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Abstract

Habitual short sleep duration (<7 hours/night) is associated with increased morbidity and mortality 

due, in large part, to increased inflammatory burden and endothelial dysfunction. microRNAs 

(miRNAs) play a key role in regulating vascular health and circulating levels are now recognized 

to be sensitive and specific biomarkers of cardiovascular function, inflammation and disease. The 

aim of this study was to determine whether the circulating expression of: miR-34a; miR-92a; 

miR-125a; miR-126; miR-145; miR-146a; and miR-150; are disrupted in adults who habitually 

sleep <7 h/night (short sleep). These were chosen based upon their well-established links with 

vascular inflammation, function and, in-turn, cardiovascular risk. Twenty-four adults were studied: 

12 with normal nightly sleep duration (6M/6F; age: 55±3 y; sleep duration: ≥7.0 h/night) and 12 

with short nightly sleep duration (7M/5F; 55±2 y; sleep duration: <7.0 h/night) and circulating 

miRNA expression was assayed by RT-PCR. All subjects were non-smokers, normolipidemic, 

non-medicated and free of overt CVD. Circulating levels of miR-125a (3.07±1.98 vs 7.34±5.34 

AU), miR-126 (1.28 (0.42 to 2.51) vs 1.78 (1.29 to 4.80) AU) and miR-146a (2.55 (1.00 to 4.80) 

vs 6.46 (1.50 to 11.44) AU) were significantly lower (~60%, 40% and 60%, respectively) in the 

short compared with the normal sleep group. However, there were no significant group differences 

in circulating levels of miR-34a, miR-92a, miR-145, and miR-150. In summary, chronic short 

sleep is associated with marked reduction in circulating levels of miR-125a, miR-126 and 

miR-146a. Dysregulation of these miRNAs may contribute to the increased inflammatory burden 

and endothelial dysfunction associated with habitual insufficient sleep.
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INTRODUCTION

Habitual insufficient nightly sleep, defined as <7 h/night, is associated with increased 

cardiovascular disease (CVD) risk, events and mortality (Cappuccio et al., 2011; Liu, 2016; 

Yin et al., 2017). The mechanisms underlying the detrimental cardiovascular effects of 

habitual short sleep duration are not fully understood. Heightened inflammation and 

impaired endothelial function are recognized as contributing factors to sleep-related CVD 

risk. We (Weil et al., 2010; Bain et al., 2017) and others (Calvin et al., 2014; Akinseye et al., 
2015) have demonstrated profound endothelial vasomotor dysfunction and heightened 

systemic inflammation in adults who habitually sleep <7 h/night. The factors leading to this 

proinflammatory, endothelial dysfunction state are not well defined.

microRNA (miRNAs) are short non-coding RNAs which regulate gene expression on the 

post-transcriptional level by targeting mRNA and inhibiting translation. A specific subset of 

miRNA have been identified as critical regulators of vascular inflammation (i.e. miR-92a, 

miR-145, miR-146a, miR-150, miR-181b and miR-Let-7a), endothelial cell dysfunction (i.e. 

miR-126 and miR-34a) and vasoconstrictor tone (miR-125a)(Empel et al., 2012; Hao et al., 
2014; Ma et al., 2016). For example, inhibition of miR-92a and over-expression of 

miR-146a, miR-181b, and miR-Let-7a is associated with suppressed endothelial 

inflammation and atherogenesis (Loyer et al., 2014; Bao et al., 2014; Ma et al., 2016). Both 

miR-145 and miR-150 limit immune cell activation, cytokine production, and vascular 

inflammation (Lovren & Verma, 2013; Sang et al., 2016). miR-34a has been identified as a 

key driver of endothelial senescence and apoptosis through the inhibition of the sirtuin 

system (Yamakuchi et al., 2008; Ito et al., 2010; Han et al., 2015). Conversely, miR-126 and 

miR-125a have been shown to be key, pleiotropic promotors of endothelial health and 

vasomotor function. Furthermore, altered circulating levels of these vascular-related 

miRNAs have been shown to be indicative of elevated vascular inflammation and endothelial 

dysfunction as well as predictive of cardiovascular morbidity and mortality (Empel et al., 
2012; Sayed et al., 2014; Wronska et al., 2015). Currently, it is unknown if habitual short 

sleep is associated with altered circulating miRNA expression. Circulating miRNA 

desynchrony may contribute to the increased cardiovascular risk associated with short sleep.

