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Abstract

The analysis of cancer omics data is a “classic” problem; however, it still remains challenging. 

Advancing from early studies that are mostly focused on a single type of cancer, some recent 

studies have analyzed data on multiple “related” cancer types/subtypes, examined their 

commonality and difference, and led to insightful findings. In this article, we consider the analysis 

of multiple omics datasets, with each dataset on one type/subtype of “related” cancers. A 

Community Fusion (CoFu) approach is developed, which conducts marker selection and model 

building using a novel penalization technique, informatively accommodates the network 

community structure of omics measurements, and automatically identifies the commonality and 

difference of cancer omics markers. Simulation demonstrates its superiority over direct 

competitors. The analysis of TCGA lung cancer and melanoma data leads to interesting findings.
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1 | INTRODUCTION

For most, if not all, cancer types, omics profiling studies have been extensively conducted. 

The early studies are usually focused on a single cancer type/subtype. More recently, as 

represented by the National Cancer Institute (NCI) pan-cancer study, more and more studies 

have conducted the joint analysis of data on multiple cancer types.1,2 Such studies can be 

more challenging and more informative than those on a single cancer type.3–5 On one hand, 
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with the well-known heterogeneity, differences across cancer types are expected. On the 

other hand, many studies have suggested the shared omics basis of multiple cancers.6 As 

such, a certain level of commonality is also expected. It is important to acknowledge and 
accommodate both difference and commonality in analysis.

In the literature, the heterogeneity (difference) across different types of cancers has been 

sufficiently acknowledged. In contrast, the difference among subjects with the same type of 

cancer has been noted to a less extent.7–9 To fix idea, consider the TCGA (The Cancer 

Genome Atlas) melanoma data analyzed in study (for more details, refer to Section 4.1). In 

Figure 2, we show the plots of Breslow thickness (response variable) against the expressions 

of three genes. The three colors correspond to the three different cancer stages, and the lines 

are generated using lowess smoothing. It is easy to see that, for different stages of the same 

cancer, the effects of genes on the response variable are significantly different. It is noted 

that data on the three stages have been included in one single dataset, and this particular 

data10 as well as those alike11 have usually been analyzed as a whole, with insufficient 

attention to heterogeneity/difference. In short, accommodating omics difference associated 

with a third variable (stage in this particular example) is much needed but insufficiently 

studied.8

Many analytic approaches have been developed for analyzing a single cancer omics dataset.
12,13 Such methods can be used to analyze, for example, the TCGA melanoma dataset as a 

whole, which stresses commonality but cannot accommodate difference. They can also be 

applied to one part of data (which may correspond to one stage, subtype, etc) at a time, and 

then, results are compared across different data parts to draw conclusions on commonality 

and difference.9 One major problem is that, since each data part often has a small sample 

size, results from single-part analysis and hence the final results can be unsatisfactory. 

Related discussions have been extensively provided in recent integrative analysis studies.
4,5,14 In the literature, the work that is the most relevant to this study is perhaps the 

contrasted penalization,15 which encourages similarity in analysis results (especially 

regression coefficients) across datasets. Contrasted penalization and some other approaches 

can be limited by identifying similarity but not commonality, in the sense that parts of the 

analysis results (from multiple datasets) may be similar but not identical (and thus are not 

commonly shared). In addition, they may not sufficiently accommodate the coordination 

among omics variables.

The analysis scheme of this study is described in Figure 2. The left panel describes the true 

model structure. Here, the three columns correspond to three datasets (with each dataset 

corresponding to one cancer subtype, stage, etc), and the rows correspond to genes (or other 

omics units). The genes form three communities with sizes nine, seven, and six, which are 

generated from network analysis and describe the coordinated nature of genes. The genes 

that are associated with the responses are colored. For this schematic example, the orange 

community behaves the same for the three datasets (commonality), while the yellow and 

green communities behave differently (difference). Our goal is to conduct community-based 
analysis (so as to sufficiently accommodate gene coordination) and identify commonality as 
well as difference in genes’ associations with responses. For such a purpose, a Community 

Fusion (CoFu) approach is developed. In the middle and right panels of Figure 2, the 
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analysis results using an alternative and CoFu are provided, where CoFu has a more accurate 

identification (more definitive results are provided below in simulation).

For the analysis of cancer omics data, this study has a unique focus on identifying both 

commonality and difference and complements the existing studies. A novel CoFu approach 

is developed. Advancing from methods that pool all datasets together, it can flexibly allow 

difference across datasets. By jointly analyzing multiple datasets (and hence conducting 

integrative analysis), it can be more effective than analyzing multiple datasets individually 

and then pooling results. Advancing from contrasted penalization and other related 

approaches, it conducts community-based analysis and can identify commonality as opposed 

to similarity. Overall, this study can deliver a practically useful new venue for analyzing 

cancer omics data and may lead to important new findings.

2 | METHODS

Consider the analysis of K independent datasets. Each dataset can be on a different type of 

cancer or a different stage of the same cancer (or be stratified in another meaningful way). In 

dataset k( = 1, …, K), there are nk i.i.d. observations. Here, homogeneity is assumed within 

but not across datasets. Denote yk = (y1
k, …, ynk

k )⊤ as the response vector and Xk ∈ ℝ
nk × p

 as 

the design matrix for genes (or other omics units). To simplify notation, it is assumed that 

the same set of genes is measured in all K datasets. In addition, assume that data processing, 

for example, normalization, has been properly conducted.

