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Abstract

The patient-specific biomechanical analysis of the aorta requires the quantification of the in vivo 
mechanical properties of individual patients. Current inverse approaches have attempted to 

estimate the nonlinear, anisotropic material parameters from in vivo image data using certain 

optimization schemes. However, since such inverse methods are dependent on iterative nonlinear 

optimization, these methods are highly computation-intensive. A potential paradigm-changing 

solution to the bottleneck associated with patient-specific computational modeling is to 

incorporate machine learning (ML) algorithms to expedite the procedure of in vivo material 

parameter identification. In this paper, we developed an ML-based approach to estimate the 

material parameters from three-dimensional aorta geometries obtained at two different blood 

pressure (i.e., systolic and diastolic) levels. The nonlinear relationship between the two loaded 

shapes and the constitutive parameters are established by an ML-model, which was trained and 

tested using finite element (FE) simulation datasets. Cross-validations were used to adjust the ML-

model structure on a training/validation dataset. The accuracy of the ML-model was examined 

using a testing dataset.
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1. INTRODUCTION

With advances in medical imaging modalities and computation power, numerical 

simulations of the cardiovascular structure such as the aorta, which utilizes the patient-

specific three-dimensional (3D) geometry, have been increasingly pursued in the past decade 

[1], Yet, the difficulty in obtaining in vivo patient-specific elastic properties of the aortic 
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wall from clinical cardiac images has been one of the biggest obstacles in patient-specific 

biomechanical analysis. This has motivated recent efforts to develop inverse methods for 

estimating the in vivo material properties of the aortic wall on a patient-specific basis. In 

these methods, deformations and boundary conditions are used to inversely estimate the 

material parameters of a particular constitutive model. However, the complex 3D shapes and 

nonlinear and anisotropic constitutive behavior make this task challenging.

To reduce computational complexity, some studies suggested the use of simplifications in 

material models and/or geometries. For example, Liu and Shi [2], Zhang and co-workers [3] 

and Franquet and co-workers [4] identified linear elastic material parameters. By assuming a 

perfect cylindrical shape of the arteries, Schulze-Bauer and Holzapfel [5] identified Fung-

type material parameters, Stalhand, Olsson and Klarbring, Masson and co-workers [6–9] 

estimated material parameters using the constitutive model proposed by Holzapfel and co-

workers [10], and Smoljkic and co-workers [11] estimated the Gasser-Ogden-Holzapfel 

(GOH) model [12] parameters. Liu and co-workers [13] also determined the modified 

Moony-Rivlin parameters of the carotid artery reconstructed from magnetic resonance 

imaging (MRI).

To fully exploit the 3D geometries reconstructed from medical image data, the current 

methods for in vivo material parameter estimation largely rely on various optimization 

schemes. In these optimization-based inverse methods, an objective/error function is built 

upon the difference between predicted and image-derived physical fields (e.g. coordinates of 

diastolic geometry and diastolic-to-systolic strain field), and then the constitutive parameters 

are iteratively adjusted until the objective function is minimized. Specifically, Starting from 

an initial guess of the constitutive parameters, the inverse methods usually involve the 

following steps: (1) recovering an unloaded state from a known loaded state (e.g. systole); 

(2) predicting the desired physical field of another loaded state (e.g. diastole) through 

computational analysis, which is referred by numerically-predicted physical field; and (3) 

the constitutive parameters are iteratively fine-tuned by a nonlinear optimization algorithm 

until the numerically-predicted physical field matches with the image-derived physical field 

at the loaded state (e.g. diastole). This optimization process yields the optimal constitutive 

parameters. Using finite element (FE) updating schemes, Wittek and co-workers [14, 15] 

developed two methods to determine GOH material parameters of the human abdominal 

aorta from in vivo 4D ultrasound data [16], However, numerous iterations were needed to 

reach the optimal solution with a long computing time of 1–2 weeks. Such high 

computational cost could inhibit a practical use of these methods, particularly in a clinical 

setting requiring rapid feedback to clinicians. To this end, our group has recently proposed 

two optimization-based methods to expedite the estimation process. The multi-resolution 

direct search (MRDS) approach [17] was designed to improve the searching algorithm, and 

the computation time was reduced to 1–2 days with similar CPU and memory. Due to static 

determinacy, given loading and boundary conditions as well as geometry, stress can also be 

directly computed from clinical images [18–20], Therefore, we developed a stress-based 

inverse approach [21], in which the computationally-expensive FE simulations were avoided 

by building the objective function upon stresses, and the optimization was completed in 

approximately 2 hours. However, optimization-based inverse methods are inherently limited 
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by their iterative nature, and any further improvement of computational speed can be 

difficult.

