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Abstract

The spatiotemporal variations in tumor vasculature inevitably alters cell proliferation and 

treatment efficacy. Thus, rigorous characterization of tumor dynamics must include a description 

of this phenomenon. We have developed a family of biophysical models of tumor growth and 

angiogenesis that are calibrated with diffusion-weighted magnetic resonance imaging (DW-MRI) 

and dynamic contrast-enhanced (DCE-) MRI data to provide individualized tumor growth 

forecasts. Tumor and blood volume fractions were evolved using two, coupled partial differential 

equations consisting of proliferation, diffusion, and death terms. To evaluate these models, rats 

(n=8) with C6 gliomas were imaged seven times. The tumor volume fraction was estimated using 

DW-MRI, while DCE-MRI provided estimates of the blood volume fraction. The first three time 

points were used to calibrate model parameters, which were then used to predict growth at the 

remaining four time points and compared directly to the measurements. The best performing 

model predicted tumor growth with less than 10.3% error in tumor volume and with less than 

9.4% error at the voxel-level at all prediction time points. The best performing model resulted in 

less than 9.3% error in blood volume at the voxel-level. This pre-clinical study demonstrates the 

potential for image-based, mechanistic modeling of tumor growth and angiogenesis.
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1. Introduction

Angiogenesis is a critical component of tumor growth and invasion that is required to 

provide the delivery of nutrients and removal of waste to support growth past 2-3 mm3 in 

size. The recruited vasculature, however, is often disorganized (i.e., non-hierarchical), 

inefficient, and leaky, resulting in heterogeneous tumor perfusion10,17. This spatially and 

temporally varying tumor perfusion yields heterogeneous delivery of nutrients (e.g., oxygen 

and glucose) and systemic therapies as well as heterogeneous response to radiation 

therapy10. Accurate characterization of the recruitment of new vessels and the death (or 

collapse) of existing vessels, may provide a valuable tool for predicting response or 

optimizing therapeutic regimens for an individual subject. Specifically, knowledge of the 

temporal and spatial change of tumor vasculature could be used to determine optimal dosing 

schedules for anti-angiogenic and chemotherapy agents or predicting reoxygenation or 

reperfusion of tissue following radiation therapy. Mathematical modeling of tumor-induced 

angiogenesis is well developed with several discrete and continuum approaches 

characterizing the recruitment of vasculature to avascular tumors. One barrier for translating 

these modeling approaches from the in silico setting to the in vivo setting is the 

personalization of model parameters or initial conditions to characterize an individual’s 

unique tumor and vasculature state. To this end, we have developed a modeling approach 

that integrates non-invasive medical imaging measures to characterize an individual’s tumor 

and vasculature with a mechanistic model of tumor growth and angiogenesis.

Medical imaging has evolved well-beyond morphological characterization and can provide 

3D, non-invasive, quantification of the critical properties of the tumor microenvironment30. 

In particular, magnetic resonance imaging (MRI) techniques have been developed to 

characterize tissue oxygenation, cellularity, blood volume, and perfusion, which may be 

sensitive or predictive of response. We and others have suggested using these quantitative 

imaging measurements to initialize, calibrate, and inform predictive mathematical models of 

tumor growth12,18,19,23 to predict response and potentially be used to adapt ongoing 

treatment. In this effort, we utilize diffusion-weighted MRI (DW-MRI) to provide estimates 

of tumor cellularity. DW-MRI is an imaging technique that is sensitive to the diffusion of 

water molecules21. DW-MRI methods have been developed to map the apparent diffusion 

coefficient (ADC), which, in-well controlled situations, has been shown to correlate 

inversely with tissue cellularity over a range of tumor types3,27.

To provide estimates of tumor vascularity we use dynamic contrast-enhanced (DCE-MRI). 

In DCE-MRI, several T1-weighted images are collected before, during, and after the 

injection of a contrast agent so that each voxel in each image set yields a time course that 

can be analyzed with a pharmacokinetic model31. As the contrast agent moves through 

tissue, it decreases the local T1 resulting in an increase in the measured signal. In areas of 

the brain with an intact blood-brain barrier, the contrast agent remains largely within the 

vasculature. However, in areas with permeable vasculature or disrupted blood-brain barrier, 

some of the contrast agent leaks out resulting in signal from both the vasculature and tissue 

space. Blood volume can be estimated using a pharmacokinetic model (such as the Kety-

Tofts model31) or by calculating the ratio of area under the curve for the concentration of the 

contrast agent in tissue to the concentration of the contrast agent in the blood vessel25. 

Hormuth et al. Page 2

Ann Biomed Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Recently, DCE-MRI data was used by Roque et al23 to estimate fractions of proliferative and 

necrotic cells within the tumor, as well as estimate blood flow. However, it was not 

employed to inform a mathematical model on the development of tumor vasculature. Here, 

we use DCE-MRI data to estimate the spatial-temporal variation of tumor vasculature which 

we hypothesize will have a significant effect on the proliferation and death of tumor cells as 

estimated from DW-MRI.