For the kth dataset, consider the linear regression (LR) model

yk = Xkβk + ϵk, k = 1, 2, …, K,

where βk = (β1
k, …, βp

k )⊤ is the length-p vector of regression coefficients, and ϵk is the vector 

of random errors. Here, we first consider LR, which is the most popular and matches data 

analyzed in this article. The proposed method is applicable to other models, for example, the 

GLM model. More details are provided in Appendix A in the supporting information.

For analyzing cancer omics data, network-based analysis, which takes a system perspective 

and accommodates the interconnections among genes, has been shown to be more 

informative than individual-gene-based analysis. In our analysis, we accommodate the 

network community structure, with the understanding that genes in the same community 

tend to behave in a coordinated manner, while those in different communities tend to behave 

differently. In recent literature, there have been extensive studies on network and community 

construction.16 Here, we adopt existing construction and assume that the community 

structure is available prior to analysis. Assume that the p genes belong to L non-overlapping 

communities, with p(l) genes in community l. Denote β(l)
k  as the coefficient vector for 

community l in dataset k.

We propose the CoFu estimate
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βk:k = 1, …, K = argmin ∑
k = 1

K 1
2nk

yk − Xkβk
2
2 + λ1 ∑

k = 1

K
βk

1

+ λ2 ∑
k = 1

K − 1
∑
l = 1

L
β(l)

k − β(l)
k + 1

2 ,

(1)

where λ1, λ2 > 0 are data-dependent tuning parameters. The nonzero components of βk

correspond to genes that are associated with the response in dataset k. If If β(l)
k1 = β(l)

k2, then 

genes in community l behave the same in datasets k1 and k2.

That is, they represent the commonality shared by the two datasets. Otherwise, they 

represent the difference. As such, the proposed analysis can simultaneously identify both 

commonality and difference.

Rationale. In (1), with K independent datasets, the lack-of-fit measure is the sum of K 
individual ones. Normalization by sample size is taken to avoid domination by larger 

datasets. The first penalty is Lasso, which has been adopted in a large number of studies. It 

accommodates the high data dimensionality and conducts regularized estimation and 

selection of relevant genes. When desirable, it can be replaced by other, more complicated 

penalties. For example, when it is desirable to accommodate network adjacency (between 

any two nodes), then Laplacian-type penalties can be further added.

The main advancement is the second penalty, which conducts community-level analysis and 

has a fusion form. Tailored to data analyzed in Section 4, the penalty has been designed for 

datasets with a natural order. For example, dataset k may correspond to cancer stage k. For 

two adjacent datasets, the fusion penalty encourages equal regression coefficients, that is, 

commonality. However, it is flexible and does not reinforce commonality. Different from the 

“standard” fusion penalties, it is imposed on the regression coefficients of different datasets. 

Different from the contrasted penalties, it conducts community-based analysis: a whole 

community will be concluded as behaving the same (or differently) in multiple datasets. The 

results so generated can be more interpretable than those individual gene based. In addition, 

with a nonzero probability, the proposed penalty may generate β(l)
k1 = β(l)

k2, differing from the 

contrasted penalization,15 which generates similar but not identical estimates. For scenarios 

where a natural order of data does not exist, the second penalty can be revised as 

λ2∑k, j = 1, …, K ∑l = 1
L β(l)

k − β(l)
j

2 . Loosely speaking, the newly proposed penalty has a 

group Lasso form (on the differences of coefficient vectors). It can be potentially replaced 

by other group penalties (as well as other techniques that can conduct group selection).

2.1. Computation

To tackle the nonseparability of the penalty, we introduce a new set of parameters: 

ηk = βk − βk + 1 .In addition, we also define a set of parameters δk = βk to separate the L1 
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norm operation and the sum of squares operation defined on βk. Then, the minimization in 

(1) is equivalent to the following constrained optimization problem:

min f (β, η, δ) ≡ ∑
k = 1

K 1
2nk

yk − Xkβk
2
2 + λ1 ∑

k = 1

K
δk

1 + λ2 ∑
k = 1

K − 1
∑

l = 1

L
η(l)
k

2,

subject to

βk − βk + 1 − ηk = 0, k = 1, 2, …, K − 1,

and

βk = δk, k = 1, 2, …, K .

Here, β = ((β1)⊤, …, (βK)⊤)
⊤

, η = ((η1)⊤, …, (ηK − 1)⊤)
⊤

, and δ = ((δ1)⊤, …, (δK)⊤)
⊤

.By the 

augmented Lagrangian method,17 the estimates can be obtained by minimizing

ℒ(β, η, δ, u, v) = f (β, η, δ) + ∑
k = 1

K − 1
(uk)⊤(βk − βk + 1 − ηk) + ∑

k = 1

K
(vk)⊤(βk − δk)

+ σ
2 ( ∑

k = 1

K − 1
βk − βk + 1 − ηk

2
2 + ∑

k = 1

K
βk − δk

2
2),

where the dual variables u = ((u1)⊤, …, (uK − 1)⊤)
⊤

 and v = ((v1)⊤, …, (vK)⊤)
⊤

 are Lagrange 

multipliers, and σ > 0 is the penalty parameter. Throughout this article, we set σ = 2, which 

leads to satisfactory numerical results.