Recently, machine learning (ML) techniques, particularly deep learning (DL) [22–24], have 

garnered enormous attention in the field of artificial intelligence, leading to revolutionary 

breakthroughs in many applications [22, 25–31], ML approaches have been developed for 

biomechanical analysis. For instance, Luo and co-workers [32] developed ML classifiers to 

infer strength of ascending thoracic aneurysm from elastic properties, Cilia and co-workers 

proposed ML techniques for obtaining the GOH model parameters from uniaxial data [33], 

ML-models are capable of establishing complex and nonlinear relationship between inputs 

and outputs. A potential paradigm-changing solution to the bottlenecks associated with 

patient-specific computational modeling is to incorporate ML algorithms to expedite the 

procedure of in vivo material parameter identification. By designing and training an ML-

model on a large dataset, it may automatically produce the required outputs (constitutive 

parameters) directly from necessary inputs (multi-phase aorta shapes), without the need for 

costly iterative schemes. Thus, once trained, the ML-model can instantaneously predict the 

material parameters.

In this paper, we developed an ML-based approach to identify the material parameters of the 

GOH constitutive model. As depicted in Figure 1, the inputs to this ML-model are the aorta 

geometries at two distinct blood pressure levels, namely the systolic and diastolic 

geometries, which were also used by our previous optimization-based inverse approaches 

[17, 21], An ML-model was built to establish the nonlinear relationship between the 

geometries and the constitutive parameters. The proposed ML-model consists of an 

unsupervised shape encoding module using principal component analysis and a supervised 

nonlinear mapping module using a neural network. The datasets for training, validation and 

testing were generated from FE simulations. Please note that the numerically-generated data 

may not represent the real patient geometries. Cross-validations were used to adjust the 

neural network structure. The accuracy of the ML-model prediction was examined using a 

testing dataset.

2. METHODS

2.1 Constitutive model

A strain invariant-based fiber reinforced hyperelastic formulation based on the work of 

Gasser and co-workers [12] was used to model the constitutive relations of the aortic wall. 

The deformation gradient F can be multiplicatively decomposed into

F = J1/3I F, (1)

where J is the determinant of F, and I is the identity tensor. F represents the volume-

preserving (isochoric) part of the deformation gradient, while (J1/3I) represents the 

volumetric part. The right Cauchy-Green tensor C and its isochoric counterpart C is defined 

as
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C = FTF, C = FTF . (2)

The isochoric strain invariants I1 and I4i(i = 1, 2) are defined using

I 1 = tr (C), I4i = a0i ⋅ Ca0i , (3)

where vectors a01 = (cos θ, sin θ, 0) and a02 = (cos θ, — sin θ, 0) characterize the two mean 

fiber directions in the reference configuration. θ is the angle between a mean fiber direction 

and the circumferential direction. Thus, I4i(i = 1, 2) are equal to squares of the stretches in 

mean fiber directions. The total strain energy function ψ can be additively split into 

isochoric isotropic Ψ iso, isochoric anisotropic Ψaniso and volumetric Ψvol parts, according to

Ψ C, a0i = Ψ iso(C) + Ψ aniso C, a0i + Ψ vol(J) . (4)

The isotropic matrix material is characterized by the Neo-Hookean strain energy

Ψ iso(C) = C10 I 1 − 3 , (5)

where C10 is a material parameter to describe the matrix material. The isochoric anisotropic 

term is given by

Ψ aniso C, a0i =
k1
2k2

∑
i = 1

2
exp k2 κI 1 + (1 − 3κ)I 4i − 1 2 − 1 (6)

Where k1 is a positive material parameter that has the same unit of stress, while k2 is a 

unitless material parameter, κ ∈ (0, 1/3) describes the dispersion of fibers. Finally, we assume 

that the material is nearly incompressible (slightly compressible), the volumetric term is 

defined by

Ψ vol(J) = 1
D

J2 − 1
2 − lnJ (7)

Where D is a constant that enforces material incompressibility and it is fixed to 5 × 10−4. 

Thus, the aortic wall tissue is characterized by five constitute parameters C10, k1, k2, κ, θ .

The task for the ML-model is to identify the five constitute parameters given the two-phase 

aorta shapes.
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2.2 Generating the training/validation dataset and the testing dataset

The proposed ML model will establish a mapping between the inputs (geometries) to the 

outputs (material parameters) based on example input-output pairs. Each input-output pair 

consists of two geometries and the corresponding material parameters. To fine-tune the ML-

model for optimal performance, cross-validation is used in the training phase, where the 

input-output pairs are partitioned into two subsets, called training set and validation set. The 

ML-model is trained on the training set, and its performance is assessed using the validation 

set. After the training phase, the accuracy of the ML-model prediction is evaluated on a new 

set of input-output pairs, i.e., the testing set.