Both DW-MRI and DCE-MRI have been well-studied and applied in the pre-clinical and 

clinical settings to assess and predict response4,20 to therapy. By utilizing non-invasive 

imaging techniques such as DW-MRI and DCE-MRI, we are able to acquire a snapshot of 

tumor development without disrupting or altering the tumor, which can be used to initialize 

and calibrate model parameters for an individual subject. These calibrated parameters are 

then used to provide a “forecast” of future tumor development that can then be directly 

compared to future imaging data32. In this contribution, we employ serial DW-MRI and 

DCE-MRI data acquired in a murine glioma model to initialize and calibrate coupled, 

mechanistic models of tumor growth and angiogenesis. We develop a family of coupled 

biophysical models of tumor growth and angiogenesis and evaluate the accuracy of the 

predictions of future changes in cellularity and blood volume on a subject-specific basis. All 

modeling predictions are then directly compared to MRI measurements. To the best of our 

knowledge, we are the first to develop and apply a biophysical model that is capable of 

being initialized and calibrated with individualized DCE-MRI and DW-MRI data to make 

individualized tumor growth and blood volume forecasts.

2. Material and Methods

2.1 Biophysical models of tumor growth

2.1.1 Mechanically coupled reaction diffusion model of tumor growth—The 

reaction-diffusion model shown in Eq. (1), provides the foundation upon which the proposed 

models are built. Eq. (1) describes the spatial and temporal change in the tumor cell volume 

fraction due to the random movement of tumor cells and proliferation:

∂NT(x, t)
∂t = ∇ ⋅ DT(x, t)∇

NT(x, t
θT

Diffusion

+ kp, TNT(x, t) 1 −
NT(x, t)

θT

Proliferation

, (1)

where NT(x‒, t) is the tumor cell fraction at three-dimensional position x‒ and time t, θT is the 

tumor cell carrying capacity (i.e., the maximum packing fraction that a voxel can 

functionally support), and kp,T is the tumor cell proliferation rate. DT(x‒, t) changes spatially 

and temporally as a function of the local tissue stress8,14,15 In vitro experiments have 

demonstrated that tumor expansion is restricted as local mechanical stresses increase11. 

Thus, it is natural to relate DT(x‒, t) to stress as shown in Eq. (2):
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DT(x, t) = DT , 0exp(−λ1 ⋅ σvm(x, t)), (2)

where DT,0 represents tumor cell diffusion in the absence of mechanical restrictions, λ1, is 

the stress-tumor cell diffusion coupling constant, and σvm(x‒, t) is the von Mises stress which 

reflects the total stress experienced for a given section of tissue. σvm(x‒, t) is determined by 

solving for tissue displacement, u , using the linear elastic, isotropic equilibrium equation 

(Eq. (3)):

∇ ⋅ G∇ u  + ∇ G
1 − 2v(∇ ⋅ u ) − λ2∇NT(x, t) = 0, (3)

where G is the shear modulus, ν is the Poisson’s Ratio, and λ2 is second coupling constant. 

Literature values are used to assign G and v for different tissue regions within the brain 

(described in detail in15) as we assume that these tissue properties will not change 

dramatically from animal to animal (we return to this important point in the Discussions 

section). Eqs. (2)–(3), tumor cell diffusion decreases as local stress increases. In our 

previous effort14, θT and kp,T were estimated estimated within the tumor region of interest, 

resulting in a locally varying, but temporally static parameter map. For this work, we expand 

upon our previous model14 described by Eqs. (1) – (3) to propose a means to effectively 

temporally update the θT or kp,T by coupling to the spatial temporal evolution of tumor 

blood volume.

2.1.2. Coupling cell death to vascularity—Eq. (1) is expanded to incorporate the 

effect of the local blood volume fraction, NV(x‒, t), on tumor cell diffusion and cell death:

∂NT(x, t)
∂t = ∇ ⋅ DT(x, t) ⋅ 1 −

NV(x, t)
θT , V

∇
NT(x, t

θT , V
+

NT(x, t)
θT , V

∇
NV(x, t)

θT , V

Diffusion

+ kp, TNT(x, t) 1 − NT(x, t)/θT

Logistic Growth

− kd, TNT(x, t)exp − α1NV(x, t)
Cell Death

,

(4)

where θT,V is the summation of tumor and the blood volume fraction carrying capacities, 

kd,T is a cell death rate, and α1 is a constant which weights the rate of exponential tumor cell 

death per local NV. To account for the interaction of NT(x‒, t) and NV(x‒, t), we alter the 

diffusion term in Eq. (1) as in Burger et al.5. This diffusion term is a non-linear cross-

diffusion term that accounts for the interactions of multiple species. In the absence of a 

second species, this simplifies to the diffusion term in Eq. (1). There are two primary effects 

accounted for in this multi-species diffusion term. First, the volume occupied by the 

vasculature (i.e., 1 − NV x‒, t θT , V ) decreases tumor cell diffusion in those directions. 
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Second, local gradients of the vasculature induces an additional flux (or directed movement) 

on the tumor cells. Combining these terms, in Eq. (4) results in altered mobility (compared 

to Eq. (1)) that is dependent on the space occupied by NV(x‒, t). Cell death is spatially and 

temporally varied by NV(x‒, t). Similarly, the spatial-temporal evolution of NV(x‒, t) is 

described with a reaction-diffusion type model consisting of the diffusion of vasculature, 

angiogenesis, and death as shown in Eq. (5):

∂NV(x, t)
∂t = ∇ ⋅ DV(x, t) ⋅ 1 −

NT(x, t)
θT , V

∇
NV(x, t)

