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Abstract

Robots will become ubiquitously useful only when they can use few attempts to teach themselves 

to perform different tasks, even with complex bodies and in dynamical environments. Vertebrates, 

in fact, use sparse trial-and-error to learn multiple tasks despite their intricate tendon-driven 

anatomies—which are particularly hard to control because they are simultaneously nonlinear, 

under-determined, and over-determined. We demonstrate—for the first time in simulation and 

hardware—how a model-free, open-loop approach allows few-shot autonomous learning to 

produce effective movements in a 3-tendon 2-joint limb. We use a short period of motor babbling 

(to create an initial inverse map) followed by building functional habits by reinforcing high-reward 

behavior and refinements of the inverse map in a movement’s neighborhood. This biologically-

plausible algorithm, which we call G2P (General-to-Particular), can potentially enable quick, 

robust and versatile adaptation in robots as well as shed light on the foundations of the enviable 

functional versatility of organisms.

Today’s successful control algorithms for robots often require a combination of accurate 

models of the physical system, task, and/or the environment or expert demonstration of the 

task; as well as expert knowledge to adjust parameters or extensive interactions with the 

environment1,2,11,12,3–10. Even then, many rely heavily on error corrections via real-time 
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state observation or error feedback3,4,19–21,8,9,13–18. Moreover, some prefer to focus on 

simulated behavior of simplified systems and environments or limit the physical system to 

simple scenarios (e.g. only kinematical control)7,15,29,16,22–28. Although advances in 

machine learning demonstrate that RL agents can achieve human-like performance in 

complicated tasks (e.g., video games), or can find optimal strategies for mechanical tasks 

using evolutionary algorithms, those studies are limited to computer simulations due to the 

numerous attempts needed for the algorithm to converge30–32. In addition, some researchers 

seek to apply biologically-plausible principles from anatomy and neuroscience to develop 

versatile robots and learning strategies3,6,7,18,20,25,26,33–35.

In particular, there is need to develop feed-forward, model-free approaches that learn using 

limited interactions with the environment (i.e., “few-shot” learning36), which could imbue 

robots with the enviable versatility, adaptability, resilience, and speed of vertebrates during 

everyday tasks4,10,37–39.

This work presents a combination of hardware and software advances (in contrast to much 

current work in robot learning which is done in simulations only) that demonstrate how a 

model-free, open-loop approach allows few-shot autonomous learning to produce effective 

movements in a 3-tendon 2-joint limb. Moreover, our approach (Figures 1–2) is biologically-

plausible at two levels: First, we use motor babbling—as do young vertebrates40,41—to learn 

the general capabilities of the physical systems (also called “plant” in control theory); 

followed by reinforcement of high-reward behavior and refinements that are particular to the 

task (i.e., General-to-Particular, or G2P). And second, we use tendons to generate torque at 

each joints (Figure 3 and Supplementary Figure 1) to replicate the general problem 

biological nervous systems face when controlling limbs42 (which makes for a 

simultaneously over-and under-determined control problem, see Methods) that may lead to a 

class of robots with unique advantages in design, versatility, and performance43. This work 

also contributes to computational neuroscience by providing a biologically- and 

developmentally-tenable learning strategy for anatomically-plausible limbs (Supplementary 

Discussion).

Results

We show that the G2P algorithm can autonomously learn to propel a treadmill (while 

supported by a carriage) without closed-loop error sensing, or an explicit model of the 

dynamics of the tendon-driven limb or the environment (e.g., limb inertia, contact dynamics, 

or expected reward). We also show that execution of multiple attempts can itself lead to 

improvement in performance on account of a refined inverse map in the neighborhood of the 

movement. Such cost-agnostic improvements serve as a proof-of-principle of a biologically-

tenable mechanism that benefits from familiarity with the task, rather than teleological 

optimization, or even error-driven corrections.

Results for cyclical movements to propel the treadmill

A given run begins with a 5-minute motor babbling session where the time-history of a 

pseudo-random control sequence (a 3-D time-varying vector of step changes of current to 

each motor) is fed to the limb while its kinematics (joint angles, angular velocities and 
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angular accelerations) are measured by encoders at each joint (Figure 1 shows an overview 

of G2P). An Artificial Neural Network (ANN) then uses these motor babbling data to create 

an initial inverse map from 6-dimensional kinematics to 3-dimensional control sequence. A 

movement to propel the treadmill is parameterized by a closed orbit in 2-dimensional joint-

angle space that interpolates between the “feature vector” of 10 evenly-distributed points 

(Figure 1c). For a given cycle duration of ~1s, this defines the 6-dimensional limb 

kinematics: joint angles, angular velocities and angular accelerations for each of the two 

joints; see Methods for details). Next, 20 replicates of these kinematics are fed through the 

initial inverse map (lower-level control) which produces 20 cycles of a control sequence 

(Figure 1c). Those control sequences are delivered to the robotic limb to produce 20 cycles. 

The reward for that attempt is a scalar value representing the distance the treadmill was 

propelled backward, in millimeters (mm), as in forward locomotion. Reward for each 

attempt is provided to the system in a discrete way (only after the attempt—20 cycles—is 

over).

