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Abstract

Motivation—Skeletal muscle dysfunction is a systemic effect in one-third of patients with 

chronic obstructive pulmonary disease (COPD), characterized by high reactive-oxygen-species 

(ROS) production and abnormal endurance training-induced adaptive changes. However, the role 

of ROS in COPD remains unclear, not least because of the lack of appropriate tools to study 

multifactorial diseases.

Results—We describe a discrete model-driven method combining mechanistic and probabilistic 

approaches to decipher the role of ROS on the activity state of skeletal muscle regulatory network, 

assessed before and after an 8-week endurance training program in COPD patients and healthy 

subjects. In COPD, our computational analysis indicates abnormal training-induced regulatory 

responses leading to defective tissue remodeling and abnormal energy metabolism. Moreover, we 

identified tnf, insr, inha and myc as key regulators of abnormal training-induced adaptations in 

COPD. The tnf-insr pair was identified as a promising target for therapeutic interventions. Our 

work sheds new light on skeletal muscle dysfunction in COPD, opening new avenues for cost-

effective therapies. It overcomes limitations of previous computational approaches showing high 

potential for the study of other multi-factorial diseases such as diabetes or cancer.
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1 Introduction

Systems biology aims to explain physiology, development, and pathology based on modular 

networks of expression, interaction, regulation, and metabolism (Long et al., 2008 and 

Wellmer et al., 2010). Gene regulatory networks (GRNs) (Barabasi and Oltvai, 2004) 

influence the adaptation to environmental perturbations via cell type-specific gene 

expression and interactions between transcription factors (TFs) and regulatory promoter 

regions (Tian et al., 2014). These mechanisms may affect the metabolic network by 

regulating the activity of key enzymes. One of the major challenges of the application of 

systems biology to the medical field is the study of crosstalks between metabolic and gene 

regulatory networks and their role in cellular response to environmental conditions and 

external perturbations (Coughlin et al., 2014). This is especially crucial in multi-factorial 

diseases (Gomez-Cabrero et al., 2014), in which multiple regulatory mechanisms lead the 

cell to an aberrant metabolism and abnormal adaptation to environmental conditions that 

explain heterogeneities of disease progress and clinical manifestations among patients.

Chronic obstructive pulmonary disease (COPD) is a complex chronic disease caused by 

inhalation of irritants in susceptible individuals. Pulmonary manifestations of the disease are 

characterized by alterations in lung function such as expiratory flow limitation (low forced 

expiratory volume during the first second, FEV1) and abnormal pulmonary gas exchange 

(arterial hypoxemia) (Vestbo et al., 2013). COPD imposes a high burden on health systems 

worldwide and is the third leading cause of death in the United States (Murray and Lopez, 

2013). Skeletal muscle dysfunction is a characteristic systemic effect of the disease that 

affects approximately one third of patients (Maltais et al., 2014). It has a multi-factorial 

nature (Maltais et al., 2014), and it is acknowledged that high reactive oxygen species (ROS) 

generation in the mitochondrial electronic transport chain (ETC) is likely to play a relevant 

role in systemic mani-festations of the disease affecting the GRN (Rabinovich et al., 2007). 

Moreover, altered skeletal muscle redox status plays a central role in the abnormal 

physiological adaptations observed in COPD patients after endurance training (Rabinovich 

et al., 2001). It has been hypothesized that the systemic effects of COPD might share 

abnormal regulation of key metabolic pathways (Miralles et al., 2014). Thus, the state of the 

mitochondrial ETC depends on carbohydrate metabolism and transport of adenine 

nucleotides. All these factors, as well as altered cellular oxygenation (Cano et al., 2014), can 

have a functional impact on the respiratory chain and on mitochondrial ROS production 

through electron transport chain complex III (Selivanov et al., 2009).

Different data and model-driven approaches have been proposed to explore correlations 

between muscle transcriptomic or proteomic profiles and abnormal training-induced 

adaptive changes observed in COPD patients. One of these model approaches has been 

Bayesian networks (Morrow et al., 2015; Zhang et al., 2015). However, although Bayesian 

networks are able to assess causalities and may provide a rough idea of the processes 

associated with a given disease (Saraswati and Sitaraman, 2014), they are not suitable for 

deciphering the molecular mechanisms and complex dynamics of GRN involved in the 

abnormal training-induced physiological changes observed in COPD patients (Himes et al., 
2009). On the other hand, mechanistic approaches such as kinetic models have limitations 

when dealing with large and highly inter-connected networks due to the paucity of precise 
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knowledge on necessary parameters (Fisher and Henzinger, 2007). Thus, our knowledge of 

the underlying mechanisms of abnormal adaptation to training in COPD patients remains 

limited by the lack of suitable computational analyses.