θT , V
+

NV(x, t)
θT , V

∇
NT(x, t)

θT , V

Diffusion

+ kp, VNV(x, t) 1 − NV(x, t)/θV d

Logistic Growth/Angiogenesis

− kd, VNV(x, t)(1 − d)
Death

,

(5)

where DV(x‒, t) is the vascular diffusion coefficient, θV is the blood volume fraction carrying 

capacity, kp,V is the vascular growth rate, d is a normalized parameter describing the 

distance to the periphery of the tumor, and kd,V is the vascular death rate. θV is assigned to 

the maximum blood volume fraction observed in the tumor. We assume DV(x‒, t) is also 

coupled to local tissue stress as in Eq. (2), where DV,0 represents vascular diffusion in the 

absence of mechanical restrictions. (From a biological perspective, directed movement via 
chemotaxis may more accurately describe vasculature movement. However, at the tissue 

scale, individual vasculature paths are lost and we therefore simplify this phenomenon with 

a bulk diffusion term.) d ranges from 1 (i.e., a voxel at the periphery of the tumor) to 0 (i.e., 

a voxel at the furthest distance from the periphery). θV and θT represent the maximum 

fraction of vascular and tumor cells, respectively, that the voxel can support. That is, we 

assume that once NT(x‒, t) or NV(x‒, t) reaches their respected carrying capacity, proliferation 

ceases as there are not enough resources to support further proliferation. We also assume 

that tumor cell and vascular diffusion will be affected by the overall space for movement 

(related to θT,V).

2.1.3 Coupling the carrying capacity to vascularity—For a first approximation of 

the relationship between NV(x‒, t) and the number of cells that can be supported for a given 

voxel, θT(x‒, t), we assume a simple linear relationship. To spatially and temporally vary θT, 

we utilize the local blood volume fraction, NV(x‒, t):

θT(x, t) =
θmax NV(x, t) ≥ NV , thresh

θmin + NV(x, t)
θmax − θmin

NV , thresh
NV(x, t) < NV , thresh

, (6)

where θmin to θmax represents the range of expected carrying capacity values, and NV,thresh 

represents a critical value for NV(x‒, t) that would begin to change the number of cells a voxel 
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can support. θmin is assigned as the lowest volume fraction within the tumor. The death term 

in Eq. (4) is now removed, and a spatially-varying θT(x‒, t) is added to the logistic growth 

term, as shown in Eq. (7):

∂NT(x, t)
∂t = ∇ ⋅ DT(x, t) ⋅ 1 −

NV(x, t)
θT , V(x, t) ∇

NT(x, t)
θT , V(x, t) +

NT(x, t)
θT , V(x, t) ∇

NV(x, t)
θT , V(x, t)

Diffusion

+ kp, TNT(x, t) 1 − NT(x, t)/θT(x, t)
Logistic Growth

.

(7)

By spatially and temporally varying θT(x‒, t) we are able to induce cell death when 

NT(x‒, t) > θT(x‒, t), or increase cell proliferation when NT(x‒, t) < θT(x‒, t). Table 1 summarizes 

all of the model parameters and their sources. The forward problem for Eqs. (1) through (7) 

is solved in 3D using a fully explicit in time finite difference simulation (numerical details 

are presented in the supplemental material).

2.2 Experimental methods

All experimental procedures were approved by our Institutional Animal Care and Use 

Committee. Eight female Wistar rats (252 ± 8 g, mean ± 95% confidence interval) were 

anesthetized and inoculated intracranially with 105 C6 glioma cells (Sigma-Aldrich, St. 

Louis, Mo, USA) at via stereotaxic injection on day 0. On day 8, permanent jugular 

catheters were placed in each rat for injection of an MRI contrast agent. The first imaging 

time point occurred 10 days after injection of the C6 glioma cells. Rats were imaged on days 

10, 12, 14, 15, 16, 18 and 20. Not all rats were imaged on days 18 (n = 7) and 20 (n = 4) as 

some were euthanized due to 20% weight loss or other health concerns. MRI data was 

acquired using a 9.4T horizontal-bore magnet (Agilent, Santa Clara, CA) with a 38 mm 

diameter Litz quadrature coil (Doty Scientific, Columbia, SC, USA). We present the salient 

imaging details here, while the complete details of the imaging experiments can be found in 

the supplemental material.

DW-MRI was used to provide voxel-wise estimates of ADC using a standard mono-

exponential decay model. ADC was then used to estimate NT(x‒, t) 14,18,29 using Eq. (8):

NT(x, t) =
ADCw − ADC(x, t)
ADCw − ADCmin

, (8)

where ADCW is the ADC of free water at 37° C, ADC(x‒, t) is the ADC value at position x‒

and time t, and ADCmin is the minimum ADC observed within the tumor regions-of-interest 

(ROIs) across all animals. Figure 1A shows an example of the transformation from ADC(x‒, t)
to NT(x‒, t).
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DCE-MRI was data collected before and after the injection of a 200 μL bolus (0.05 mmol kg
−1) of Gd-DTPA™ (BioPhysics Assay Lab, Worcester, MA). Relative blood volume fraction, 

NV(x‒, t) was calculated by evaluating the ratio of the area under the concentration of the 

contrast agent in tissue time course to the arterial input function over the first 60 seconds. A 

rat population arterial input function was used in lieu of an individual input function13 for 

DCE-MRI analysis. Tumor ROIs were identified using the difference in signal intensity in 

the pre- and post-contrast agent images from DCE-MRI. Figure 1A shows an example of the 

transformation from DCE-MRI data to NV(x‒, t).