We compute the estimate of (β, η, δ, u, v), denoted as (β, η, δ , u, v), iteratively by using the 

alternating direction method of multipliers. For a given (η, δ, u, v), to obtain the update of β, 

we set ∂L/∂β to be zero, where

L = ∑
k = 1

K 1
2nk

Xkβk − yk
2
2

+ σ
2 ( ∑

k = 1

K − 1
βk − βk + 1 − ηk + uk /σ 2

2 + ∑
k = 1

K
βk − δk + vk /σ 2

2)

= 1
2 Xβ − y

2
2

+ σ
2 ( Aβ − η + u/σ 2

2 + β − δ + v/σ 2
2) .

X = diag (X1/ n1, …, Xk / nk), y = ((y1/ n1)⊤, …, (yK / nk)⊤)
⊤

.ej is the length-K column 

vector, with the jth element equal to 1 and the rest equal to 0. 

Δ = e j − e j + 1, j = 1, …, K − 1 ⊤ .A = Δ ⊗ I p, where Ip denotes the p × p identity matrix, and 

⨂ denotes the Kronecker product.
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Thus, for a given (η(t), δ(t), u(t), v(t)) at the tth iteration,

β(t + 1) = X⊤X + σ(A⊤A + I pK) −1 × X⊤y + σ A⊤(η(t) − u(t)/σ) + δ(t) − v(t)/σ , (2)

where IpK denotes the pK × pK identity matrix.

The component of the Lagrange function ℒ(β, η, δ, u, v) that depends on δ is

λ1 δ
1

+ σ
2 β − δ + v/σ

2
2

.

Hence, the closed-form solution for δ is

δ = STλ1/σ(β + v/σ),

where STλ(X) = sign (X)( | X | − λ)+ is the soft thresholding function, and (x)+ = x if x > 0, and 

(x)+ = 0 otherwise. Then, the update of δ at the (t + 1)th iteration is

δ(t + 1) = STλ1/σ[β(t + 1) + v(t)/σ] . (3)

For ηk, the relevant component in ℒ(β, η, δ, u, v) is

λ2 η(l)
k

2 + σ
2 β(l)

k − β(l)
k + 1 − η(l)

k + u(l)
k /σ 2

2 . (4)

The minimizer of (4) is

η(l)
k = (1 −

λ2
σ β(l)

k − β(l)
k + 1 + u(l)

k /σ 2
)

+

(β(l)
k − β(l)

k + 1 + u(l)
k /σ), k = 1, 2, …, K − 1.

We can thus obtain the update of η(l)
k  at the (t + 1)th iteration as

η(l)
k (t + 1) = (1 −

λ2
σ β(l)

k (t + 1) − β(l)
k + 1(t + 1) + u(l)

k (t)/σ 2
)
+

× β(l)
k (t + 1) − β(l)

k + 1(t + 1) + u(l)
k (t)/σ .

(5)

Finally, the estimates of u, v are updated as
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u(t + 1) = u(t) + σ[Aβ(t + 1) − η(t + 1)], (6)

v(t + 1) = v(t) + σ[β(t + 1) − δ(t + 1)] . (7)

Overall algorithm. The overall algorithm proceeds as follows.

Step 1: Initialize β(0). Let δ(0) = β(0), η(0) = Aβ(0), u(0) = 0, and v(0) = 0. In our numerical 

study, we use the Lasso estimate (without fusion) as the initial value.

Step 2: At the (t + 1)th iteration, compute β(t + 1), δ(t + 1), η(t + 1), u(t + 1), and v(t + 1)
according to Equations (2), (3), (5), (6), and (7), respectively.

Step 3: Repeat Step 2 until convergence. Specifically, convergence is concluded if all of the 

primal residuals and dual residuals are small enough, that is,

max Aβ(t + 1) − η(t + 1) 2, β(t + 1) − δ(t + 1) 2, δ(t + 1) − δ(t) 2, η(t + 1) − η(t) 2 < ϵ

In numerical study, ϵ is set to be 10−3.

Tuning parameter selection. The proposed approach involves two tuning parameters: λ1 and 

λ2. In numerical study, they are selected using V-fold cross validation (CV). In this article, V 
= 5. More specifically, each dataset is partitioned randomly into five non-overlapping 

subsets with equal sizes. We apply a two-dimensional grid search for λ1 and λ2 with 

λ2 ∈ (0.001, 0.01, 0.1, 1) . Let λ1
max be the minimal λ such that all regression coefficients shrink 

to 0, ie, λ1
max = maxk

(Xk)⊤yk

nk ∞
.We choose λ1

min to be some small fraction (default value is 

0.01 in our implementation) of λ1
max and log-linearly interpolate between λ1

min and λ1
max . For 

the CoFu method, the CV is computationally affordable. For example, the five-fold CV for a 

simulated dataset takes less than 15 minutes on a desktop PC.

3 | SIMULATION

In simulation, we set K = 3, nk = 200, and p = 1000. Genes form L = 50 non-overlapping 

communities, with community sizes ranging from 3p
4L to 5p

4L . As in the literature,14 we 

simulate omics measurements from multivariate normal distributions, which may mimic 

gene expression data (as analyzed below). The normal distributions have marginal means 0, 

marginal variances 1, and correlation matrix Σ. The following correlation structures are 

considered: (a) structured correlation. Omics measurements within the same communities 

are more strongly correlated than those in different communities. More details are provided 

below; (b) unstructured correlation. The correlation coefficient between measurements i and 

j is randomly sampled from the uniform distribution 𝒰[0.2, 1]; and (c) no correlation. That is, 
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all omics measurements are independent. This may serve as a test of sensitivity and examine 

performance of the proposed approach when there is a lack of well-defined network 

structure.