In this study, the datasets are gathered from FE simulations. Using statistical modeling 

methods, a large number of material parameter sets are generated from 65 sets of 

experimentally-derived material parameters, and virtual aorta geometries at one 

physiological phase (i.e., systole) are generated from 3D CT images of 25 real patients. The 

diastolic aorta geometries are determined from FE simulations using the virtual systolic 

geometries and the generated material parameters. Finally, the training/validation dataset and 

the testing dataset consist of 15366 and 225 input-output pairs, respectively. The detailed 

procedures to generate the datasets are presented in the following subsections.

2.2.1 Sampling the material parameter space

In previous studies [34, 35], we have collected resected ascending thoracic aortic aneurysm 

(ATAA) tissue samples a total of 65 patients who underwent elective surgeries at Yale-New 

Haven Hospital, CT, USA between the years of 2008 and 2010, following an IRB-approved 

protocol. Seven-protocol biaxial tension experiments were carried out on the 65 aneurysmal 

patients, and five material parameters of the GOH model were determined by fitting the 

experimentally-obtained stress-strain curves. The material properties of patient i was 

represented by a vector in y(i)(i = 1, 2, …, 65), with its five components corresponding to five 

GOH parameters, and the set Y contained only the 65 vectors. These vectors are visualized 

in the material parameter space in Figure 2, which shows that these experimentally-derived 

parameters are highly clustered in certain regions. To uniformly sample the material 

parameter space, a convex hull of the experimentally-derived parameters was built. The 

convex hull is essentially a set comprised of convex combinations of all vectors of Y,

Conv (Y) = y = ∑
i = 1

65
aiy(i) y(i) ∈ Y, i = 1, 2, …, 65, ai ≥ 0∀i, ∑

i = 1

65
ai = 1 (8)

where y isa vector in the convex hull, and ai (i = 1, 2,…, 65) are non-negative coefficients 

that sum up to 1. Next, samples were draw from a uniform distribution inside the convex 

hull using the Gibbs sampler [36], 125 and 15 samples were generated for the training/ 

validation set and the testing set, respectively, as shown in Figure 2.
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2.2.2 Obtaining the virtual aorta geometries at the systolic phase

From a previous study [37], out of the 65 patients whose samples were collected for biaxial 

tests, deidentified clinical cardiac CT scans of 25 patients were obtained from Yale-New 

Haven Hospital. A set of approximately 100–150 axial CT images with a resolution of 0.7 

mm x 0.7 mm x 2.5 mm containing the thoracic aorta were obtained for each patient. All 

patients underwent cardiac CT scans because of suspected ATAA prior to elective repair. A 

statistical shape model (SSM) was built from the 25 real aorta shapes at the systolic phase in 

a previous study [38], The SSM model describes the probability distribution of aorta shapes 

among the patient population using 3 modes of variations. As a result, a systolic geometry 

can be represented by a set of SSM parameters {C1, C2, C3} described in detail in [38], The 

SSM parameters were standardized by their standard deviations, for example, {C1; C2, C3} = 

{0,0,0} represents the mean shape and {C1, C2, C3} = {2,0,0} represents a shape that is 2 

standard deviations away from the mean shape along the first mode of variation.

For the training and validation datasets, a total number of 125 virtual aorta shapes at systolic 

phase were obtained by sampling the SSM parameter space {C1, C2, C3} with equally 

spaced points in the range of −2 to 2 , i.e., within 2 standard deviations of the mean shape, as 

shown in Figure 3. Similarly, for the testing dataset, the SSM parameter space was sampled 

within 1.5 standard deviations of the mean shape. Hence, 15 systolic shapes were obtained 

for the testing dataset. The resulting samples in the SSM parameter space are plotted in 

Figure 3.

These sampled shapes are, in general, significantly differ from each other. Some 

representative systolic aorta shapes are plotted in Figure 4. The shapes are color-coded with 

curvature values obtained from Paraview 5.0.0.

2.2.3 Generating the virtual aorta geometries at the diastolic phase using FE simulations

The virtual aorta geometries obtained from the SSM parameter space were at the systolic 

phase, which should be in equilibrium with the systolic physiological load. Therefore, the 

generalized pre-stressing algorithm (GPA) [39] was utilized to incorporate the pre-stress 

induced by the systolic pressure (16 kPa). In the GPA algorithm, the total deformation 

gradient Ft is stored as a history variable for each integration point. The Ft is updated based 

on the incremental deformation gradient ΔF resulting from the prescribed loading and 

boundary conditions.