2.3 Numerical methods

2.3.1 Model parameter calibration—A sensitivity analysis using Sobol’s method24 

(details presented in supplemental material) was used to identify model parameters that 

could benefit from being estimated locally rather (i.e., at each voxel location) than globally 

(i.e., a uniform value for all voxels). We focused primarily on the total effect indices that 

identify the importance of a given parameter on a model output including secondary effects 

from parameter interactions. The Total effect indicies (supplemental Figure 1) indicated that 

kp,T was a highly sensitive parameter for NT(x‒, t) and NV(x‒, t) while kp,V was a highly 

sensitive parameter for NV(x‒, t). Thus, we generated a family of eight models consisting of 

two sub-families where blood volume is coupled to cell death (models 1 - 4), and where 

blood volume is coupled to the carrying capacity (models 5 - 8). Within each sub-family we 

evaluate whether kp,T and/or kp,V should be assigned globally or locally. The model 

differences are summarized in Table 2.

Figure 1B–D summarizes the model calibration, selection, and validation approach. We 

present the salient details of the model calibration approach here, while a more complete 

description is found in the supplemental material. First, model parameters are initialized 

with NT(x‒, 10) and NV(x‒, 10) (calculated from the imaging data as described in section 2.2) 

and initial guesses of model parameters. Second, these parameters are then used in a finite 

difference simulation of the model system to return estimates of NT(x‒, t = 12, 14) and 

NV(x‒, t = 12, 14). Third, the objective function (i.e., the normalized, sum of squares error 

between the model and measurement) and stopping criteria are evaluated. Fourth, if the 

stopping criteria are not met, the model’s parameters are updated based on the Levenberg-

Marquardt algorithm, and the process returns to the first step. We used a hybrid, simulated-

annealing Levenberg-Marquardt algorithm, which works identically to a standard 

Levenberg-Marquardt approach15, with the exception of a stochastic component to 

determine if the change in model parameters (and thus change in objective function) is 

acceptable. All of the model parameters were calibrated for a global value (spatially 

uniform) unless otherwise indicated in Table 2, in which case a locally varying parameter 

was estimated. We assess the robustness of this inversion to measurement noise in the 

supplemental material.

2.3.2 Model selection—To select the model that balances model complexity and 

model-data agreement we utilized the Akaike Information criterion (AIC1) defined as:
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AIC = 2k + n ln RSS
n + 2k k + 1

n − k − 1 , (9)

where k is equal to the number of parameters calibrated for a given model, n is the number 

of data points used to calibrate the model, and RSS is the residual sum squares between the 

measured and model NT(x‒, t) and NV(x‒, t). We considered two different model selection 

scenarios. First, we investigated which model was selected during the calibration phase (i.e., 

how well the model describes the data used for calibration). Then, we study how the models 

performed at predicting tumor growth from days 15 to 20 (as described in the following 

section) in the prediction phase. Models were selected by recording (for each model) its rank 

(1-8) for each animal in each of the selection scenarios. We then selected the top three 

ranking models for further comparison. Figure 1c, shows an example of the model selection 

approach.

2.3.3 Model validation—The model validation stage is summarized in Figure 1d. The 

calibrated model parameters were used in a forward finite difference simulation to predict 

the tumor and blood volume distribution at the remaining imaging time points for each rat. 

Model predictions of NT(x‒, t) and NV(x‒, t) were compared to NT , meas(x
‒, t) and NV , meas(x

‒, t) at 

the global and local levels. At the global level, error was assessed by calculating the percent 

error in tumor volume between the predicted and measured tumor ROIs on days 15 through 

20. At the local level, error was assessed by calculating the average percent error in NT and 

NV and the concordance correlation coefficient (CCC) at voxels within the measured tumor 

ROI. All results are presented as the mean and 95% confidence interval when appropriate. 

Additionally, to provide a standard to which our model errors could be compared, we 

implemented a 3-parameter, reaction-diffusion model (Eq. (1), model 0) and a “no growth” 

model. For the no growth model, we simply assume the predicted NT(x‒, t) at days 15 – 20 is 

simply equal to NT , meas(x
‒, 14). The no growth model was add to provide an estimate of how 

much the tumor changes compared to NT , meas(x
‒, 14).

3. Results

The results of model selection are shown in Table 3. In both the calibration and prediction 

scenarios models 1,5, and 6 had the lowest cumulative score based on their AIC value, and 

were selected for further consideration and evaluation. Figures 2–4 present the results for 

models 1, 5, and 6, while the results for all models can be found in supplemental material. 

Figure 2 shows the NT(x‒, t) and NV(x‒, t) fields used for calibration (row A), validation (row 

B), and the predicted NT(x‒, t) and NV(x‒, t) (rows C-E), for a representative rat. For 

comparison, row F shows the 3-parameter, reaction diffusion model (model 0). For NT 

predictions (left column in Figure 2), all three models have less than 9.5% error in the 

volume predictions at all time points, and have an average of 12.5% error at the voxel level. 