Roughly speaking, the structured correlation matrix corresponds to the scenario where two 

genes within the same community are strongly correlated while two genes within different 

communities are weakly correlated. Since, in reality, it is possible that not all genes within 

the same community are correlated, we generate the structured correlation matrix via 

network-based analysis, which is considerably more complicated than in the literature and 

consists of the following steps: (a) generate an unweighted network with a community 

structure,* (b) add a weight to each edge, which quantifies the connection between two 

nodes (omics measurements), and (c) generate the correlation matrix Σ. More specifically, 

we adopt the degree-correlated stochastic block model18 to generate an unweighted network 

with a community structure. To mimic networks in reality, we generate a degree sequence of 

nodes following the power-law distribution with exponent y. For each pair of nodes i and j, 

an undirected edge is placed with probability

pi j = < d > p
Z did jqmim j

, (8)

where Z = ∑i, jdid jqmim j
 is the normalization constant, di is the degree of node i, < d > is the 

average degree of nodes, and mi represents the community that node i belongs to. qmim j

represents the connection probability between communities mi and mj. If m1 = m2, qm1m2
 is 

sampled from an uniform distribution 𝒰[0.3, 0.5], otherwise qm1m2
= 0.02 . In all simulations, 

we set γ = 2.5 and < d > = 10. Next, we add a weight to each edge. Specifically, for edges 

between nodes in the same community and edges between nodes in different communities, 

weights are sampled independently from uniform distributions 𝒰[0.5, 1] and 𝒰[0.2, 0.5],
respectively. Denote the adjacency matrix of the weighted network as Σ0 , with all diagonal 

elements equal to 1. Note that Σ0 is not necessarily positive definite. To guarantee positive 

definiteness, we set Σ = Σ0 − (λmin − 1
p )Ip, where λmin is the smallest eigenvalue of Σ0 , and 

Ip is the p × p identity matrix. For a more intuitive presentation, we plot one simulated 

structured correlation matrix in Figure B1 (Appendix B in the supporting information) with 

p = 200, L = 10, and other parameters as described above. As shown in the Figure, only 

genes that are connected by an edge are correlated. The correlation between two connected 

genes within the same community is strong, whereas that between two connected genes 

from different communities is weak.

Each dataset has r important omics measurements with r = 100 and 150, which are 

distributed uniformly across communities. All communities are divided randomly into three 

categories: (a) all-overlapping, where the three datasets have the same sparsity structure and 

also the same regression coefficients; (b) half-overlapping, where datasets 1 and 2 share half 
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of the important effects, for which the regression coefficients are identical. The same is true 

for datasets 2 and 3. Half of the important effects in datasets 2 and 3 are dataset specific; and 

(c) non-overlapping, where there is no important effect shared by any two datasets. Denote 

ρa, ρh, ρn(ρa + ρh + ρn = 1) as the proportions of all-, half-, and non-overlapping 

communities, respectively. For the important effects, their regression coefficients are (a) all 

set to be 0.5; (b) sampled from the uniform distribution 𝒰[0.2, 1], and (c) sampled from 

different distributions. Specifically, the nonzero regression coefficients in dataset 2 are from 

𝒰[0.4, 0.7], those specific to dataset 1 are from 𝒰[0.1, 0.3], and those specific to dataset 3 are 

from 𝒰[0.8, 1] . The random errors are simulated independently fromN(0,1). The response 

variables are computed from the linear models.

We compare CoFu with two closely related alternatives: (a) P.Lasso, which pools all datasets 

together and applies Lasso. This approach emphasizes commonality but cannot detect 

difference across datasets; and (b) S.Lasso, which applies Lasso to each dataset separately, 

and then, the results are combined and compared. This is virtually a meta-analysis strategy, 

allows difference, but cannot encourage commonality. For CoFu and the alternatives, we are 

mainly interested in two identification accuracy. The first, as in many other studies, is the 

identification of nonzero effects. The second, which is unique to this study, is the 

identification of communities that behave the same/differently in different datasets. More 

precisely, for a given community, if the L2 norm of the difference between the regression 

coefficient vectors of two adjacent datasets is less than 0.01, we conclude commonality; 

otherwise, difference is concluded. The identified commonality/difference is compared 

against the true. For the proposed as well as alternatives, tuning parameter values affect 

identification performance. To get a more comprehensive view and minimize the (possibly 

different) impact of tuning on different methods, we follow the literature, consider a 

sequence of tunings, and evaluate using the receiver operating characteristic approach, under 

which the area under the curve (AUC) is the measure of identification accuracy (more details 

in Appendix C in the supporting information). Considering that, in practice, a definitive set 

of results may be desirable, we also evaluate identification results using true/false positive 

rates with tunings selected using five-fold CV. In addition, we evaluate estimation and 

prediction performance. Specifically, estimation is quantified by using estimation root mean 

square error (RMSE), which is defined as ∑k βk − βk
2
2
, and prediction is quantified by 

using prediction RMSE, which is defined as ∑k yk − Xkβk
2
2

.