A sequence of attempts (Figure 2) within each run of the G2P algorithm (Figure 1) uses the 

initial inverse map to start the exploration phase: the ten free parameters of the feature vector 

are changed at random and the resulting dynamics are sent to refine the inverse map. The 

resulting control sequence is fed to the motors to produce limb movement until the treadmill 

reward crosses a threshold of performance set to 64 mm (empirically selected to lead to 

clearly observable propulsion). Thereafter, the exploitation phase of G2P begins: we use 

policy-based Reinforcement Learning (RL) with stochastic policy search in which the 

feature vector is sampled from a 10-dimensional Multivariate Gaussian distribution. The 

mean vector of this Gaussian distribution is the best feature vector (i.e., that yielded the 

highest reward so far), and its standard deviation (SD) values shrink as the reward increases 

(see Methods). Feature vectors sampled from this Gaussian are used in subsequent attempts. 

Those that produce higher reward serve as the new best feature vector (see Methods for 

more detail). This process resembles an evolutionary algorithm and is similar to cross-

entropy optimization method, with the distinction that here we just use one candidate 

solution (as opposed to a population of solutions) and the SD is a function of the reward (as 

opposed to SD of the sub-population with highest rewards). Each time a control sequence is 

applied (in either the exploration or exploitation phase), the resulting kinematics are 

recorded, appended to the babbling data and any prior attempts, and included in the next 

refinement of the inverse map (Figure 2b). That is, every interaction with the physical 

system is used in the next attempted refinement of the inverse map. This is analogous to 

trial-to-trial experiential adaptation during biological motor learning40.

Figure 4a shows the reward for each sequential attempt for 15 independent runs labeled A—

O. These color-coded stair-step lines show the best reward achieved thus far. Our system was 

able to cross the exploration-exploitation threshold in a median of 24 attempts, and the 

subsequent exploitation phase showed median reward improvement of 45.5mm with a final 

reward median of 188mm (best run performance was 426.9mm). Simulation results for the 

corresponding test are shown on Supplementary Figure 2.

Figure 4b shows that the system is able to learn families of related solutions (i.e., a motor 

habit), and that—for each such family—high rewards can be achieved with both high and 
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low power consumption. This shows that energy minimization is not an emergent property in 

this biologically-plausible system or learning strategy. However, if desired, an energy 

optimization term could be appended to the reward to yield this property.

Results for free cyclical movements in air

The utility of familiarity with a task to produce incremental improvements (by increasing the 

precision of inverse map) cannot be directly interpreted from the results in Figure 4. This is 

because the reinforcement learning algorithm might, by itself, find a feature vector that 

yields high reward even with an imprecise inverse map. However, in many applications, such 

as tracking a desired trajectory (a form of imitation), precision of this inverse map is crucial. 

We, therefore, performed two trajectory-tracking tasks in air (with no explicit reward or real-

time feedback) to evaluate the performance of G2P in refining the inverse map during task-

specific explorations for a given cyclical trajectory as well as the generalizability of these 

refinements on unseen cyclical trajectories.

A. Free cyclical movement in air for a single trajectory—The limb was suspended 

‘in the air’ without making contact with the treadmill while, as before, the initial inverse 

map was extracted from five minutes of motor babbling data. For each run, this initial 

inverse map (ANN0) was incrementally refined with data from each of five attempts, 

regardless of its tracking error over the course of the attempt. Figures 5(a-i) show reduction 

of the Mean Square Error (MSE) with respect to the attempt number for one sample run. 

Figures 5(a-ii,-iv). show the time history of actual achieved vs. desired joint angles for those 

same five attempts (see Supplementary Figure 3a–b for the simulation result of the 

corresponding test). Supplementary Figure 4 also shows the boxplots of the number of 

iterations for babbling and the following 4 refinements over 50 replicates using data 

recorded from the physical system during this task.

B. Generalizability of learned free cyclical movements in air—Although we 

have demonstrated how repeated exposure to a same task improves performance of that task 

(A. above and Figure 5(a)), this does not speak to the generalization of a given inverse map 

to the execution of other unseen trajectories. Here, we followed motor babbling with serial 

refinements over thirty randomly selected trajectories (features sampled from a uniform 

distribution within 0.2-0.8 range). The trained inverse map was then “fixed” and evaluated 

for its MSE accuracy on 30 additional unseen random (same random distribution) 

trajectories (the test set) without further refinement. Figure 5 (b-i,-ii) show that this refined 

inverse map performed better on the test set. This strongly suggests that refining a map with 

specific examples improves performance on a variety of test tasks and does not over-fit to its 

training set. As such, the refined map captures well the complex mechanics of the tendon-

driven double-pendulum limb to produce dynamical cyclical movements. This is very 

important since it means G2P can learn from every experience and generalize it to similar 

tasks (see Supplementary Figure 3c for the simulation result of the corresponding test). The 

fact that we stack all data (babbling and every new experience) to refine the ANN enables 

the system to improve performance for other related tasks without forgetting the old ones 

(see Methods).

Marjaninejad et al. Page 4

Nat Mach Intell. Author manuscript; available in PMC 2019 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Robustness to Perturbation

In a variant of test A. above (after babbling and 10 refinement attempts), we struck the limb 

with a metal rod once the system was moving at steady state. This blunt perturbation pushed 

the limb away from its cyclical movement, but then the system returns to its steady state 

behavior after ~1 cycle (see Supplementary Video 2). Poincaré return maps and stability 

analysis for these perturbation tests are available in the supplementary information (see 

Supplementary Figures 5 and 6).