Accordingly, the aim of the present study was to determine the influence of habitual short 

sleep on a subset of specific vascular-related miRNAs. Specifically, we tested the hypothesis 

that circulating miR-34a and miR-92a would be higher and miR-125a, miR-126, miR-145, 

miR-146a, and miR-150 would be lower in middle-aged adults who habitually sleep <7 h/

night compared with adults who sleep 7–9 h/night. The rational for focusing on these 

specific circulating miRNAs is based on their established regulatory links with endothelial 

cell function and inflammatory pathways and association with CVD risk.

METHODS

Ethical Approval

All subjects had the research study and its potential risks and benefits explained before 

providing written informed consent according to the guidelines of the University of 

Colorado Boulder. All aspects of this research study complied with the Declaration of 
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Helsinki, except for registration in a public database (clause 35) (World Medical 

Association, 2013). This study was approved by the University of Colorado Institutional 

Review Board (approval # B5079).

Subjects

Twenty-four sedentary middle-aged adults (age range: 44–62 years) were studied: 12 normal 

sleep duration (6M/6F; range: 7.0–8.5 h/night) and 12 short sleepers (7M/5F; range: 5.0–6.8 

h/night). All subjects were sedentary, non-smokers, normolipidemic, non-medicated and free 

of overt cardiovascular, metabolic, renal, and hematologic disease, as assessed by medical 

history, resting and exercise electrocardiograms, and fasting blood chemistries. Female 

subjects were at least 1 year postmenopausal and had never taken or had discontinued use of 

hormone replacement therapy at least 1 year before the start of the study.

Sleep Duration

Sleep duration was self-reported as a component of the Stanford Physical Activity 

Questionnaire as previously described (Weil et al., 2010). Nightly mean reported sleep 

duration was calculated as the weighted mean of weeknight and weekend values as follows: 

(5 X weekday sleep duration) + (2 X weekend sleep duration)/7. Subjects were divided into 

2 groups based upon their reported sleep duration: 7–9 h/night = “normal sleep” and <7 h/

night = “insufficient or short sleep” (Bain et al., 2017). These criteria were chosen based on 

reports that indicate that habitual sleep duration shorter than 7 h/night is associated with 

increased health risks (Cappuccio et al., 2011; Yin et al., 2017).

Body Composition and Metabolic Measures

Body mass was measured to the nearest 0.1 kg using a medical beam balance. Percent body 

fat was determined by dual energy X-ray absorptiometry (Lunar Corp., Madison, WI, USA). 

Body mass index (BMI), fasting plasma lipid, lipoprotein, glucose, and insulin 

concentrations were determined using standard techniques.

MicroRNA isolation and Reverse Transcription Quantitative Polymerase Chain Reaction 
Analysis (RT-qPCR)

Blood samples were collected from the antecubital vein between 8:00 and 10:00am 

following an overnight fast. Blood was centrifuged at 600 x g for 20 minutes and the 

supernatant was centrifuged 1500 x g for 15 minutes at 4°C to remove any additional 

cellular debris.

Total RNA was isolated from platelet poor plasma using the miRNeasy Serum/Plasma Kit 

(Qiagen, Hilden, Germany) (Hijmans et al., 2018). Briefly, RNA was isolated from 100μL of 

plasma using the QIAsol lysis reagent, washed and eluted in RNAse free water. To 

normalize between samples 3.5μL (1.6×108 copies/μL) Canorhabditis elegans miR-39 (cel-

miR-39) was added to each sample. Immediately after RNA isolation, 12μL of RNA was 

reverse transcribed using the miScript Reverse Transcription Kit (Qiagen, Hilden, German). 

cDNA was PCR-amplified (BioRad CFX96 Touch Real Time System) using the miScript 

SYBR green PCR kit (Qiagen, Hilden, Germany) and miRNA specific primers for miR-34a, 

miR-92a, miR-125a, miR-126, miR-145, miR-146a and miR-150 (Qiagen, Hilden, 
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Germany). All samples were assayed in duplicate. Relative expression level for a given miR 

was normalized to cel-miR-39, calculated as ΔCt =2-(Ct[miR]-Ct[cel-miR−39]) and expressed as 

arbitrary units (AU) (Hijmans et al., 2018).

Statistical Analysis

The distribution of the data was assessed by the Shapiro-Wilk test and the homogeneity of 

variances by the Levene test. Group differences in subject characteristics, circulating 

microparticles concentrations, cellular protein expression, miRNA expression, oxidative 

stress, and senescence were determined by independent Student t-test or Mann-Whitney U 

test. Data were presented as mean ± standard deviation (SD) or normally distributed 

variables, and as the median (interquartile range [IQR]) for non-normally distributed 

variables. Pearson correlations were determined between variables of interest. Statistical 

significance was set a priori at P<0.05.