We simulate 100 replicates for each setting. For the settings with all nonzero coefficients 

equal to 0.5, we show the identification of nonzero effects in Table 1 and differentiation of 

communities with commonality/difference in Table 2, where the AUC summaries are 

presented. Results for the other settings are shown in Appendix B in the supporting 

information. The proposed CoFu is observed to have favorable performance in identifying 

nonzero effects. Consider for example Table 1. With r = 100, (ρa, ρh, ρn) = (0.4, 0.1, 0.5), and 

the structured correlation, the mean AUCs are 0.746 (P.Lasso), 0.775 (S.Lasso), and 0.823 

(CoFu), respectively. Performance of S.Lasso is not strongly affected by the overlapping 

across datasets, as it analyzes each dataset separately. In general, S.Lasso has good 
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performance; however, it is inferior to CoFu under most settings. P.Lasso has superior 

performance when the sets of important effects in the three datasets almost entirely overlap, 

for example, when (ρa, ρh, ρn) = (0.9, 0, 0.1) . However, as expected, its performance 

deteriorates significantly when there are large differences across datasets. It is noted that 

CoFu still has competitive performance even under the worst case scenario, thus providing a 

“safe” choice in practice. Similar observations are also made under the other settings as 

presented in Appendix B in the supporting information. In the differentiation of community 

commonality/difference, note that as P.Lasso is not capable of identifying differences across 

datasets, its results are not presented. Simulation shows that CoFu significantly outperforms 

S.Lasso. For example in Table 2 with r = 100 and (ρa, ρh, ρn) = (0.1, 0, 0.9), CoFu has AUCs 

0.739 (structured), 0.762 (unstructured), and 0.724 (independence), respectively, while 

S.Lasso has AUCs below 0.6. For the settings presented in Appendix B in the supporting 

information, the observed patterns are similar. The results with tunings selected using CV 

are presented in Table B5-B7 (Appendix B in the supporting information). The CoFu 

method is observed to have superior performance in terms of identification, estimation, and 

prediction.

Simulation is also conducted under the Logit model, a representative of generalized linear 

models. Details of the estimation procedure are presented in Appendix A in the supporting 

information. In simulation, covariates are generated in the same way as described above. The 

response values are generated from the Logit model and Bernoulli distribution. The 

identification results measured by AUCs are presented in Tables B8 and B9 (Appendix B in 

the supporting information). The CoFu method is observed to have similar superior 

identification performance as under the LR model. It is noted that the improvement over the 

alternatives may not be as large as under the LR model. To this end, we conduct a 

nonparametric test on the paired AUC values and find that the improvement is statistically 

significant for all scenarios. For example, for r = 100, (ρa, ρh, ρn) = (0.1, 0, 0.9),and from 

𝒰[0.2, 1], the differences between the CoFu’s and S.Lasso’s AUC values have p-values 0.002 

and < 10−9 for nonzero effect and community identification, respectively.

4 | DATA ANALYSIS

TCGA is a collaborative effort organized by NCI and has recently published high-quality 

profiling data on multiple cancer types. The analysis of TCGA data has led to interesting 

findings. In our analysis, both clinical and genetic data are downloaded from the cBioPortal 

website.

4.1. Analysis of cutaneous melanoma data

We first consider the SKCM (cutaneous melanoma) data.10 As in the literature,19 the 

inclusion criteria are (1) white patients, (2) no neo-adjuvant therapy before tumor sample 

collection, (3) the type of skin upon which melanoma arose is nonglabrous skin, (4) no 

missing values in Breslow thickness and AJCC pathologic tumor stage, and (5) with gene 

expression measurements. In our analysis, we are interested in the regulation of Breslow 

thickness, which is an important prognostic marker, by gene expressions. In published 

studies,20 similar analysis has been conducted, however, using samples of all tumor stages 
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and with insufficient attention to the potential difference across stages. Partly motivated by 

Figure 2, our “hypothesis” is that the regulation relationships for different stages have 

commonality as well as difference. There are a total of 240 samples, with 70 in stage I, 60 in 

stage II, and 110 in stages III and IV.

A total of 18 947 gene expression measurements are available. From the KEGG pathway 

database downloaded from the Broad Institute, we identify 5266 unique genes, representing 

186 pathways. Matching those gene names with those in the SKCM dataset, we identify 

4243 genes for downstream analysis. Although, in principle, it is possible to directly apply 

the proposed approach to these genes, to obtain more reliable analysis results, we further 

conduct a supervised screening. Specifically, we compute the Pearson correlation coefficient 

of each gene with the response variable and identify those with p-values less than 0.05. A 

total of 973 genes are identified. We construct a dense network based on correlations and 

then generate a sparse one by filtering out edges that are not statistically significant at the 

0.05 level.21 The resulted network has 15 891 edges (detailed structure available from the 

authors). The Louvain method,22 which performs a greedy optimization of community 

identification in a hierarchical manner, is applied and identifies 46 communities.

The analysis results of CoFu are summarized in Figure 3. Briefly, a total of 21 communities, 

with 126 genes, are identified as associated with the response. Among them, eight 

communities behave the same across the three stages, and the rest behave differently. More 

detailed estimation results are available from the authors. Simply eyeballing Figure 3 

suggests that some communities, for example, 22, 39, and 45, demonstrate significantly 

different stage-specific properties. Such differences have not been well noted in the literature 

and deserve additional attention. Literature search suggests that the CoFu-identified genes 

may have important implications. For example, the gene that has the strongest signal in all 

three stages is ARMC, armadillo repeat containing 2. It belongs to a family of Armadillo 

repeat proteins, which play important roles in cell-cell adhension, cytoskeletal regulation, 

and intracellular signaling. Other genes that also have strong signals in all three stages 

include C10orf114 and KTGNR. C10orf114 is also known as CASC10. Over expression of 

C10orf114 is associated with poor survival in glioma and urothelial cancer 

(www.proteinatlas.org/ENSG00000204682-CASC10/cell). KTGNR (DNAH5) encodes an 

axonemal heavy chain of dynein proteins. It works as a force-generating protein with 

ATPase activity. The TRA2B-DNAH5 fusion has been identified as a novel oncogenic driver 

in lung cancer.23 In addition to the genes that are associated with Breslow depth in all three 

stages, we have also identified genes that have strong signals only in the earlier or later 

stages. The top three genes that only have strong signals in stage I are DKFZP434B094, 

AK3, and ANKS1A. AMN and PDCR are found to have strong signals only in stage II. 