All three models predict areas of low cell density (approximately 0.8 × θT) relative to the 

high-density regions at the periphery (greater than 0.9 × θT). However, model 5 has a 

Hormuth et al. Page 8

Ann Biomed Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stronger level of agreement at the voxel level (panel D) resulting in a higher average CCC 

value (0.74) from day 15 to 20 compared to models 1 and 6 (0.71 and 0.62, respectively). 

Model 0 systematically overestimated tumor size, especially at later time points, and resulted 

in an average CCC of 0.50. For NV predictions (right column in Figure 2), all three models 

predict a well vascularized periphery (approximately 0.4 × θV) and a poorly vascularized 

core (less than 0.1 × θV). However, the models underestimate the extent of low vascularized 

regions compared to NV,true. For example, at day 20, 15.4% of voxels in NV,true has a value 

less than 0.1 × θV, whereas all three models predict less than 5.0% of the voxels have a 

value less than 0.1 × θV. High percent errors (greater than 60%) are observed in the low 

vascularized regions where NV,true approaches 0; however, the absolute difference between 

the predicted and measured NV is negligible.

Figure 3 compares the predicted versus measured data for model 6 for all rats at their final 

imaging time point. The measured NT(x‒, t) and are shown in rows A and D, the predicted 

NT , m6(x‒, t) and NV , m6(x‒, t) are shown in rows B and E, while rows C and F show the percent 

error. The RSS for NT ranged from 138 (rat 6) to 791 (rat 4), while the RSS for NV ranged 

from 29 (rat 6) to 3 (rat 5). Areas of lower cell density are observed in for rats 1-5. Notably, 

in rat 4, model 6 underestimates both the tumor size and total cell number by predicting 

large areas of low cell density (less than 60% × θT). The vasculature model, NV,m6 predicted 

areas of increased blood volume fraction particularly at the periphery relative to the tumor 

center. Notably in rats 3, 7, and 8, the NV,m6 model predicted high blood volume fractions 

greater than 60% × θV at the periphery whereas the measured data NV(x‒, t) indicated volume 

fractions less than 30% × θV.

Figure 4A–C shows the summary statistics for tumor cell predictions, and blood volume 

predictions (panels D-E). For tumor cell predictions, all models had less than 10.3% error in 

tumor volume with model 1 having less than 6% error in tumor volume at all time points 

(panel A). Similarly, less than 9.4% error was observed at the voxel level (panel B). A high 

level of agreement was observed for all three models with CCCs ranging from 0.55 to 0.77 

(panel C). For comparisons, the 3-parameter, reaction diffusion model (model 0) was 

included in panels A – C. We observed greater than 28.0% error in tumor volume, greater 

than 12.7% error at the voxel-level, and CCC’s ranging from 0.44 to 0.56. Model 0 had 

statistically significant (p < 0.05) differences between models 1, 5, and 6 in percent error in 

tumor volume and percent error in voxel cell number. Model 0 also had significantly lower 

CCCs (p < 0.05) between models 1, 5, and 6 at day 15 and only model 6 at day 16. We also 

included a model of no growth in panel A. Error in tumor volume predictions for the no 

growth model ranged from 21.7% to 64.7%. The no growth model had statistically 

significant differences (p < 0.05) between it and models 1, 5, and 6. For blood volume 

predictions, less than 9.3% error was observed at the voxel level (panel D). The level of 

agreement declined overtime with CCCs ranging from 0.70 at day 15 to less than 0.35 at day 

20 (panel E). No significant differences were observed between models 1, 5, and 6 and the 

summary statistics; however, model 6 had the lowest AIC rank in the prediction phase 

(supplemental table 2) based on its AIC value.
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4. Discussion

DW-MRI and DCE-MRI data were used to initialize and calibrate a reaction-diffusion model 

for tumor growth and angiogenesis on an animal specific basis. By employing non-invasive 

imaging measures, we are able to calibrate model parameters on an individual basis to 

provide animal-specific tumor growth forecasts. To evaluate the predictive strength of this 

model system, we evaluated the accuracy of model predictions on an animal specific basis 

using our family of biophysical models. From the eight models, we selected the top three 

(models 1, 5 and 6) that had the lowest AIC during the calibration stage. We also 

implemented the 3-parameter reaction-diffusion model which has been extensively studied 

and a “no growth” model to reflect how much the tumor grows. When models 1, 5, and 6 

were used to predict future tumor growth, they resulted in low global level errors (less than 

10.3%) and low local level errors (less than 9.4%). Similarly, blood volume predictions 

resulted in low voxel level error (less than 9.3%) at all prediction time points. In addition to 

these three modeling scenarios, we investigated the predictive strength of local (i.e., voxel-

specific) versus global parameters. We observed that while incorporating local parameters 

reduced residual error in the calibration stage, it did not significantly improve tumor growth 

predictions (Figure 4). These results demonstrate the potential strength of using subject-

specific measures from DW-MRI and DCE-MRI to initialize and calibrate predictive 

biophysical models of tumor and vascular growth.