Ft + 1 = Δ FFt . (9)

The incremental deformation gradient ΔF resulting from the systolic pressure is iteratively 

applied to the virtual systolic geometries and stored in Ft. However, as illustrated in [39] , 

the resulted equilibrium configuration may slightly deviate from the original configuration, 

depending on the step size. The systolic geometries at the equilibrium configurations were 

used by the ML-model in the subsequent sections. Next, using a set of material parameters, 

the virtual aorta geometries at the diastolic phase were determined by depressurizing the 

systolic geometries to the diastolic phase (10 kPa).
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For the training and validation sets, given one of the 125 shapes at the systolic phase and one 

of the 125 sets of material parameters, the virtual aorta geometry at the diastolic phase was 

determined through FE simulation. As shown in Figure 5, if a FE simulation converges, the 

input-output pair (systolic and diastolic geometries and a set of material parameters) is 

collected for training/validation. A total of 15,625 cases (125 materials × 125 shapes) were 

simulated, out of them, 259 cases were not able to converge. The convergence issues might 

be due to extreme shapes and/or material properties. As a result, 15366 sets of geometries 

with known material parameters were obtained. Similarly, for the testing set, 225 input-

output pairs were generated from 15 systolic geometries and 15 sets of material parameters 

(all converged).

The GPA algorithm was implemented in ABAQUS user subroutine UMAT. In the FE 

simulations, C3D8H solid elements were used, a uniform wall thickness at the systolic phase 

(1.5 mm) was assumed based on the average value from [38], and pressure was applied 

uniformly to the inner surface of the aorta models. For the FE models, the longitudinal 

direction (zz) was defined using the center line of the aorta geometry. Then, the outward 

normal direction (rr) of each element in the inner surface of the aortic wall was obtained. 

The circumferential direction (θθ) was defined by taking cross product of the longitudinal 

and outward normal directions. The boundary nodes of the aorta models, i.e. the proximal 

and distal ends of the model, were only allowed to move in the radial direction defined by 

the local coordinate system.

2.3 The machine learning model

The machine learning model consists of an unsupervised shape encoding module and a 

nonlinear mapping module. The systolic and diastolic shapes are encoded by shape codes. 

The nonlinear mapping between the shape codes and the material parameters is established 

by a neural network.

2.3.1 Shape encoding

3D geometries are usually represented by FE meshes with a large number of nodes and 

elements. A shape corresponds to a long vector X of nodal coordinates. However, directly 

linking the shape X to the material parameters by a neural network, although possible, can 

lead to a large number of undetermined parameters that require a very large training dataset. 

A compact representation (i.e. shape code) of a shape can be obtained in a shape encoding 

procedure. The principal component analysis (PCA) [40] is widely adopted as a shape 

encoding method and an unsupervised learning technique for dimensionality reduction, in 

which the original data can be well approximated by a linear combination of a few principal 

components. PCA starts from assembling the covariance matrix C, given by

C = 1
K ∑

k = 1

K
X(k) − X X(k) − X ′ (10)
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where superscript k represents patient index and K is the total number of patients. In our 

case, K = 25. X = 1
K ∑k = 1

K X(k) is the mean shape. Then, the eigenvalues and eigenvectors of 

the covariance matrix can be calculated via singular value decomposition. Thus, a shape X 
can be represented by

X ≈ X + ∑
i = 1

m
ci μiV i (11)

where Vi and μi are the eigenvectors (i.e. modes of shape variations) and eigenvalues of the 

covariance matrix, respectively, m is the number of modes used for approximation. The 

shape code ci, i = 1, …, m  can be obtained by

ci = V i
T(X − X)/ μi (12)

where V i
T is the transpose of the column vector Vi. The first 12 modes (m=12) were retained 

for both the systolic and diastolic shape encoding, with the average PCA approximation 

error being less than 0.1%. Note that as mentioned in Section 2.2.3, the systolic geometries 

from GPA were slightly different from the original configuration from the SSM, and 

therefore 3 modes, as used in our previous study [38], are not enough to capture the shape 

variations for systolic geometries. We denote the systolic shape code as αi, diastolic shape 

code as βi, i = 1, 2,…, 12.

2.3.2 Nonlinear mapping

The nonlinear mapping module will map the shape codes of the two input shapes to the five 

material parameters, which is equivalent to establishing five nonlinear functions

yk = gk α1, …, α12, β1, …, β12 , k = 1, 2, …, 5 (13)

The inputs are the shape codes αi and βi, i = 1,2,…, 12, for diastolic and systolic geometries, 

respectively. The outputs are yk (k = 1,2,…, 5), correspond to the five material parameters 

C10, k1, k2, κ, θ .

Neural network is, in general, flexible and can be used as universal function approximation. 