Point-to-point and more complex non-cyclical movements

For the point-to-point tests, the system starts at an initial posture and then performs ramp-

and-hold transitions to each of 5 different positions in the joint angles space. For the 

complex, non-periodic task, the system is instructed to follow a non-periodic trajectory for 

each joint. Each of these trajectories consist of smooth and ramp-and-hold movements (both 

in-phase and out-of-phase) of each joint (although the other joint might be moving). This is 

particularly challenging because two of the tendons cross both joints, so isolated movement 

of one joint requires coordination across all tendons. Supplementary Video 2 shows an 

instance of each of these tests. The system (which operates open-loop) reasonably performed 

both tasks. Supplementary Figure 7 provides these results. Although the system’s 

performance for arbitrary and more complex movements needs to be further investigated, 

these results serve as encouraging proof-of-principle that extends the utility of the G2P 

algorithm beyond cyclical movements—the focus of this first investigation.

Discussion

The G2P algorithm produced two important results in the context of the challenging task of 

few-shot learning of feedforward and robust production of a cyclical movement of a tendon-

driven system. This brings novel possibilities to robotics in general as it shows that a few-

shot approach to autonomous learning can lead to effective and generalizable control of 

complex limbs for movements and, by extension, a new generation of biologically-plausible 

robots for locomotion, manipulation, swimming and flight. Given its biologically-tenable 

features, G2P can ultimately also enable the control of neuromorphic systems (e.g.,44) to 

help explain the versatility of neuromuscular systems.

How does G2P relate to the field?

The G2P algorithm’s main contribution is that it combines developmentally- and 

biologically-plausible approaches in both hardware and software to autonomously learn to 

create functional habits that produce effective feedforward behavior—where familiarity 

reinforces habits without claim to uniqueness nor global optimality. Moreover, it does so, 

based on a data-driven approach that uses few-shots (i.e., limited experience) seeded by 

motor babbling. Importantly, it does so in the physical world for a biologically-plausible 

tendon-driven limb for complex dynamical tasks with and without intermittent contact, and 

not just in simulation. We now discuss how this novel integrative approach compares and 

contrasts with other work in machine learning, reinforcement learning and control theory.
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We used a model-free approach because precise prior knowledge of the system and the 

environment is not usually available for dynamical tasks in the physical world4,8,10,37,38. 

This is also the case for systems that rely on experts to manually tune system parameters, 

select the appropriate hyper-parameters or provide demonstrations of the task4,6–8,11,14. 

Without such knowledge, the system often needs to execute numerous iterations in the real-

world, simulation (real-time or off-line) or both to converge on adequate performance which 

can make the learning process costly2,10,12,28–32. Therefore, data-driven model-free systems 

that do not rely on prior knowledge and can learn with minimal experience are 

needed10,37,38. A common approach in robotics today is a compromise: use models of a 

system to first develop controllers in simulation (e.g.,1,2,17), and then deploy them in 

physical systems (often known as transfer learning).

Feedback can play an essential role in biological or engineering control. At times, however, 

feedforward systems can be advantageous. It is especially the case when real-time 

computation is not available, the state cannot be observed reliably, or when delays are large 

compared to the dynamics of the task10. Thus, real-time feedback system can be costly for 

engineered and biological systems4. Alternatively, feedforward control using precise inverse 

maps can be used to minimize reliance on feedback. Therefore, an efficient system should 

only utilize feedback when necessary. In fact, this is even the case in biological systems 

where, for example, movement-related sensory feedback is not necessarily needed for 

humans to learn to execute a motor skill39.

Adequate performance in the physical world is a desirable property for any controller, as it 

demonstrates its robustness to the full set of dynamics and disturbances. Successful control 

of tendon-driven limbs in real-world physics is a challenging test of learning and control 

strategies2,18,27,42,43. Roboticists find such anatomies particularly hard to control because 

they are simultaneously nonlinear, under-determined (many tendon tensions combine to 

produce few net joint torques), and over-determined (few joint rotations define how many 

tendons need to be reeled-in/payed-out)42,43. Some have successfully controlled such 

tendon-driven systems in the real world using feedback control of fingers18 and 

manipulation2. Others have used simulations to produce simple tasks (hopping/point-to-

point movements via manual tuning of parameters7). Our work is a real-world demonstration 

of autonomous learning for feedforward control of dynamic cyclical and discrete tasks in a 

tendon-driven system via few-shot learning and minimal prior knowledge.

Familiarity reinforces habits

Motor babbling creates an initial general map, from which a control sequence for a 

particular movement is extracted. This initial prediction serves as a “belief” about the 

relationship between body/environment, and an appropriate control strategy. This prediction 

is used for the first attempt that, while imperfect, does produce additional sensory data in the 

neighborhood of a particular task. These data are subsequently leveraged toward refinement 

of the inverse map, which then leads to an emergent improvement in performance and 

reinforcement of useful beliefs.

Importantly, the details of a given valid solution are idiosyncratic and determined by the first 

randomly-found control sequence that crossed the exploration-exploitation threshold of 
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performance (Figure 4). Hence all subsequent attempts that produce experience-based 

refinements are dependent on that seed (much like a Markov process). This solution and its 

subsequent refinements, in fact, are a family of related solutions can be called a “motor 

habit” that is adopted and reinforced even though it has no claim to uniqueness nor global 

optimality45. Biologically speaking, vertebrates also exhibit idiosyncrasies in their motor 

behavior, which is why it is easy to recognize health states, sexual fitness, identify 

individuals by the details of their individual movement and speech habits, and even tell their 

styles and moods. A subtle but important distinction is that these emergent motor habits are 

not necessarily local minima in the traditional sense. They are good enough solutions that 

were reinforced by familiarity with a particular way of behaving. There is evidence that such 

multiplicity of sub-optimal, yet useful, set points for the gains in spinal circuitry for discrete 

and cyclical movements45. Those authors argue that it is evolutionary advantageous for 

vertebrates to inherit a body that is easy to learn to control by adopting idiosyncratic, yet 

useful, motor habits created and reinforced by an individual’s own limited experience, 

without consideration of global optimality45. G2P uses a similar learning strategy.