FAM219B and BSDC1 are found to be stage III and IV specific. In addition, genes that are 

more associated with Breslow depth in later stages are LOC392331, ANKRD20A20P, 

CRELD2, CEBPG, and others. CEBPG is one of the C/EBP transcription factors that 

regulate cell growth and differentiation of various tissues. One study has shown that CEBPG 

is a suppressor of myeloid differentiation in acute myeloid leukemia.24

Different findings are generated by the alternatives. The estimated coefficients are plotted in 

Figures B3 (S.Lasso) and B4 (P.Lasso) in Appendix B in the supporting information. 
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S.Lasso identifies 38 communities, with 176 genes, as associated with the response variable, 

and P.Lasso identifies 39 communities, with 105 genes. With their particular properties, 

S.Lasso identifies all communities (with nonzero effects) as behaving differently across 

stages, while P.Lasso identifies all communities as behaving the same. Biologically 

speaking, the CoFu results, which have both commonality and difference, are more sensible.

We also evaluate prediction performance and stability of each method. Specifically, each 

dataset is randomly divided into a training set and a testing set, with sizes 2:1. The 

regression parameters are estimated only using the training set and used to make prediction 

for the testing set. We use the RMSE of the response variable to measure prediction. For the 

three methods, the RMSEs are calculated as 1.077 (P.Lasso), 1.095 (S.Lasso), and 1.005 

(CoFu). In addition, for each gene, we compute the proportion of being identified in 100 

resamplings, which has been referred to as the Observed Occurrence Index (OOI) in the 

literature, to measure the stability of this gene. The highest 20 OOIs are shown in Figure B7 

(Appendix B in the supporting information). CoFu has OOIs (0.823) higher than P.Lasso 

(0.782) and S.Lasso (0.711).

4.2. Analysis of lung cancer data

In TCGA, there are two lung cancer datasets, on Lung Adenocarcinoma (LUAD) and Lung 

Squamous Cell Carcinoma (LUSC), respectively. In the literature, they have been separately 

analyzed,25,26 and differences have been acknowledged.27 However, as they are both non-

small cell lung carcinomas, certain commonality is expected. For both LUAD and LUSC, 

the inclusion criteria are (1) no neo-adjuvant therapy before tumor sample collection, (2) in 

stage I of the AJCC pathologic tumor stage measurement, and (3) with FEV1 (forced 

expiratory volume in 1 second, prebroncholiator) and gene expressions measured. More 

details on sample selection are provided in Figure B2 (Appendix B in the supporting 

information). In this analysis, the response variable is FEV1, a critical measure of lung 

function. The final sample sizes are 142 (LUAD) and 89 (LUSC), respectively. For gene 

expressions, we conduct a similar processing as described above. Specifically, 20 531 gene 

expressions are initially available for analysis. Matching with the KEGG pathway 

information leads to 4243 genes. The p-value based marginal screening further reduces the 

number of gene expressions to 901. Using the same approach as described above, 41 

communities are constructed.

The analysis results of CoFu are summarized in Figure 4. A total of 26 communities, with 

54 genes, are identified as associated with the response. Among them, 13 communities 

behave the same for both LUAD and LUSC. Figure 4 suggests that some communities, for 

example, 9 and 13, behave significantly differently for LUAD and LUSC. Literature review 

again suggests that the findings are biologically sensible. Specifically, among the identified 

genes, CCNG2 has the strongest signal for both LUAD and LUSC. CCNG2 encodes protein 

cyclin G2, which has been shown to be a tumor suppressor in several studies.28,29 A recent 

study shows that lung cancer patients with higher CCNG2 expressions had longer overall 

survival. Another gene that has a strong signal in both cancers is BRI3BP, BRI3-binding 

protein. Over expressions of BRI3BP are found to promote drug induced apoptosis via cross 

talking between mitochondria and endoplasmic reticulum. We also identify 24 genes that are 

Sun et al. Page 12

Stat Med. Author manuscript; available in PMC 2020 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with the response in LUAD but not LUSC. Among them, Chemokine-like 

receptor 1 (CMKLR1) has the strongest signal. CMLKLR1 is a transmembrane 

multifunctional receptor and found to play an important role in inflammatory. One genetic 

variant of CMLKLR1, rs1878022, is found to be significantly associated with poorer 

survival in advanced stage non-small cell lung cancer.30 Another gene that we find to be 

associated with lung function in LUAD only is DLGAP5, DLG associated protein 5. 

DLGAP5 is a mitotic spindle protein and involved in mitosis processes. A study by 

Schneider et al31 shows that DLGAP5 expression is higher in lung tumor tissues. Lung 

cancer patients with the overexpression of DLGAP5 tend to have poorer survival. Genes that 

have strong signals in LUSC but not LUAD include CALHM2, BTBD3, CLPP, and others. 