As shown in Figure 6, a neural network is constructed as the nonlinear mapping module. It 

consists of feedforward fully-connected units (neurons). Each unit has multiple inputs and a 

single output. For the jth unit of the ith layer, a linear combination of the input vector zi, with 

weight vector W j
i  and offset b j

i , is computed as

u j
i = w j

iTzi + b j
i (14)
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where the superscript i denote the index of layer, and subscript j denote the index of unit in 

the layer. zi is a column vector of Z1
i , Z2

i , …, Zni
i T

, and ni is the number of units in the ith 

layer. The weighted sum u j
i  is nonlinearly transformed into the output Z j

i + 1 using an 

activation function.

z j
i + 1 = f u j

i (15)

The softplus [41] activation function was used, which is given by

f (u) = log(1 + exp(u)) (16)

This function is a smooth version of the rectified linear unit (ReLU) [42, 43], As 

demonstrated in the discussion section, other activation functions can lead to large testing 

errors in our application. The neural network has two hidden layers with the same number of 

softplus units, and the output layer has 5 softplus units.

The neural network was implemented using Tensorflow [44], The inputs and outputs were 

normalized using the maximum absolute value of each dimension. Consequently, the 

normalized shape codes are within the range of −1 to 1, and the normalized material 

parameters are within the range of 0 to 1. The mean squared error (MSE) was used as the 

loss function

MSE = ∑
k = 1

5 1
N ∑

l = 1

N
(yk

l − yκ
(l))2 (17)

where l is the index for an input-output pair, N is the total number of input-output pairs, yk
l

and y⌢k
(l) represent the kth actual and predicted normalized material parameters, respectively. 

After the nonlinear mapping, the predicted material parameters were rescaled to its original 

range. The parameters of the neural network were obtained through the Adamax 

optimization algorithm [45] , For detailed theories, please refer to [46], The network 

structure, i.e., number of hidden layers and number of units was determined through cross-

validations in Section 2.4.

2.4 Training, adjusting and testing the ML-model

The unsupervised shape encoding module was trained only using the training and validation 

sets, i.e., the mean shape X, eigenvectors Vi and eigenvalues μi of the covariance were 

computed only using the training and validation data. Since shapes in the testing set are 

different from those in the training and validation sets, the testing shape codes were obtained 

from Eqn.(12) using X, Vi and μi computed from the training and validation sets.
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Using the training/validation dataset, the performance of the nonlinear mapping module was 

assessed through leave-one-out (LOO) cross-validation, and the neural network structure 

was fine-tuned. As depicted in Figure 7, in each round of the LOO cross-validation, the data 

was split into a training set and a validation set, according to the material parameters. We 

pick one set of material parameters (and its corresponding geometries) from the 125 sets 

from Section 2.2.1 as the validation set, and train the neural network on the remaining 124 

sets (and its corresponding geometries). An averaged error was obtained after repeating this 

procedure for all of the 125 sets of material parameters. Hence, the training set never 

contains the material information used in the validation. Similarly, ten-fold cross-validation 

can be performed by splitting according to sets of material parameters.

The discrepancy between the actual and predicted material parameters was quantified by 

normalized mean absolute error (NMAE). The absolute error (AE) for the kth material 

parameter is defined by

AEk
(l) = yk

(l) − yk
(l) (18)

where index l and k are the same as Eqn.(17), yk
(l) and yk

(l) represent the kth actual and 

predicted material parameter, respectively. The NMAE of the kth material parameter is 

defined by

NMAEk =
∑l = 1

N AEk
(l)

N maxl yk
(l) − minl yk

(l) × 100% (19)

where N is defined in (Eqn.17). Next, the number of units in each layer was adjusted in the 

range of 32 to 512 to minimize the averaged NMAE in the LOO and ten-fold cross-

validations. Resulting performance for different network structures is summarized in Table 1 

and Table 2. We evaluated neural networks with a single hidden layer (32, 64, 128, 256 

number of units), they failed to predict the material parameters with an acceptable accuracy. 

Thus, network structure with two hidden layers was used. We first kept the number of units 

in the two hidden layers the same, and varied the number of units from 32×32 to 512×512. 

We found that 256×256 gives the smallest averaged NMAE. Next, we fixed the number of 

units in a hidden layer and changed the number of units of the other hidden layer. Therefore, 

we tested 4 additional cases using cross-validations: 128×256, 512×256, 256×128, 256×512. 

We found that the 256×256 structure offers the smallest averaged NMAE. Therefore, the 

final network contains 256 units for each of the two hidden layers.