RESULTS

Selected subject characteristics are presented in the Table. There were no significant 

differences in any anthropometric, hemodynamic or metabolic variables between the groups, 

however, by design, nightly sleep was significantly lower (~20%) in the short vs normal 

sleep group. Circulating levels of miR-125a ([short vs. normal sleep] 3.07±1.98 vs 

7.34±5.34 arbitrary units [AU]), (1.28 (0.42 to 2.51) vs 1.78 (1.29 to 4.80) AU) and 

miR-146a (2.55 (1.00 to 4.80) vs 6.46 (1.50 to 11.44) AU) were significantly lower (~60%, 

~40%, and ~60% respectively) in the short sleep compared with normal sleep group (Figure 

1). There were no significant group differences in circulating miR-34a ([short vs. normal 

sleep] 1.63±1.00 vs 1.70±1.23 AU), miR-92a (6.86 (1.95 to 9.51) AU), miR-145 (0.74 (0.10 

to 2.02) vs 1.08 (0.21 to 2.17) AU) and miR-150 ([short vs. normal sleep] 0.91±0.51 vs 

1.35±1.20 AU) (Figure 2).

In the overall study population, miR-125a (r=0.59; P<0.05), miR-126 (r=0.43; P<0.05) and 

miR-146a levels (r=0.41; P<0.05) were each significantly related to average nightly sleep 

duration (Figure 3). No other miRNAs were associated with nightly sleep duration.

DISCUSSION

Interest in circulating miRNA profiles has intensified as their role as biomarkers and 

mediators of cardiovascular dysfunction and potential therapeutic targets has become 

increasingly established (Wronska et al., 2015). The key finding of the present study is that 

habitual insufficient sleep (<7 h/night) is associated with disruption in circulating levels of 

miR-125a, miR-126 and miR-146a. Altered circulating profiles of these vascular-related 

miRNAs have been linked to vascular dysfunction and increased CVD risk and events 

(Zampetaki et al., 2010; Empel et al., 2012; Hao et al., 2014; Bao et al., 2015). To our 

knowledge this the first study to determine the influence of short sleep duration on 

circulating miRNA signatures.

A primary factor underlying the elevated incidence of myocardial infarction and stroke 

associated with habitual short sleep is endothelial dysfunction, specifically impaired 
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vasomotor function and reduced fibrinolytic capacity (Weil et al., 2010, 2013; Levy et al., 
2012; Bain et al., 2017). For example, we have demonstrated that short sleep is associated 

with reduced nitric oxide-mediated endothelium-dependent vasodilation (Bain et al., 2017). 

In a similar population to the present study, forearm blood flow responses to the endothelial 

agonist acetylcholine was significantly lower in adults who habitually slept less than 6.5 h/

night compared with their cohorts of similar age who slept >7 h/night. The co-administration 

of the endothelial nitric oxide synthase inhibitor, L-NG-monomethyl arginine, with 

acetylcholine demonstrated that the insufficient sleep-related loss in vasodilator function was 

due, in part, to reduced nitric oxide bioavailability (Bain et al., 2017). In addition, enhanced 

endothelin(ET)-1-mediated vasoconstrictor tone has been shown to be elevated with 

insufficient sleep, further compounding the vasomotor dysfunction and increasing CVD risk 

(Weil et al., 2010). In the present study, circulating concentrations of both miR-125a and 

miR-126 were significantly lower in the short sleep group. This finding is congruent with 

previous studies demonstrating impaired vasomotor function with insufficient sleep (Weil et 
al., 2010; Calvin et al., 2014; Bain et al., 2017). The endo-miR, miR-126, is critical for 

proper endothelial function and vascular homeostasis (Chistiakov et al., 2016). miR-126 

promotes eNOS activation and endothelial cell survival by targeting the PI3K/AKT/eNOS 

pathway regulator PI3KRA as well as suppressing the proatherogenic proteins SPRED1 and 

CXCL12 (Jansen et al., 2013; Chen et al., 2016). Clinically, circulating miR-126 expression 

has been associated with endothelial vasodilatory capacity and function (Widmer et al., 
2014; Park et al., 2015; Chistiakov et al., 2016). Along with vasomotor function, miR-126 

also regulates endothelial fibrinolytic function and diminished miR-126 is thought to result 

in a prothrombotic state (Gao et al., 2017). Contrastingly, miR-125a directly targets the 

3’UTR of ET-1 mRNA inhibiting translation and, in turn, ET-1 system activity. Thus, 

reduced expression of miR-125a is associated with greater ET-1 production and release (Li 

et al., 2010; Hao et al., 2014). Lower circulating miR-125a in the short vs normal sleepers 

observed herein is consistent with previous studies reporting increased ET-1 system activity 

with insufficient sleep (Palma et al., 2002; Weil et al., 2010). Collectively, reduced levels of 

miR-125a and miR-126 may be etiologically involved in the increased incidence of 

endothelial dysfunction and CVD with insufficient sleep.