The recruitment of new vasculature via angiogenesis is vital to sustain tumor growth, and the 

spatial-temporal evolution of the vasculature volume directly effects the spatial 

heterogeneity of growth patterns of the tumor. Developing mathematical models that can 

predict this process for individual subjects could facilitate the development of optimized 

treatment regimens. Angiogenesis has been well studied and described with mathematical 

models, most notably in the early stages, or transition, from avascular to vascular 

tumors2,9,26. Discretized models of angiogenesis9 often at the resolution of single vessels or 

single cells, can characterize the development of regions of well vascularized (and rapidly 

proliferating) and poorly vascularized (and necrotic) regions. One major limiting factor of 

personalizing (i.e., calibrating models to individual patients) existing modeling efforts is that 

they rely on parameters or model species that cannot be initialized or measured using non-

invasive means. In this effort we focused on modeling angiogenesis at the tissue level. While 

failing to resolve individual vessel segments, modeling dynamics at the tissue level allows 

quantification of vascular volume fractions through non-invasive imaging techniques. 

Currently, there is a paucity of models that attempt to characterize vasculature at the tissue 

scale, where individual small vessels are indistinguishable from each other. One such model 

that describes the phenomena of angiogenesis at the tissue scale is the multi-species 

proliferation-invasion-hypoxia-necrosis-angiogenesis (or PIHNA) tissue-scale model by 

Swanson et al28. Literature or estimated parameters are used to assign a majority of model 

parameters while patient-specific data are used estimate proliferation and diffusion 

parameters. Using these parameters, the PIHNA model is then simulated to provide insight 

into predictable patterns of disease progression (e.g., extent of hypoxia or necrosis) based off 

tumor growth kinetics (i.e., proliferation and diffusion coefficients).
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In this effort, instead of explicitly modeling hypoxic, necrotic, and angiogenic factors, we 

have developed a coupling between tumor and vascular tissues that implicitly includes the 

dynamics of the development of tumor necrosis and the production of angiogenic factors. 

The motivation behind this approach is the development of a predictive mechanistic model 

where model parameters and model species can be initialized or calibrated via subject-

specific, non-invasive measures. In particular, we investigated two different couplings of NV 

to NT. First, we assumed the local NV would affect local tumor cell death rates. That is, in 

areas with high NV, tumor cells have enough resources to continue proliferating, whereas in 

areas with low NV there is increased cell death due to insufficient resources. This approach 

recapitulates in vivo observations of highly proliferative, highly vascularized regions and 

necrotic (or quiescent), poorly vascularized regions 22. While the necrotic fraction is not 

explicitly characterized mathematically, we hypothesize that areas of low tumor cell density 

and low blood volume fraction would correlate with areas of necrosis as assessed from 

histology. Second, we assumed that local NV would affect the local carrying capacity with 

the assumption that cells share an inherent proliferation rate, kp,T. kp,T can be interpreted as 

a function of the local microenvironment’s ability to support tumor growth (i.e., nutrient rich 

versus nutrient poor voxels), as a function of a given cell population’s cell division rate, or a 

mixture of these two effects. When we spatially and temporally evolve the carrying capacity, 

we assume the kp,T is a property of the cell line under investigation, while physiological 

variations are reflected by decreased or increased carrying capacities. We14 and others7 have 

investigated modulating the carrying capacity to reflect the changes in the number of cells 

that the local tissue can support implicitly, or explicitly (as in our case), as a function of 

local blood volume. Evolving θT performs a dual role of dynamically increasing or 

decreasing the net proliferation. While no significant differences were observed in prediction 

metrics (i.e., total volume or average voxel level error), we observed that models where NV 

was coupled to NT via the carrying capacity (models 5-8) were selected more frequently in 

the calibration and prediction phase (Supplemental Table 2). We hypothesize that while 

incorporating local parameters reduced model-measurement discrepancy in the calibration 

stage, it may have not have dramatically improved model predictions. That is, for models 

with local parameters, the model relies less on the coupling between NV and NT to 

temporally effect tumor or vasculature proliferation. However, for models with global 

parameters, there may be a stronger reliance on the coupling between species to spatially 

and temporally effect proliferation or death. The stronger coupling could potentially be more 

desirable as it will result in a spatially and temporally varying net growth rates for NT and 

NV.

In the vascular model, Eq. (5), NT altered both the proliferation rate and death rate due to the 

hypothesized relationship between necrosis, pseudopalisading cells, and angiogenesis22. In 

this hypothesis, vascular occlusion results in the development of hypoxic and then necrotic 

regions. The development of hypoxia creates a wave (or pseudopalisade) of cells migrating 

away from these regions, secreting angiogenic factors. The secretion of angiogenic factors 

by the pseudpalisading cells then results in angiogenesis in at the periphery of these hypoxic 

regions. In our model, we assume vessel regression is likely to occur near the center of the 

tumor due to high cell density occluding the vessels. The vessel death results in the 

development of hypoxia, then necrosis, then pseudopalisading cells (which release 
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angiogenic factors). Thus, we assume angiogenesis is more likely to occur the further the 

cell is from the center of the tumor. These assumptions are a simplification of a complex, 

multi-scale process; however, this approximation may accurately describe tissue scale 

dynamics for tumors that form a central necrosis. Ongoing efforts are investigating ways to 

improve predictions of vascular evolution for tumors with non-centralized necrosis.