Figure 5(a) also demonstrates familiarity as an enabler of learning, where we tested the 

ability of to produce free cyclical movements in air, without contact with the treadmill—and 

hence without explicit reward. The performance of a particular free cyclical movement 

improves simply on the basis of repeated attempts. This represents, essentially, the 

cementing of a motor habit on the basis of experience in the neighborhood of the particular 

movement. Figure 6 further shows 15 cycles of a particular free movement in the interior of 

the joint angle space, even though is the most poorly explored region during babbling. 

Importantly, familiarity with the neighborhood of a task need not lead to overfitting that is 

only locally useful. Our cross-validation experiments in Figure 5(b) show familiarity with 

one’s motion capabilities for some tasks seems to inform the execution of other tasks. Note 

that the absence of a reward or penalty for particular joint angles allowed the emergent 

solution to contain a portion where the distal joint is at its limit of range of motion. This, 

however, need not be detrimental to behavior. For example, human walking often has the 

knee locked in full extension right before heel strike.

Task reward vs. energetic cost

Studying whether energetic efficiency during locomotion is an emergent property, or must be 

actively enforced, is a longstanding question in motor control46–48. The results in Figure 4b 

are particularly interesting because they show that energy minimization is not an emergent 

property in this system49. Figure 4a shows the sequence of attempts from each run. Each 

family of attempts that perform above the exploration-exploitation threshold (plotted with 

the polygonal convex hull that includes them; Figure 4b) can be narrow or wide from the 

perspective of energetic cost (horizontal axis), but nowhere do we see a general trend 

towards energy minimization within families (i.e., none of the convex hulls are shaped 

diagonally towards the top left). Conversely, one could have expected that movements that 

caused more propulsion would be more energetically costly as they do more mechanical 

work against the treadmill, yet we also do not see such a consistent trend diagonally towards 

the top right. This is not to say that the high-level controller can add energy minimization as 

an element of the cost—although it may jeopardize the ability of the limb to apply 

Marjaninejad et al. Page 7

Nat Mach Intell. Author manuscript; available in PMC 2019 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanical work to the treadmill. Energy consumption may be necessary to regulate 

dynamic tendon shortening and lengthening (i.e., internal strain energy) to produce proper 

kinematics—a consequence of the simultaneously over- and under-determined nature of 

tendon-driven limbs42.

Limitations, opportunities, and future directions

For organisms, as for machines, there exists a trade-off between improving performance via 

practice as each attempt carries the risk of injury, fatigue, and wear of tissues (e.g. blisters, 

inflammation of tendons, stress fractures)—in addition to energy expenditure and 

opportunity cost (i.e., spending time refining one task precludes learning a different one in a 

zero-sum lifespan). The G2P algorithm is designed to yield reasonable—if suboptimal— 

performance with limited data and no real-time feedback, but where the system continues to 

learn from each execution of the task. But it is also amenable to goal-driven refinements as 

each solution can serve as a starting point for subsequent optimization or improvements via 

feedback-driven corrections (PID, Recurrent Neural Networks, etc.).

Our fundamental motivation is to replicate how biological systems learn to move in a well-

enough fashion when they must also limit the number of attempts using their own bodies. 

Our biologically-plausible system, in both its algorithmic and physical implementation, can 

also provide insight into tenable biological mechanisms that enable vertebrates to learn to 

use their bodies while mitigating the risks of injury and overuse—and yet successfully 

engage in natural selection and predator-prey interactions—which are the Darwinian arbiters 

in evolutionary success. The ingredients and steps of G2P are all biologically-tenable (i.e., 

trial-and-error, memory-based pattern recognition, Hebbian learning, experience-based 

adaptation42), and allow us to move away from the reasonable, yet arguably anthropocentric 

and teleological, concepts dominating computational neuroscience such as cost functions, 

optimality, gradients, dimensionality reduction, etc.41–43,45. While those computational 

concepts emphasizing optimality are good metaphors, it has been difficult to pin down how 

one would be able to actually demonstrate their presence and implementation in biological 

systems45. In contrast, G2P can be credibly implementable in biological systems. Our own 

future direction is to demonstrate its implementation as a neuromorphic neuromechanical 

system, as we have done for other sensorimotor processes44 as well as developing and 

modulating the features of more complicated behavior (such as locomotion) by adding some 

other hyperparameters to control features such as step-frequency, stride-size, etc.

Materials and Methods

In this section, we first introduce the control problem by describing the governing dynamics. 

Next, we go deeper into our learning and control algorithm (software). Finally, we finish this 

section by providing insight into the physical design of our physical system.