A proinflammatory vascular environment is a common consequence of insufficient sleep and 

is thought to be a major contributor to insufficient sleep-related CVD risk (Hansson, 2005). 

It is well established that short sleep is associated with elevated levels of pro-inflammatory 

cytokines, such as IL-6 and IL-8, and markers of vascular inflammation, such as C-reactive 

protein (Grandner et al., 2013). In a seminal study, Aho and colleagues (2013) demonstrated 

that short sleep is associated with increased activation of the proinflammatory transcription 

factor, nuclear factor-κB (NF-κB) resulting in increased inflammatory gene expression and 

cytokine production (Aho et al., 2013). Dysregulation of miR-146a has been directly linked 

with increased NF-κB activation. Reduced miR-146a expression limits TRAF-6 and 

IRAK-1 suppression allowing unregulated NF-κB activation. Elevated NF-κB activation 

promotes increased cytokine production, endothelial dysfunction and atherogeneis (Ma et 
al., 2016; Paterson & Kriegel, 2017). Ma and colleagues (2016) demonstrated that low 

circulating levels of miR-146a is associated with increased vascular inflammation and 

atherosclerosis (Ma et al., 2016); whereas, exogenous restoration of circulating miR-146a 
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blunted vascular inflammation in mice (Ma et al., 2016). Thus, it is plausible that lower 

miR-146a levels may contribute to the increased inflammatory burden associated with 

habitual short nightly sleep (Aronica et al., 2010). Moreover, considering lower circulating 

miR-146a levels have been shown to be predictive of atherosclerosis and coronary events 

(Ramkaran et al., 2014; Bao et al., 2015), the negative influence of insufficient sleep on 

miR-146a may have yet untold cardiovascular consequences.

In contrast to miR-125a, miR-126 and miR-146, there was no significant impact of nightly 

sleep duration on circulating miR-34a, miR-92a, miR-145 and miR-150 levels. Each of these 

miRs contribute to the regulation of vascular health and are associated with CVD risk (Zeller 

et al., 2014; Satoh et al., 2015). miR-34a promotes cellular senescence and dysfunction 

through the regulation of sirtuin-1 and the apoptotic protein BCL-2 (Boon et al., 2013). 

Circulating miR-34a has been reported to be two-fold higher in adults with coronary artery 

disease compared with healthy controls (Han et al., 2015) and to play contributing role in the 

development of heart failure and cardiac death (Boon et al., 2013; Han et al., 2015). 

miR-92a negatively regulates KLF-2 and KLF-4 proteins resulting in diminished endothelial 

repair capacity, eNOS expression and endothelial function (Daniel et al., 2014; Shang et al., 
2017). Increased expression of miR-92a is associated with the progression of atherosclerotic 

lesions (Daniel et al., 2014). miR-145, on the other hand, interacts with vascular smooth 

muscle cells to drive differentiation from a proliferative state to a contractile phenotype and 

miR-145 mediated reduction in vascular smooth muscle cell proliferation has been shown to 

blunt atherosclerotic lesion progression (Lovren et al., 2012). miR-150 limits atherogenesis 

by moderating immune cell activation and secretion of cytokines and enhances vascular 

health by promoting endothelial and endothelial progenitor cell function (Desjarlais et al., 
2017). Lower circulating levels of miR-145 and miR-150 have been linked with increased 

CVD risk and events (Rhodes et al., 2013; Dong et al., 2015). Lack of alteration in these 

miRNAs with insufficient sleep suggest a differential effect of sleep on circulating miRNA 

and demonstrate the complexity of the interaction of sleep and circadian physiology with 

miRNA regulation and, in turn, cellular function. In fact, it is possible that other sleep 

disorders such as insomnia or sleep apnea may influence the circulating profile of these 

miRNAs.