There are several limitations to the current study. First, the measured values of NT and NV 

are calculated from ADC and DCE-MRI, which provide estimates at the tissue level of the 

cellular and vascular components of that tissue, respectively. While ADC has strong 

correlation to histology estimates of tumor cellularity3,27 there are other factors such as 

changes in cell membrane permeability, cell size, and edema at the sub-tissue level that can 

affect the measured ADC; indicating that the ADC may only be a first-order approximation 

of cellularity. There are some studies that have identified a positive correlation between 

DCE-MRI estimates of blood volume fraction and histology estimates of microvessel 

density6; however, providing an accurate quantification of the blood volume fraction can be 

challenging due to low blood volume in tumors (and thus low signal from this 

component)20. Additionally, DCE-MRI measures may reflect the highly perfused volume 

versus the true vascular volume. In this scenario, our model would be characterizing the 

evolution of tissue perfusion, providing a more direct connection between the blood vessel 

function and the number of cells it can support.

A second limitation of the current study is that the C6 glioma line may not recapitulate all 

aspects of human glioblastoma or angiogenesis; thus, future efforts should investigate using 

(for example) patient derived xenografts or non-immunogenic models to provide a more 

accurate representation of human glioblastoma.

Third, we acknowledge that our approach may not be tenable in a data limited setting such 

as current standard-of-care studies. However, the selected imaging techniques (DW-MRI and 

DCE-MRI) are readily used in clinical cancer trials to assess response to therapies, and our 

approach may be reasonable in such a studies which do require repeat imaging29.

Fourth, we acknowledge that tissue properties may change in the proximity of the tumor; 

however, that is beyond the scope of this current contribution and is indeed an important area 

of investigation. In particular, imaging approaches, such as elastograpghy16 could be used to 

provide serial estimates of tissue properties (shear modulus, stiffness) in future studies.

Fifth, we acknowledge that the relationship between tumor associated vasculature and 

carrying capacity may not be linear as indicated by Eq. (6). There are potential prediction 

scenariors where this linear assumption will fail and result in the over- or underestimation of 

the true effect of vasculature on tumor cell carrying capacity. Additionally, other factors my 

effect the tumor cell carrying capacity (e.g., occupation by healthy cells or immune cells, 

cells ability to survive in low nutrient environments); however, we designed this relationship 

based on the correlation observed in imaging (i.e., cellularity generally trends with 

vascularity, see supplemental Figure 7). Other coupling options should be considered in 

future work, such as exponential or time delayed effects. However, without additional 

biological information we opted for the simplest relation.
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In summary, we have developed a novel, coupled model of tumor growth and angiogenesis 

that can be personalized via non-invasive imaging techniques. Notably, we developed a 

novel means to incorporate vasculature and cellular information, which can be acquired non-

invasively on an individual basis, into biophysical models of tumor and blood volume 

growth. We then validated this model in a murine model of glioma growth, demonstrating 

low global and local level errors in tumor growth predictions as well as low local level errors 

in the prediction of blood volume. Through this coupling, local tumor growth rates and local 

carrying capacities can be altered spatially and temporally resulting in the prediction of 

heterogenous distributions of tumor cells and blood volume. By incorporating tumor blood 

volume, this modeling approach may facilitate the development of predictive, personalized, 

models of drug delivery or the response to radiation therapy due to dynamics of tissue 

oxygenation. Indeed, future work will seek to include the effects of systemic (e.g., 

anticancer or anti-angiogenesis therapies) and radiation therapy on tumor cells and 

vasculature.
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Figure 1. Schematic of experimental and computational methods.
Panel A depicts a T2-weighted MRI through the central slice of a representative rat in 

addition to examples of the transformations of ADC to NT and DCE-MRI time courses to 

NV. Panel B illustrates the salient features of the model calibration approach. Briefly, data 

on days 10, 12, and 14 are used to calibrate model parameters. Model calibrations are 

initialized with data on day 10 and an initial guess of model parameters. Tumor growth is 

then simulated to days 12 and 14 using a finite difference scheme. The objective function 

and stopping criteria are evaluated to determine how to update the current guess of model 

parameter values. This process repeats until stopping criteria are met. Panel C describes our 

model selection approach where Akaike’s information criteria (AIC) is used to select the 

most appropriate model. Panel D summarizes the model validation approach. The model 

system is initialized with data on day 14 as well as the calibrated model parameters and then 

simulated forward to the final imaging time point. Error is then assessed between the 

predicted and observed tumor growth at the imaging time points not used for model 

calibration.
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Figure 2: Predicted NT and NV for a representative animal.
Results from a representative rat are shown for the models coupling NV to NT via cell death 

(model 1) or carrying capacity (models 5 and 6). F-test results comparing the more complex 

models to model 5, resulted in selection of models 1 and 6 as the best model candidates for 

model prediction. Panel A shows the measured NT (left column) and NV (right column) at 

days 10, 12, and 14 used to calibrate the model, while panel B shows the measured NT and 

NV at days 15, 16, 18, and 20 used to validate the model. Panels C-E show the predicted NT 

and NV using models 1, 5, and 6, respectively, as well as the error between the model and 

measurement. For comparison, panel F shows the model 0, the 3 parameter reaction-

diffusion model. For this particular rat, NT is strongly coupled to NV (i.e., areas of low NT 

are often low NV) demonstrating that incorporating voxel-specific parameters for kp,T 

(model 6) does not significantly improve predictions o f NT compared to model 1 or 5. 
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Generally, all models match the overall tumor shape, while high error is typically observed 

in NV (right column) predictions in areas where the model overestimates the measured NV. 