To evaluate the prediction of the ML-model, i.e., to examine how accurate the prediction is 

compared to FE simulation data, the ML-model was trained on the training/validations set 

and then the trained ML-model was used to predict the material parameters using shapes in 

the testing set as the input (Figure 8). The predicted material parameters were compared to 

the actual parameters in the testing set.
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3. RESULTS

Given a pair of geometries as the inputs, the trained ML-model can output the material 

parameters within one second on a PC with 3.6GHz quad core CPU and 32GB RAM. The 

actual versus predicted material parameters in the testing set are shown in Figure 9. The 

ranges of material parameters are resulted from the convex hull in Section 2.2.1, similar 

ranges of material parameters were reported in the studies [47, 48], which were obtained by 

fitting the GOH model to uniaxial testing data.

We define the normalized standard deviation of absolute error (NSTAE) of the kth material 

parameter as

NST AEk = 1
maxl yk

(l) − minl yk
(l)

∑l = 1
N AEk

(l) − AEk
2

N − 1 × 100% (20)

where AEk is the averaged absolute error for the kth material parameter. The NMAE and 

NSTAE for each material parameter in the testing set are reported in Table 3. The errors 

indicate that the ML-predicted material parameters are in good agreement with the actual 

material parameters.

The errors might be explained by coupling effect (over-parameterization) of the constitutive 

model [12], different combinations of material parameters may have similar stress-strain 

response. This nonlinear coupling has resulted in identification difficulties in the 

optimization-based inverse approaches [14, 15, 17],

To further evaluate the estimation results, stress-stretch curves were plotted by simulating 

stretch-controlled biaxial tension in MATLAB by assuming the tissue is loaded in the plane 

stress state and the material is incompressible. We use σ1 and λ1 to denote the 

circumferential stress and stretch, σ2 and λ2 to denote the longitudinal stress and stretch. The 

simulations were based on the following 3 protocols: (1) in the circumferential strip biaxial 

tension, fixing λ2 = 1 while increasing λ1; (2) in the equi-biaxial tension, keeping the ratio 

λ1/λ2 = 1; (3) in the longitudinal strip biaxial tension, fixing λ1 = 1 while increasing λ2 . In 

total, six stress-stretch curves are generated for each set of constitutive parameters.

Using the testing dataset, the coefficient of determination (R2) was calculated for each curve, 

and the averaged coefficient of determination of the six curves for each input-output pair 

was obtained. The predictions were sorted according to their averaged coefficient of 

determination. The best, median, worst cases are plotted in Figure 10, and the corresponding 

actual and predicted material parameters are shown in Table 4. Nearly matching agreement 

is achieved for the best cases. For the median case, although the discrepancies in the 

constitutive parameters seem obvious, the six curves still have close matches. In the worst 

case, the results are still acceptable in terms of material parameters, and the actual and 

predicted stress-stretch curves follow the same trends.
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4. DISCUSSION

Optimization-based inverse methods [14, 15, 17, 21] have been extensively used for material 

parameter identification problems. These methods are computationally-expensive. Iterative 

computations limit the efficiency of these approaches, prohibiting their clinical applications. 

The proposed ML approach can fundamentally resolve the challenge on computation cost. 

The ML-model builds a direct linkage between the geometries and the material parameters, 

bypassing the iterative procedures. Once the ML-model is trained, it can be used to make 

predictions instantaneously and repeatedly, such that in vivo material parameter estimation 

on any patient in real-time can be possible. Although FE simulations are used to generate 

training, validation and testing datasets, which takes approximately 10 days in our 

exemplary application. It should be noted that a similar amount of time is required to find 

the optimal material parameters for a single patient using nonlinear optimization [14, 15], 

The proposed ML-model was evaluated using additional testing data, where minor 

discrepancies (with NMAE about 1% to 6%) were achieved between the actual and ML-

predicted material parameters. The close match between the actual and predicted stress-

stretch curves further demonstrates the ML model can predict material constitutive responses 

with high accuracy. As a rough comparison, the previous approaches [14, 15] achieved a 

similar accuracy with deviation from 0% to 6% in terms of material parameters using 

numerically-generated data. However, it is infeasible to perform a quantitative comparison 

among different inverse methods [14, 15, 17, 21] as different datasets were used.

We chose neural network for the ML-model because it is highly scalable: it can be 

configured with more layers and units to handle an increasingly large amount of data. Other 

ML-models can also be used for the material parameter identification problem. For instance, 

support vector regression (SVR) with radial basis function (RBF) kernel [49] can be applied 

to our datasets. Utilizing the v-SVR with fine-tuned parameters (C = 7,v = 0.5, γ = 0.3, 

definitions referring to [49]), we were able to predict the material parameters with similar 

accuracy as the neural network. As demonstrated in Table 5, the NMAEs of the SVR 

predictions are slightly higher than those of the neural network.

Our proposed ML model is not tied to the particular form of the constitutive model (Eqn. 

(4)–(7)). As long as a constitutive model can be implemented in a FE package, it can be used 

to generate training and testing data. For example, more advanced fiber dispersion models 

[50–52] can be used in our future work to handle fiber tension-compression switch.