System dynamics

Equation 1 defines the relationship between the joint kinematics and the applied torques of 

the limb18 (forward model):
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q̈ = − I q −1C q, q̇ + Bq̇ + I q −1T Equation 1

where qϵℛ2 × 1,  q̇ϵℛ2 × 1 , and q̈ϵℛ2 × 1 are joint angle vector and its first and second 

derivatives, respectively, I ϵℛ2 × 2 is the inertial matrix, C q, q̇ ϵℛ2 × 1 is Coriolis and 

centripetal forces matrix, B q̇ ϵℛ2 × 2 is the joint friction matrix, and Tϵℛ2 × 1 is the applied 

joint torque vector. The musculotendon forces (here, cables pulled by the motors) are then 

related to the applied joint torques vector as described in Equation 2:

T = M q F0a Equation 2

where M q ϵℛ2 × 3 is the moment arm matrix, F0 is a 3 × 3 diagonal matrix with the maximal 

force values that can be exerted by each actuator and aϵℛ3 × 1 is the normalized actuation 

value of each actuator42,43. Please note this is an under-determined system (3 input force 

values generate two torques) where there is redundancy in the production of net joint torques 

at each instant. However, because the system is driven by tendons that can pull but not push 

(and not driven by torque motors coupled directly to the joints, as is common in robotics), 

joint rotations also depend on the ability of the controller to pay out and reel-in tendon as 

needed, else the movement can be disrupted or the system be non-controllable, respectively 

(this is why we use back-drivable brushless DC motors and maintain tension in the tendons 

at all times). As such, these tendon-driven systems present the challenge of being 

simultaneously under-and over-determined42,43. The presence of constant tension in the 

tendons and friction in the joints (which can be heard in our video, see Supplementary Video 

1) help stabilize the system but also add a deadband for control of subtle movements.

The goal of the inverse map is to find the actuation values vector (a) for any given set of 

desired kinematics (q, q̇, q̈) without using any implicit model and only from the babbling and 

task specific data. The mapping done by the ANN used in the lower-level control of this 

study is described in Equation 3.

a = NN q, q̇, q̈ Equation 3

Finally, the higher-level controller (in the RL task) is in charge of exploring the kinematic 

space and converging to desired kinematic trajectories that yield high reward. While these 

equations are effective for describing and controlling systems, we designed G2P’s lower 

level control with the premise that only the joint dynamics were observable (while not being 

used in real-time), and that the only controllable element is a. As a consequence, our system 

does not have any direct a priori conception of the model structure or the constants that drive 

the dynamics; lower level control must infer those relationships using training data from 

babbling and refine them after each attempt using only task specific input-output data 

(without being provided with a desired or error signal while refining the map after each 

attempt).
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Learning and control algorithm

Learning and control in this first implementation of the G2P algorithm happens at two 

levels: (i) inverse mapping and refinements (the lower-level control) and (ii) the reward-

based reinforcement learning algorithm (the higher-level control). The lower-level is 

responsible for creating an inverse map that converts kinematics into viable control 

sequences (motor commands). The higher-level control is responsible for reward-driven 

exploration (reinforcement learning) of the parametrized kinematics space which are further 

passed to the lower-level control and ultimately run through the system.

Inverse mapping and refinements—The lower-level control relies on two phases. As 

system is provided with no prior information on its dynamics, topology, or structure, it will 

first explore it dynamics in a general sense by running random control sequences to the 

motors, which we call motor babbling. After 5 minutes of motor babbling, the system 

creates the initial inverse map using the babbling data and then further refines this map using 

data collected from particular task-specific explorations, which we refer to as task-specific 

adaptation. This transition from motor babbling to adaptation to a particular task is the 

reason we refer to this algorithm as General to Particular or G2P.

Motor Babbling—During this phase, the system tries random control sequences and 

collects the resulting limb kinematics. A Multi-Layer Perceptron (MLP) Artificial Neural 

Network (ANN) is trained with this input-output set to generate an inverse map between the 

system inputs (here, motor activation levels) and desired system outputs (here, system 

kinematics: joint angles, angular velocities, and angular accelerations). Although sparse and 

not tailored for any subsequent task of interest, data from these random inputs and outputs 

suffice for the ANN to create an approximate general map based on the system’s dynamics.

Random activation values for the babbling: The motor activation values (control 

sequences) for motor babbling were generated using two pseudo-random number generators 

(uniformly distributed). The first random number generator defines the probability for the 

activation level to move from one command level to another. This value was set to 1/fs and 

therefore, the activation values for each actuator will change on an average rate of 1Hz. The 

second number defines the activation level of the next state with sampling from a range of 

15% (to prevent tendons from going slack; see Tendons subsection) to 100% activation. The 

resulting command signals were stair-step transitions in activations to each motor. Three 

command signals were created (using different initial random seed) which ran three motors 

during the motor babbling. It is important to note that these stair-step random activities are 

designed to explore general dynamics of the system and are not tailored for any tasks 

performed during this study (see figure 6).

Structure of the Artificial Neural Network: The ANN representing the inverse map from 

6-dimesional limb kinematics to 3-dimensional motor control sequences (Equation 3) has 3 

layers (input, hidden, and output layers) with 6, 15, and 3 nodes, respectively. The transfer 

functions for all nodes were selected as the hyperbolic tangent sigmoid function (with a 

scaling for the output layer to keep it in the range of the outputs). The performance function 

was selected as MSE. Levenberg-Marquardt backpropagation technique was used to train the 
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ANN and weights and biases were initialized according to the according to the Nguyen-

Widrow initialization algorithm. Generating and training ANNs were performed using 

MATLAB’s Neural Network ToolBox (MathWorks, Inc., Natick, MA; see MATLAB’s Deep 

Learning Toolbox—formerly known as Neural Network toolbox—documentation for more 

details).

Task based refinements—Motor babbling yields sample observations distributed across 

a wide range of dynamics, but still represents a sparse sampling of the range of state-

dependent dynamical responses of the double pendulum (Figure 6). As a result, this initial 

inverse map (ANN0, Figure 2) can be further refined when provided with more task-specific 

data.