For this rat, model 1 had the lowest sum squared error for models 5 and 6, respectively. For 

comparison, panel F shows model 0, the 3 parameter reaction-diffusion model. Model 0 

overestimates tumor area (especially at day 20) and does not predict the development of 

areas of low cell density .(Supplemental Figures 2 and 3 show the results for models 1-8).

Hormuth et al. Page 18

Ann Biomed Eng. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Results for the cohort of animals.
Results for the final time point, and central tumor slice, are shown for all eight rats. Row A 

shows the measured NT, while Rows B and C show NT,m6 and the error between the 

measurement and model, respectively. Rats 1-5 show varying degrees of intra-tumor 

heterogeneity in cell density, while rats 6-8 appear to have a relatively homogenous density 

of tumor cells. The NT,m6 model predicted the development of low-cell density regions 

(potentially necrosis) in all rats except rat 6. For rat 4, the NT,m6 model resulted in an under 

estimation of the amount of cells (~60% of carrying capacity, versus 90%) compared to the 

measured NT. Similarly, row D shows the measured NV, while Rows E and F show NV,m6 

and the error between the measurement and model, respectively. In general, NV,m6 predicts 

increased blood volume fraction at the periphery of the tumor relative to the interior. For the 

vasculature model, high error (greater than 60%) is often observed in areas with low 

measured NV.
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Figure 4: Summary of results for the cohort of animals.
Panels A-C summarize the errors for model predictions of NT, while panels D-E show the 

results for model predictions of NV for the cohort of rats for models 1, 5, and 6. For 

comparison, we also included model 0 in panels A – C and a model of “no growth” in panel 

A. In panel A, percent error in tumor volume ranged from 0.4 to 10.3% at all prediction time 

points for models 1, 5, and 6. Model 0 had greater than 27.98 % at all time points. The “no 

growth” bars demonstrate that the tumor is rapidly growing over time. In panel B, voxel 

level error generally increased overtime with values ranging from 3.7 to 9.4%, with model 0 

having greater than 12.7% at all time points Conversely, in panel C, the CCC decreased 

overtime with values ranging from 0.55 to 0.77 for models 1, 5, and 6. Model predictions of 

NV also resulted in voxel level error, panel D, with error ranging from 6.0 to 9.3%. The level 

of agreement as assessed by CCC values, generally decreased over time, panel E, with 

values ranging from 0.35 to 0.70. No significant differences were observed between models. 

All values are reported as the mean and 95% confidence interval. (Supplemental Figures 4 

and 5 show the results for models 1-8).
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Table 1.

Model parameters and their source

Parameter Interpretation Source

kp,T Tumor cell proliferation rate Calibrated

θT Tumor cell carrying capacity Calibrated (M1-M4)
Calculated (M5-M8)

DT,0 NT diffusion coefficient in absence of mechanically coupling Calibrated

G Shear modulus Literature 15

v Poisson’s Ratio Literature 15

λ1 Coupling Constants Calibrated

λ2 Coupling Constants Assigned to 1

kd,T Tumor cell death rate Calibrated

α1 Weight of exponential decrease in cell death per local NV Calibrated

DV,0 NV diffusion coefficient in absence of mechanically coupling Calibrated

kp,V Vasculature proliferation rate Calibrated

kd,V Vasculature death rate Calibrated

d Distance top the periphery of the tumor Calculated

θV Maximum blood volume Assigned from DCE-MRI

θmax Max carrying capacity Calibrated

θmin Minimum value for carrying capacity Assigned from DW-MRI

NV,thresh Threshold on NV for carrying capacity to decrease Calibrated

M1-M4 refers to model 1 to model 4, see Table 2.
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Table 2:

Summary of model variations

Model Name kp,T kp,V Calibrated Parameters

Reaction Diffusion NT,m0 global NA 3

Coupled via cell death

NT,m1 and NV,m1 global global 10

NT,m2 and NV,m2 local global 9 + m

NT,m3 and NV,m3 global local 9 + m

NT,m4 and NV,m4 local local 8 + 2 × m

Coupled via carrying capacity

NT,m5 and NV,m5 global global 9

NT,m6 and NV,m6 local global 8 + m

NT,m7 and NV,m7 global local 8 + m

NT,m8 and NV,m8 local local 7 + 2 × m

m is equal to the number of calibrated local parameters within the tumor. m ranged from 202 to 461, depending on the animal.
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Table 3:

Model Selection

Model Calibration Prediction

NT,m1 & Nv,m1 23* (3) 29* (3)

NT,m2 & Nv,m2 26 (4) 40 (5)

NT,m3 & Nv,m3 48 (6) 43 (6)

NT,m4 & Nv,m4 61 (8) 63 (8)

NT,m5 & Nv,m5 18* (1) 14* (2)

NT,m6 & Nv,m6 18* (1) 10* (1)

NT,m7 & Nv,m7 38 (5) 32 (4)

NT,m8 & Nv,m8 56 (7) 57 (7)

Cumulative score for all animals (rank)

*
indicates top three
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