The applications of machine learning techniques on the complex inverse mechanics 

problems can be traced back to the 1990s [53], when neural networks were first introduced 

to traditional mechanics fields for constitutive modeling [54] and elastic-plastic fracture 

mechanics [55], The pioneering work by Huber and Tsakmakis [56, 57], determined certain 

constitutive parameters from the spherical indentation data using neural networks. Because 

this classical problem can be characterized by the load-depth trajectory, some manually 

selected features (e.g. depth at a given load level) were sufficient. However, to determine 

material parameters of the aortic wall from medical image data, the 3D geometrical 

information has to be fully exploited, which cannot be described by using a few intuitive 

features. In our ML-model, the PCA effectively encodes the input complex geometries into 
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the shape codes. Next, a neural network (24 inputs - 256 hidden units - 256 hidden units - 5 

output units) with softplus activation function was utilized to establish the nonlinear 

mapping between the shape codes and the material parameters. The comparison between the 

softplus units and other units is illustrated in Figure 11. The softplus units outperformed the 

conventional sigmoid and hyperbolic tangent (tanh) units, the ReLU [42] and its variant 

SELU [58], The softplus units lead to the lowest loss in the testing set and thus are more 

appropriate for this application.

Since this study only aims to demonstrate the feasibility of the proposed machine learning 

framework, virtual aorta geometries were used for training and testing our ML-model. We 

acknowledge that the numerically-generated data may not represent the actual patient 

geometries and our ML-model has this limitation. Our current ML-model may not be able to 

handle complex situations such as calcifications in the aorta. The following assumptions and 

simplifications were used in data generation to expedite the FE simulations: (1) the branches 

of the aortic arch were trimmed off; (2) because of the partial volume effect [59], it is 

difficult to obtain the wall thickness from CT images, therefore, a uniform wall thickness at 

the systolic phase (1.5 mm) was assumed based on the average value from [38]; (3) the 

systolic and diastolic pressure were assumed to be 120mmHg and 80 mmHg, respectively 

for all cases; (4) to reduce model complexity, residual stresses were ignored according to a 

study [60] which shows that the residual stresses have minor effects on the material 

parameter identification problem; and (5) homogenously distribution of the material 

properties was assumed, while it is well known that aneurysms have heterogeneously 

distributed material properties. However, we note that these assumptions and simplifications 

were also present in the previous optimization-based inverse approaches [14, 15, 17, 21], 

The main advantage of the ML-based approach is that it can significantly reduce the 

computation time. These limitations can be resolved in future work. For examples, the 

branches can be re-meshed using existing mesh processing method [61], then encoded by 

additional shape codes. Using advanced MRI [62], the wall thickness may be measurable for 

individual patient. The full 3D geometries at the two cardiac phases can be encoded using 

PCA, and therefore the thickness field is naturally accommodated. To handle pressure 

variations, FE simulation data at a wide range of systolic and diastolic pressure levels can be 

generated, and the systolic and diastolic pressure can be included as two additional inputs to 

the neural network. To incorporate the residual stresses, a modified GPA algorithm [63] can 

be applied to generate training and testing datasets.

Although the feasibility of the ML-model is clearly shown, the model is not ready for 

clinical application yet until sufficient real patient geometries are available. When a 

substantial amount of medical image data and experimental testing data are obtained, we can 

update the SSM space and the convex hull, from which a new large training dataset can be 

generated using the framework proposed in this study. The updated ML-model will be 

capable of predicting the material parameters which may provide clinically relevant insights, 

i.e. serving as a basis for patient-specific rupture risk estimation [37], In case of a new 

patient with extreme aorta shape or material properties, which may cause unreliable 

prediction, a rejection option can be added in the ML-model as in [64], The enhanced ML-

model may avoid making predictions on uncommon cases. Those rare cases can be handled 

by the optimization-based inverse methods [14, 15, 17, 21].
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5. CONCLUSION

We have proposed a novel ML approach to estimate the constitutive parameters of the aortic 

wall from in vivo loaded geometries at two cardiac phases with known blood pressures. The 

ML-model is comprised of an unsupervised shape encoding module and a supervised 

nonlinear mapping module. FE simulations were used to generate datasets for training, 

adjusting and testing the ML-model. This novel ML approach can expedite the procedure of 

in vivo material parameter identification: once the ML-model is trained, the material 

parameters can be estimated within one second.
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Figure 1. 
The proposed machine learning (ML) approach.
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Figure 2. 
Datasets projected in 3D material parameter subspaces. The convex hull is plotted in the 3D 

subspaces for illustrative purpose.
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Figure 3. 
Sampling the SSM parameter spaces.
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Figure 4. 
Systolic aorta shapes corresponding to some representative sets of SSM parameters. The 

shapes are color-coded with curvature values.