The higher-level control will initiate the exploration phase using ANN0. However, with each 

exploration, the system is exposed to new, task-specific data, which is appended to the 

database and incorporated into the refined ANNK map (Figure 2). This refinement is 

achieved by using the current weights as the initial weight of the refined ANN and training it 

on the cumulative data after each attempt. A validation set is used to stop overfitting to the 

train data. The weights will not be updated for a run if the performance over the validation 

deteriorates for 6 consecutive attempts (default settings for the used toolbox). The data to be 

used to train the ANN was randomly divided into train, test, and validation sets with 70%, 

15% and 15% ratios, respectively. It is important to note that refinements can update the 

map’s validity only to a point; if major changes to the physical system are experienced 

(changing the tendon routings or the structure of the system) the network would likely need 

to re-train on new babbling data. This could be manually performed or a threshold for 

feedforward error could be set to activate re-babbling. However, we found that motor 

babbling done strictly while the limb was suspended in air nevertheless worked well when it 

was used to produce intermittent contact with the treadmill to produce locomotion on the 

treadmill and there was no need to re-babble in this study unless a motor, tendon cable, or 

link was replaced.

The reinforcement learning algorithm for the treadmill task—A two-phase 

reinforcement learning approach is used to systematically explore candidate system 

dynamics, using a 10-dimensional feature vector, ultimately converging to a feature vector 

that yields high reward. Similar to the ideas used in [Methods-only references 1–2] we have 

simplified the search by parametrizing the task as a 10-element feature vector to avoid 

having the RL agent explore all possible time-varying sequences of motor activations (and 

their resulting kinematics). We have used a 10-dimensional feature vector to create cyclical 

trajectories. The goal of the policy search RL here is to converge to a parameter vector that 

yields high reward (treadmill movement). The use of a lower-level control to learn the 

inverse map enabled us to use a policy-based model-free RL whole parameters are reduced 

to only 10 (feature vector). The system will start from an exploration phase (uniformly 

random parameter search) and once the reward passed a certain threshold, policy will change 

to a Multivariate Gaussian distribution based stochastic search centered on the feature vector 

that yielded the highest reward so far (see below).
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Please note that the ANN in the lower-level control only creates an inverse dynamical model 

between the motor activation values and the joint kinematics (and has no information about 

the treadmill reward). The RL agent perceives this inverse model simply as a part of the 

environment. Therefore, this method should not be confused with model-based RL 

algorithms where the agent utilizes a model to find actions whose predicted reward is 

maximal.

Creating cyclic trajectories using feature vectors—At each step of the 

reinforcement algorithm, the policy must produce a candidate set of kinematics. We defined 

ten equally-distributed spokes (each 36° apart; see Figure 1c) on the angle-angle space. We 

can then set the lengths (distance from the center) of each spoke to define an arbitrary closed 

path that defines angle changes, which remains a smooth, closed trajectory. The positioning 

of the spokes and center are defined by the range of the babbling data. These ten lengths of 

the spokes are the 10-dimensional feature vector. Using interpolation of these 10 locations, 

we yield an angle-angle trajectory, and derivate those points (equally spaced in the time 

domain) to get the associated angular velocities and accelerations, which fully describe joint 

kinematics in time domain. Using the inverse map (lower-level control) these 6-dimensonal 

target limb kinematics (q, q̇, q̈) will be mapped into the associated control sequences. The 

produced control sequences (motor activation values) are then replicated 20 times and fed to 

the motors to produce 20 back-to-back repetitions of the cyclical movement. Repeating the 

task 20 times allows us to smoothen the effect of unexpected physical dynamics of the task 

(e.g., system noise, unequal friction values over the treadmill band, nonlinearities of the 

system, etc.) which might lead to fluctuations in reward. The features were bounded in 

[0.1-1] range for the treadmill task and [0.2-0.8] during the free cyclical movements 

experiments to provide more focused task specific trajectories.

Exploration phase—Exploring random attempts across the 10-dimensional feature vector 

space (uniform at random in [0.1-1]; Equation 1) eventually will produce solutions which 

yield a treadmill reward. Exploration continues until either the reward is higher than a 

predefined threshold or stopped when a maximal run number is surpassed (a failure).

Exploitation phase—Once the reward passes the threshold, the system will select a new 

feature vector in the vicinity of the feature vector from a 10-dimensional Gaussian 

distribution, with each dimension centered at the threshold-jumping solution. Much like a 

Markov process, with each successful attempt, the 10-dimensional distribution will be 

centered on the values of the feature vector which yielded the best reward thus far. The 

standard deviation of these Gaussian distributions is inversely related to the reward (the 

distribution will shrink as the system is getting more reward). The minimal standard 

deviation is bounded at 0.03. This mechanism helps in converging to the behavior with 

higher reward and explore their vicinity in feature space (forming high reward habits) within 

reasonable time span but without any guarantee on finding global optima. This is analogous 

to vertebrate learning behavior which can form efficient functional habits that may not be 

optimal. The governing equations on generating the next feature vector to be executed by the 

higher-level control are described in Equation 4:
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F =
u f m, f M

max min 𝒩 Fb, ∑ Rb , f M , f m

Rb < reward threshold

Otherwise
Equation 4

where u, and 𝒩 are Uniform and Gaussian distributions, respectively, F− is the feature vector 

of the next attempt, fm and fM are the min and max bounds for each feature in the feature 

vector, respectively (0.1 and 1 in this test), R is the reward, Rb is the highest reward so far, 

Fb is equal to the feature vector which yielded Rb and Σ(Rb) is described as:

Σ Rb = σ Rb I10 Equation 5

where I10 is a 10 by 10 identity matrix, R is the reward, and sigma is defined as:

σ Rb = b − Rb /a Equation 6

where a and b are scaling and bias constants, respectively. Here we empirically selected 

values of a and b to 600 and 9000, respectively. Please note that these values only change the 

deviation of feature which will have an impact on the exploration-exploitation trade off; we 

observed that the performance of the system is not very sensitive to these values (i.e., the 

system will find an acceptable solution as long as reasonable values are set for them).