There are a few experimental considerations regarding the present study that deserve 

mention. Firstly, inherent with all cross-sectional studies involving humans it is possible that 

genetic, dietary or lifestyle factors may have influenced our results. However, to minimize 

the potential confounding effects of other lifestyle behaviors, besides habitual sleep duration, 

all subjects were similar in age, body composition and cardiorespiratory fitness; additionally 

they were sedentary, non-smokers, free of overt cardiometabolic diseases and not taking 

vitamins or medications that could influence circulating miRNAs. Secondly, we assessed 

habitual nightly sleep duration by self-report opening the possibility for bias and 

experimental error. Although we did not utilize more objective measures of sleep duration 

through actigraphic monitoring, previous studies have reported a strong correlation between 

self-report sleep duration and actigraphic data (Hauri & Wisbey, 1992; Lockley et al., 1999). 

Thirdly, we did not screen for sleep disorders such as sleep apnea. Considering that the study 

population was non-obese and cardiometabolically healthy, the risk of sleep apnea would be 

small. Finally, although we are ascribing the disruption in circulating miR-125a, miR-126 
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and miR-146a to insufficient sleep, we are unable to identify which cells or tissue are 

involved in the production, release or clearance of these miRNAs in the circulation. Thus, 

the mechanisms by which sleep may affect their circulating signature is outside the scope of 

this study. Nevertheless, circulating levels of miR-125a, miR-126 and miR-146a, regardless 

of cell of origin or mechanism of release, are correlated with disease and provide 

mechanistic insight into disease development and progression (Empel et al., 2012; Sayed et 
al., 2014).

In conclusion, the results of the present study suggest that habitual insufficient nightly sleep 

adversely affects the circulating profile of miR-125a, miR-126 and miR-146a. Sleep related 

changes in these miRNA may play a role in the aberrant vascular physiology and increased 

vascular risk associated with short sleep (Empel et al., 2012; Wronska et al., 2015). Indeed, 

lower circulating levels of miR-125a, miR-126 and miR-146a are consistent with, and can be 

linked to, the reduction in nitric oxide-mediated vasodilation, increased ET-1 vasoconstrictor 

tone, diminished fibrinolytic function and increased vascular inflammation associated with 

insufficient sleep (Weil et al., 2010, 2013; Hao et al., 2014; Chistiakov et al., 2016; Paterson 

& Kriegel, 2017; Bain et al., 2017). Future studies are needed to establish whether 

circulating miRNAs may be used as biomarkers of sleep-related vascular risk.
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What is the central question of the study

• Is habitual short sleep associated with altered circulating levels of specific 

inflammation and vascular-related miRNAs?

What is the main finding and its importance?

• Circulating levels of miR-125a, miR-126 and miR-146a were significantly 

lower in the short compared with normal sleep group. Altered circulating 

profiles of these vascular-related miRNAs have been linked to vascular 

inflammation, dysfunction and increased CVD events. Sleep related changes 

in these miRNAs are consistent with, and may play a role in, the aberrant 

vascular physiology and increased vascular risk associated with short sleep
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Figure 1. 
Circulating miR-125a, miR-126, and miR-146a in the normal sleep and short sleep duration 

groups. Mean circulating level is denoted for miR-125a; median for miR-126 and miR-146a. 

*P<0.05
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Figure 2. 
Circulating miR-34a, miR-92a, miR-145 and miR-150 in the normal sleep and short sleep 

duration groups. Mean circulating level is denoted for miR-34a and miR-150; median for 

miR-92a and miR-150.
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Figure 3. 
Relation between circulating miR-125a, miR-126 and miR-146a and nightly sleep duration.
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Table.

Selected subject characteristics

Variable
Normal Sleep

(n=12)
Short Sleep

(n=12)

Sleep Duration (h/night) 7.6±0.3 6.0±0.7*

Age (yr) 58±6 55±5

Body Mass (kg) 80.2±21.1 86.6±12.4

BMI (kg m−2) 27.3±6.5 27.6±3.4

Body Fat (%) 34.8±10.1 30.5±7.9

Relative VO2 max (mL/kg/min) 35.6±8.9 33.0±6.5

Systolic Blood Pressure, (mmHg) 122±9 118±9

Diastolic Blood Pressure (mmHg) 75±8 75±7

Total Cholesterol (mg/dL) 198±36 198±34

HDL-C (mg/dL) 60±18 57±4=15

LDL-C (mg/dL) 116±21 120±30

Triglycerides (mg/dL) 110±40 104±36

Glucose (mg/dL) 91±6 93±7

Insulin (μU.ml−1) 7.6±3.2 7.2±2.4

HOMA-IR 1.7±1.0 1.6±0.7

Values expressed as Mean±SD. BMI: body mass index. HDL-C: high-density lipoprotein. LDL-C: low-density lipoprotein. HOMA-IR: 
homeostasis model of insulin resistance.

*
P<0.05
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