Liu et al. Page 21

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2020 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The procedure to generate aorta geometries at systole and diastole. The number in the 

parenthesis indicates the testing dataset.
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Figure 6. 
The neural network for mapping the shape codes to the material parameters. The green dots 

represents the input layer, and the blue dots represent the softplus units in the hidden layers 

and the output layer of the neural network.
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Figure 7. 
Adjusting the network structure using the leave-one-out (LOO) cross-validation.
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Figure 8. 
Evaluating the accuracy using the testing dataset.
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Figure 9. 
The actual and predicted material parameters. Each point was plotted using its actual value 

as horizontal x-coordinate and the ML-predicted value as the vertical y- coordinate. A 

perfect straight line (y=x) indicates perfect prediction, and any deviation from the straight 

line indicates prediction errors.
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Figure 10. 
The actual and predicted stress-stretch curves for the best ((a), (b) and (c)), median ((d), (e) 

and (f)) and worst cases ((g), (h) and (i)).

Liu et al. Page 27

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2020 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
MSE loss function for training and testing using softplus and other units.
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Table 1.

Averaged NMAE (defined in Eqn. (19)) of the five material parameters w.r.t. network structure in LOO cross-

validation (3,000 epochs).

network
structure

C10 k1 k2 К θ

32 8.47% 4.94% 8.27% 4.92% 9.55%

64 8.08% 4.51% 8.03% 4.36% 9.08%

128 7.90% 4.25% 7.90% 4.12% 8.78%

256 7.99% 4.31% 7.84% 4.12% 8.62%

512 8.00% 4.36% 7.96% 4.23% 8.66%

32×32 8.33% 3.86% 6.84% 4.30% 7.12%

64×64 7.65% 3.41% 6.77% 3.88% 6.96%

128×128 7.58% 3.18% 6.59% 3.60% 6.84%

256×256 6.92% 2.73% 6.35% 3.24% 6.51%

512×512 7.07% 2.81% 6.55% 3.21% 6.81%

128×256 7.60% 3.22% 6.60% 3.58% 7.14%

512×256 7.80% 3.37% 6.68% 3.84% 7.59%

256×128 7.07% 3.10% 6.56% 3.45% 6.70%

256×512 8.72% 8.16% 9.04% 4.30% 10.94%
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Table 2.

Averaged NMAE (defined in Eqn. (19)) of the five material parameters w.r.t. network structure in ten-fold 

cross-validation (3,000 epochs).

network
structure

C10 k1 k2 К θ

32 8.72% 5.38% 8.57% 5.19% 9.80%

64 8.34% 4.98% 8.24% 4.71% 9.44%

128 8.16% 4.84% 8.13% 4.38% 9.08%

256 8.23% 4.42% 8.16% 4.39% 9.07%

512 8.27% 4.56% 8.21% 4.46% 8.95%

32×32 9.01% 4.25% 7.38% 4.48% 8.32%

64×64 8.04% 3.86% 6.82% 4.04% 7.38%

128×128 7.73% 3.63% 6.75% 3.88% 7.31%

256×256 7.63% 3.14% 6.46% 3.58% 7.43%

512×512 7.24% 3.26% 6.97% 3.53% 7.99%

128×256 7.90% 3.87% 6.92% 3.83% 8.13%

512×256 8.06% 3.45% 6.93% 3.90% 8.08%

256×128 7.76% 3.56% 6.60% 3.92% 7.55%

256×512 8.39% 3.98% 7.06% 4.72% 8.36%
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Table 3.

NMAE and NSTAE of the five material parameters in testing set (10,000 epochs).

C10 k1 k2 К θ

NMAE 3.75% 1.38% 6.01% 1.88% 3.74%

NSTAE 3.51% 1.59% 4.38% 1.89% 4.56%
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Table 4.

The actual and predicted material parameters tor the best, median, worst cases.

C10 (kPa)  k1(kPa) k2 К θ(°)

Best  Actual 63.83 1086.31 28.12 0.1553 7.76

 Predicted 64.66 1091.45 28.08 0.1561 7.55

Median  Actual 48.60 4207.03 4.76 0.2958 16.46

 Predicted 50.59 4325.85 2.20 0.2963 10.16

Worst  Actual 75.15 4683.21 17.53 0.2182 22.05

 Predicted 72.49 4485.17 19.48 0.2096 18.30
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Table 5.

NMAE and NSTAE of the five material parameters in testing set using support vector regression (SVR).

C10 k1 k2 К θ

NMAE 4.53% 2.35% 5.16% 1.64% 4.26%

NSTAE 3.35% 2.07% 3.57% 1.57% 5.14%
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