Between every attempt, the ANN’s weights are refined with the accumulated dataset (from 

motor babbling and task-specific trajectories) regardless of the reward or reinforcement 

phase. This reflects the goal for our system to learn from every experience.

Simulations

We first prototyped our methods in simulation using a double pendulum model of a tendon-

driven limb. Similar to the physical system, our method proved to be efficient in the 

simulation and yielded comparable results (Figures S2 and S3). These simulations were kept 

isolated from the physical implementation, and its results were never used as seeds for the 

physical implementation. It is important to note that similar to any other modeling attempt, 

these simulations are simplified representations of the real physics. In addition, some values 

of the system are very challenging (if not impossible) to measure (e.g. the moment arm 

value function; which is another reason on why we think model-free approaches are an 

absolute need in this field). The simulations in this study are mainly designed to test the 

feasibility of the algorithm before testing it on the real system and are meant to only reflect 

the general structure of the system and parameters of these simulation are not fine-tuned to 

accurately mimic the physical system.

Physical system

We designed and built a planar robotic tendon-driven limb with two joints (proximal with a 

fixed height, and distal) driven by three tendons, each actuated by a DC brushless motor. A 
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passive hinged foot allowed natural contact with the ground. We used DC brushless motors 

as they have low mechanical resistance and are backdrivable. The motor assembly and 

proximal joint are housed in a carriage that can be lowered or raised to a set elevation for the 

foot to either reach a treadmill or hang freely in the air (Figure 3).

We used the minimum number of tendons required to have full control on both joints (a 

minimum of n+1 tendons are required where n is the number of joints)42. Further 

considerations and part details can be found in the Supplementary Materials.

Feasible Wrench Set and Design Validation—The feasible force set of a tendon-

driven is defined by all possible output force vectors it can create. Equation 7 describes the 

static output wrench for a tendon-driven syste42.

w = J(q)−TM(q)F0a Equation 7

where w represents the wrench (Forces and Torques) output, J(q)−T Jacobian inverse 

transpose of the limb which transforms net joint torques into endpoint wrenches

By evaluating all binary combinations for the elements in a, the resultant wrenches give rise 

to a feasible force set. It is important to preserve the physical capability of the tendon 

routing through the many iterations of limb design, so at each design phase we computed 

these sets for different positions throughout the limb propulsive stroke. Joint moment arms 

and tendon routings were simulated and ultimately built to have adequate endpoint torque 

and forces in all directions which is important for versatility42. Many other effective designs 

(different tendon routings, different link lengths, etc.) or design optimization techniques can 

be used and their performances in the tasks performed here can be evaluated; however, that 

is out of the scope of the current study.

Mechanical considerations—The carriage was attached to a wooden support structure, 

via linear-bearing and slide rails to adjust its vertical position. A clamp prevented sliding 

once the vertical position was set. Sandpaper was glued to the footpad and in strips across 

the treadmill to improve traction (Figure 3 a and b).

Data acquisition—The control system had to provide research-grade accuracy and 

consistent sampling to enable an effective hardware test of G2P. A Raspberry Pi (Raspberry 

Pi Foundation, Cambridge, U.K.) served as a dedicated control loop operator—issuing 

commands to the motors, sensing angles at each of the proximal and distal joints, and 

recording the treadmill band displacement (Figure 3 a and b). Furthermore, the electrical 

power consumption for each motor was measured at 500Hz using current-sensing resistors 

in parallel with the motor drivers, calculating the watt-hours over each inter-sample-interval, 

and reporting the amortized mean power (watts) for the entire attempt. All commands were 

sent, and data received, via WiFi communication with the Raspberry Pi as csv files.

Running the system—The limb is placed in a consistent starting posture before 

activations are run to minimize variance in the initial conditions of the physical system. To 
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aid development, a live-streaming video feed was designed for real-time visualization on any 

computer on the network (See Supplementary Video 1). A computer sends a control 

sequence to the Raspberry Pi, and after it is successfully run, the computer receives (i) the 

paired input-to-output data in csv format for iterative analysis or training, (ii) the net 

distance (mm) covered over the course of the entire action, and (iii) the amortized power the 

system consumed during the trial. Once data are collected, to calculate kinematics to train 

the inverse map, samples are first interpolated using their corresponding time labels to 

combat the nonuniform inter-sample interval of 78±5Hz. Prescribed activation trajectories 

are also served at this rate. The pipeline for data acquisition was designed with Python 3.6.

Data and Code Availability Statement

The source code can be accessed at https://github.com/marjanin/Marjaninejad-et.-al.-2019-

NMI.