CALHM2 encodes protein calcium homeostasis modulator family member 2, which plays a 

critical role in the modulation of neural activity via ATP-releasing channel. The BTB 

domain-containing 3 (BTBD3) gene is found to be upregulated in Hepatocellular carcinoma 

tissues.32 The genetic variant of BTBD3 is also found to be significantly associated with 

survival in non–small cell lung cancer patients.33 CLPP, caseinolytic mitochondrial matrix 

peptidase proteolytic subunit, belongs to the peptidase family S14. Its function is to 

hydrolyze proteins into small peptides in the mitochondria matrix. Increased protein 

expression is found in type I endometrial cancer patients.34

The alternative analysis results are presented in Figures B5 (S.Lasso) and B6 (P.Lasso) in 

Appendix B in the supporting information. S.Lasso identifies 27 communities with 44 genes. 

No commonality is identified. P.Lasso identifies 31 communities with 44 genes, all of which 

behave the same for the two cancers. In terms of prediction, the CoFu RMSE is 0.917, lower 

than S.Lasso (0.999) and P.Lasso (1.023). The OOI results are represented in Figure B7 

(Appendix B in the supporting information). CoFu has the highest OOIs among the three 

methods.

4.3. Simulation

It has been recognized in some studies that simulated data may be “simpler” than real data. 

Here, we conduct an additional set of simulation based on the SKCM data analyzed above. 

Specifically, the observed gene expression data and community structure are used in 

simulation. The structure of important covariate effects is the same as described above in 

Section 3. The identification results for community and individual effects are summarized in 

Table B10 (Appendix B in the supporting information). Although there are some small 

numerical differences, the observed patterns are similar to those in Section 3, providing a 

strong support to the effectiveness of the proposed method.

5 | DISCUSSION

In the literature, although the commonality and difference of “related” cancers have been 

noted, effective analysis methods are still lacking. This study fills this knowledge gap by 

developing a novel community fusion method. The CoFu method has an intuitive 

formulation and can be effectively realized. Although sharing some similar spirits with the 

existing fused and contrasted penalization methods, it also has significant advancements by 

conducting the integrative analysis of multiple datasets, promoting commonality as opposed 
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to similarity, and accommodating the community structure among genes. Numerical studies 

have demonstrated its superiority over the direct competitors. We have mostly described the 

proposed method under the LR model. As described in Appendix A in the supporting 

information as well as in the simulation, the proposed method can be extended to the Logit 

model, a representative of generalized linear models. A closer examination of the penalty 

function and computation suggests that the CoFu method can be potentially coupled with 

others, for example prognosis, outcomes and models. More complicated penalties can take 

the place of Lasso. For example, when it is desirable to accommodate network adjacency, 

Laplacian penalties can be further imposed. The group Lasso-type fusion penalty can also be 

replaced by other group penalties. In the first data analysis, the “stratification” variable is 

cancer stage, which has a sound biological basis. It should be noted that, as demonstrated in 

simulation, the proposed method can accommodate different degrees of commonality/

difference. As such, the choice of the stratification variable is not critical. In fact, the 

proposed method can be applied to “test” whether the response-omics relationships are the 

same with respect to a specific stratification variable.

Limitations of this study may include a lack of theoretical investigation and deeper 

bioinformatics analysis of the data analysis results. Such pursuit will be deferred to future 

research. We will also defer possible extensions as discussed above to future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Analysis of the TCGA melanoma data: Breslow thickness against the expressions of three 

genes. Three colors correspond to three cancer stages [Colour figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 2. 
Scheme of analysis. Left: true model structure. Middle: analysis by an alternative. Right: 

CoFu analysis [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3. 
Analysis of the TCGA SKCM data. Blue crosses correspond to stage I, red circles to stage 

II, and green filled circles to stage III and IV [Colour figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 4. 
Analysis of the TCGA lung cancer data. Blue crosses correspond to LUAD, and red circles 

to LUSC. [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 1

Simulation under the linear regression model: mean(sd) of area under the curve for effect identification. All 

nonzero coefficients are equal to 0.5

Structured
r = 100

Unstructured Independence Structured
r = 150

Unstructured Independence

(ρa,ρh,ρn) = (0.1,0,0.9)

 P.Lasso 0.619(0.014) 0.593(0.015) 0.62(0.013) 0.578(0.017) 0.574(0.013) 0.579(0.018)

 S.Lasso 0.77(0.009) 0.833(0.01) 0.761(0.012) 0.695(0.015) 0.777(0.01) 0.685(0.012)

 CoFu 0.771(0.01) 0.813(0.012) 0.753(0.012) 0.694(0.012) 0.762(0.012) 0.676(0.013)

(ρa,ρh,ρn)= (0.1,0.9,0)

 P.Lasso 0.732(0.015) 0.743(0.02) 0.725(0.015) 0.621(0.02) 0.703(0.012) 0.646(0.021)

 S.Lasso 0.781(0.013) 0.85(0.012) 0.782(0.012) 0.689(0.013) 0.787(0.007) 0.687(0.013)

 CoFu 0.827(0.013) 0.891(0.008) 0.814(0.009) 0.73(0.012) 0.8(0.012) 0.716(0.015)

(ρa,ρh,ρn)= (0.2, 0.6, 0.2)

