only a subset of mutations affecting driver genes or is it the complete list? In the
former case, | would suggest that the authors provide the full list as supplementary data. In the
latter case, the authors should discuss the implication of such a low number. Considering that
there are >700 CGC genes, does it mean that aberrant splicing is very rarely a driver event? Is the
overwhelming majority of splicing variants passenger?

Response: There are 25 CGC genes indicated in Table 2, however these were never intended to
be interpreted to be a complete list of CGC genes with Veridical-flagged mutations. The table has
been renamed to indicate that these are a set of representative mutations. In the previous version
of this paper, the number of variants (“n=25") did not indicate the total number of CGC genes. This
has been removed and replaced with the actual number of CGC splicing mutations that were
validated:

“In Table 2, we highlight a subset of validated splicing mutations which were identified in known
driver genes implicated in the COSMIC (Catalogue Of Somatic Mutations In Cancer) Cancer Gene
Census catalog (CGC) 27. In total, 543 “Tier 1” CGC genes have at least one Veridical-flagged
variant present in the ValidSpliceMut database.”

Competing Interests: Not applicable.

Reviewer Report 12 December 2018
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© 2018 Buratti E. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Emanuele Buratti
International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy

The increasing amount of sequencing data that is being generated in many biological systems has
represented a real challenge to researchers in terms of trying to link individual changes to a particular
biological process. The attempt, described in this work, to use IT approaches to evaluate the potential
biological significance can significantly contribute to fill this gap. The laboratory of Peter Rogan has a long
standing and internationally prominent role in addressing the possible consequences of sequence
variants on the pre-mRNA splicing process especially with regards to its connection with human

disease. The ValidSpliceMut developed in this work presents a user friendly interface that allows users to
manually search for a variant (by gene name or genome coordinate range) and obtain information with
regards to its possible effect on splicing. This will greatly help to better appreciate the functionality of
Variants of Unknown Significance that are currently abundant genomic and transcriptomic Atlases.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Page 17 of 18


https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/census
https://cancer.sanger.ac.uk/census
https://doi.org/10.5256/f1000research.18813.r41666
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-1356-9074

FIOOOResearch F1000Research 2018, 7:1908 Last updated: 17 MAY 2019

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: | have more than twenty years experience in the investigation of pre-mRNA splicing
processes and especially their potential connection with a variety of human diseases, both monogenic
(Cystic Fibrosis, Pompe Disease, Neurofibromatosis) and polygenic (Amyotrophic Lateral Sclerosis,
Frontotemporal Dementia). | am the author of more than 160 research papers in peer-reviewed
publications and of several articles in scientific books on these subjects (orcid.org/0000-0002-1356-9074)

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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