Also, all other data (run data for experiments as well as the 3D printing files) can be 

accessed at https://drive.google.com/drive/folders/1FO0QJ2fBsdYCJs-h1LH7Iwb-

wa0VPDi-?usp=sharing

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The G2P algorithm
Every run of the algorithm begins with (a) time-varying babbling control sequences 

(activations A0 that run through the electric motors) that generate five minutes of random 

motor babbling (P0). These input-output data are used to create an inverse (output-input) 

map ANN0 from limb kinematics to control sequences. (b) Reinforcement learning begins 

by varying the ten free parameters of the feature vector (FK) defining a cyclical movement 

(c). These movements can, in principle, propel the treadmill. ANN0 maps each candidate 

desired kinematics (PK) into activation sequences (AK) which will propel the treadmill (PK 
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being resulting kinematics) and yield a reward (RK). An attempt (K being the attempt 

counter) is when an activation sequence is repeated twenty times and used to produce twenty 

steps worth of kinematic data. These kinematic data are further processed and concatenated 

with all prior data to refine the inverse map into ANNK. The total treadmill propulsion, if 

any, is the reward for that attempt. The system remembers the best reward so far, and the 

feature vector which generated it. If a new feature vector yields a better reward, the memory 

will be updated. The system will continue its search in an increasingly smaller neighborhood 

of that feature vector and send the resulting kinematics to the ANN to further refine the 

inverse map. But note that data from all attempts (whether they improve on the best so far or 

not) are used to refine the inverse map. Figure 2 describes data processing for each run.
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Figure 2. A run of the G2P algorithm in detail for the reward-driven treadmill task
(a) Evolution of reward across the exploration and exploitation phases. The exploration 

phase begins by using the initial inverse map ANN0 (Figure 1) to attempt to produce the 

cyclical movement defined by the first feature vector selected from a random uniform 

distribution. The predicted control sequence is applied to the motors to produce twenty 

cycles of movement that yield a particular treadmill reward (orange dot) and continues to be 

changed until a feature vector is found that yields a reward above the exploration-

exploitation threshold (dotted line). It then transitions to the exploitation phase where the 
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feature vectors of the subsequent 15 attempts are sampled from a 10-dimensional Gaussian 

distribution centered on the best feature vector so far. Motor babbling and sequential task-
specific refinements of the inverse map: (b) Distribution of the proximal and distal joint data 

from motor babbling (enlarged in Figure 6) and subsequent attempts (color coded). (c) 

Babbling data (shown schematically as a blue bar) were used to generate the initial inverse 

map (ANN0), and (d) concatenated with data from each attempt to continually refine the 

inverse map (ANN1, ANN2, …).
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Figure 3. Planar robotic tendon-driven limb
(a) General overview of the physical system 1. Motor-joint carriage 2. Motor ventilation 3. 

Shaft collars 4. Joints (proximal and distal) 5. Passive hinged foot. 6. Treadmill 7. Direction 

of positive reward 8. Linear bearings on carriage (locked at a particular height during 

testing) 9. Treadmill belt 10. Treadmill drum encoder. (b) Fully supported system 11. Frame 

12. Absolute encoders on proximal and distal joints 13. Ground. (c) Tendon routing 14. 

Three tendons driven by motors M0, M1 and M2. (d) System actuation. Motor M1 drives 
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only the proximal joint ccw, while M0 and M2 drive both joints (M0 drives the proximal 

joint cw, and the distal joint ccw, while M2 drives both joints cw). 15. Tendon channel.
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Figure 4. The treadmill task results
(a) Treadmill reward accrued in each of fifteen independent runs, labeled A—O: All runs 

crossed the exploration-exploitation threshold of 64 mm of treadmill propulsion (median of 

exploration attempts: 15). All runs showed improvement, where the median number of 

attempts needed to reach the best reward of each run was 24. (b) Reward vs. energy 
consumption (Mean power of an attempt): We plot all attempts from runs which garnered a 

reward above the exploration-exploitation threshold on the reward vs. energy consumption 

plane. We can then find the convex hull representing them as a family of similar solutions, or 
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a motor habit. For each polygon, the peak reward (large dot) and the reward from the first 

attempt to cross the threshold (triangle) are shown. We detect no right-to-left trend 

indicating that energy consumption was spontaneously reduced as performance improved. 

Conversely, higher reward did not always require higher energy consumption even though 

more external work was being done to propel the treadmill the furthest.
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Figure 5. A run of the G2P algorithm in detail for the tracking of free cyclical movements
(a) Improvements in performance resulting from 5 attempts at producing a target cyclical 
movement defined by a given feature vector: (a-i) Boxplots of Mean Square Error (MSE). 

(a-ii to a-iv). Desired vs. actual joint kinematics. (b) Test of generalization of refined model 
over unseen trajectories a, b,…, ad (see text): (b-i) MSE of the 30 test trajectories executed 

using either an unrefined inverse map (only babble-trained, color bars) or refined inverse 

map (sequentially over 30 other training trajectories, gray bars). (b-ii) Histogram of percent 

difference in MSE for the results in (b-i) for each of the 30 unseen test trajectories.

Marjaninejad et al. Page 27

Nat Mach Intell. Author manuscript; available in PMC 2019 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Distribution of joint angles visited during motor babbling vs. those used to produce a 
free cyclical movement in air
Motor babbling is done under no supervision, and in this tendon-driven double-pendulum 

primarily results in movements that rapidly fly towards the extremes of the ranges of motion 

of each joint (84.3% lie in the shaded within 5% of the joint limits (black lines).] ). In 

contrast, the desired movement trajectories require exploitation of the relatively unexplored 

internal region of the joint angle space (orange points are 15 repeated cycles of a given 

cyclical movement).
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Method Table 1.

Pseudo code for the RL

while R < Reward_threshold

 f_bar = Uniform_distribution([0.15, 1]10)

 R=execute(F_bar)

end

F_best = F_bar

R_best = R

for i=1:15

 F_bar = Normal_distrubution(F_best, sigma.*Identity(10))

 F_bar = max(min(F_bar, f_M), f_m)

 R = execute(F_bar)

 if R > R_best

  R_best = R

  F_best = F_bar

  sigma = (a-R_best)/b

 end

end
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