 P.Lasso 0.752(0.017) 0.719(0.023) 0.744(0.017) 0.689(0.018) 0.666(0.014) 0.68(0.016)

 S.Lasso 0.772(0.011) 0.847(0.011) 0.76(0.011) 0.699(0.012) 0.786(0.008) 0.689(0.01)

 CoFu 0.838(0.012) 0.878(0.007) 0.826(0.01) 0.762(0.008) 0.803(0.01) 0.753(0.011)

(ρa,ρh,ρn) = (0.4, 0.1, 0.5)

 P.Lasso 0.746(0.012) 0.741(0.012) 0.739(0.012) 0.698(0.013) 0.684(0.01) 0.69(0.014)

 S.Lasso 0.775(0.007) 0.831(0.013) 0.752(0.013) 0.691(0.016) 0.775(0.008) 0.681(0.017)

 CoFu 0.823(0.009) 0.865(0.011) 0.817(0.008) 0.756(0.017) 0.795(0.011) 0.746(0.016)

(ρa,ρh,ρn)= (0.5, 0.5, 0)

 P.Lasso 0.885(0.013) 0.866(0.007) 0.885(0.01) 0.82(0.019) 0.799(0.017) 0.812(0.017)

 S.Lasso 0.776(0.011) 0.834(0.009) 0.764(0.015) 0.692(0.015) 0.781(0.009) 0.69(0.009)

 CoFu 0.894(0.011) 0.893(0.005) 0.891(0.011) 0.817(0.009) 0.839(0.011) 0.816(0.01)

(ρa,ρh,ρn)= (0.6, 0.2, 0.2)

 P.Lasso 0.878(0.011) 0.847(0.013) 0.873(0.009) 0.831(0.022) 0.779(0.016) 0.809(0.024)

 S.Lasso 0.762(0.012) 0.831(0.011) 0.76(0.013) 0.692(0.016) 0.777(0.009) 0.684(0.018)

 CoFu 0.887(0.011) 0.888(0.009) 0.881(0.008) 0.822(0.017) 0.829(0.011) 0.827(0.019)

(ρa,ρh,ρn)= (0.9, 0, 0.1)

 P.Lasso 0.89(0.014) 0.925(0.02) 0.872(0.015) 0.832(0.017) 0.884(0.012) 0.828(0.02)

 S.Lasso 0.768(0.009) 0.845(0.012) 0.774(0.012) 0.691(0.013) 0.785(0.008) 0.685(0.015)

 CoFu 0.876(0.013) 0.899(0.008) 0.859(0.01) 0.805(0.012) 0.864(0.012) 0.798(0.014)
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TABLE 2

Simulation under the linear regression model: mean(sd) of area under the curve for community differentiation. 

All nonzero coefficients are equal to 0.5

Structured
r = 100

Unstructured Independence Structured
r = 150

Unstructured Independence

(ρa,ρh,ρn) = (0.1,0,0.9)

 S.Lasso 0.578(0.035) 0.54(0.097) 0.571(0.066) 0.565(0.078) 0.515(0.105) 0.537(0.068)

 CoFu 0.739(0.033) 0.762(0.038) 0.724(0.042) 0.711(0.042) 0.74(0.042) 0.679(0.039)

(ρa,ρh,ρn) = (0.1,0.9,0)

 S.Lasso 0.543(0.057) 0.54(0.092) 0.53(0.066) 0.496(0.088) 0.468(0.105) 0.484(0.071)

 CoFu 0.712(0.038) 0.762(0.036) 0.724(0.043) 0.692(0.042) 0.691(0.062) 0.656(0.052)

(ρa,ρh,ρn) = (0.2,0.6,0.2)

 S.Lasso 0.573(0.082) 0.54(0.105) 0.549(0.074) 0.517(0.066) 0.52(0.119) 0.509(0.081)

 CoFu 0.744(0.032) 0.721(0.05) 0.704(0.048) 0.679(0.049) 0.71(0.053) 0.679(0.042)

(ρa,ρh,ρn) = (0.4,0.1,0.5)

 S.Lasso 0.565(0.043) 0.541(0.091) 0.557(0.061) 0.538(0.063) 0.531(0.1) 0.552(0.06)

 CoFu 0.749(0.031) 0.746(0.032) 0.752(0.038) 0.724(0.049) 0.737(0.066) 0.73(0.057)

(ρa,ρh,ρn) = (0.5,0.5,0)

 S.Lasso 0.533(0.048) 0.49(0.103) 0.552(0.062) 0.476(0.099) 0.492(0.124) 0.513(0.084)

 CoFu 0.777(0.043) 0.771(0.029) 0.779(0.046) 0.728(0.038) 0.724(0.036) 0.729(0.03)

(ρa,ρh,ρn)= (0.6,0.2,0.2)

 S.Lasso 0.515(0.036) 0.5(0.096) 0.53(0.043) 0.438(0.093) 0.477(0.1) 0.486(0.087)

 CoFu 0.755(0.053) 0.755(0.041) 0.779(0.04) 0.685(0.051) 0.721(0.046) 0.694(0.033)

(ρa,ρh,ρn) = (0.9,0,0.1)

 S.Lasso 0.518(0.066) 0.498(0.098) 0.54(0.07) 0.466(0.078) 0.441(0.098) 0.45(0.076)

 CoFu 0.965(0.042) 0.965(0.048) 0.975(0.042) 0.947(0.045) 0.907(0.048) 0.961(0.048)
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