In order to overcome the limitations of the current methods, we have developed a novel 

computational approach combining the benefits of probabilistic and model-driven methods 

to address the complex dynamics of energy-metabolism-associated GRN.

Our aim was to assess the importance of ROS-driven molecular mechanisms in explaining 

the defective muscle adaptation to training in COPD patients as a case of concept. Briefly, 

our approach is based on: i) the reconstruction of GRN using muscle-biopsy-transcriptomic 

data obtained in previous studies (Rodriguez et al., 2011; Turan et al., 2011; [GSE27536]) 

and manual curation based on bibliographic data (Supplementary material) (Figure 1B, step 

5); and, ii) integration of the reconstructed GRN and constraints based on probabilistic 

approaches, into a discrete model-based analysis using Thomas formalism (Thomas and 

Kaufman, 2001) (Figure 1C, step 8). Our discrete GRN model unveiled alterations in TCA 

cycle, electron transport chain, creatine kinase and insulin receptor factor as key players in 

the abnormal training-induced responses in COPD patients. We suggest that these alterations 

result in anomalous GRN dynamics leading to less efficient energy metabolism, abnormal 

cytokine regulation and defective tissue remodeling. Importantly, the approach developed 

here showed superior accuracy and predictive ability compared to existing data-driven 

methods for analyzing the transcriptomic data (Supplementary. material 1).

2 Methods

2.1 Experimental data

In this study, we explored abnormal muscle adaptation to training associated with COPD 

with the aim of examining the role of ROS in the activity state of the GRN in six different 

states: control group (12 individuals), COPD with normal BMI (13 patients), and COPD 

with low BMI (6 patients) (Rodriguez et al., 2011; Turan et al., 2011) before and after an 8-

week training program (Sala et al., 1999).

2.2 Identifying differentially expressed genes

We performed a rank product analysis (Breitling et al., 2004) of transcriptomic data 

generated for the 3 study groups (control group, COPD with normal BMI, and COPD with 

low BMI) before and after an 8-week endurance training program (Supplementary material). 

Rank product is one of the most robust and widely used methods for analyzing gene 

expression data and provided a list of genes with significant differences between conditions 

(Figure 1A, step 2).

2.3 Gene regulatory network reconstruction

In order to reconstruct a GRN considering the effect of both training and the disease, we 

built a first draft using automated GRN reconstruction methods. To this end, we used 

Ingenuity Pathway Analysis (IPA) software and the IPA database (Ingenuity® Systems) 

(Krämer et al., 2014) to establish the relationships between those genes defined as 
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differentially expressed. This software provides a platform that allows the integration of 

different layers of information such as genomics or proteomics and its graphical 

representation in a single interaction network. IPA Core Analysis can be used to link 

genotypes (molecular profiling data) to phenotypes and molecular events (signaling and 

metabolic pathways, molecular networks, etc), defining the reported interactions between 

genes, DNA, proteins, etc. (Krämer et al., 2014). In addition, we manually enriched our 

analysis by including information extracted from BioXM database (Maier et al., 2011).

Owing to the paucity of reported regulatory interactions in human skeletal muscle tissue, 

some genes remained unconnected in the draft reconstruction. To bridge the existing gaps, 

we imposed putative interactions by expanding our analysis, firstly to other muscular tissues 

in human (smooth and cardiac), secondly to other excitable tissues in humans (i.e. neurons) 

and finally to the Drosophila gene regulatory network (DroID, Murali et al., 2011). It was 

also extended to the mouse but this analysis did not add any new interactions to our network. 

For some of the new putative interactions it was necessary to include new genes into the 

network. We chose these new nodes (genes) while trying to use the minimum amount of new 

genes to connect the unconnected genes. Additionally, for the genes extracted from the 

Drosophila interaction network, we required that their human homologs were expressed in 

skeletal muscle based on the Atlas protein database (Uhlen et al., 2010).

Finally, we manually curated the GRN reconstruction using data from a large number of 

bibliographic sources (Supplementary material 1). The main objective of literature curation 

was to identify and correct incomplete or erroneous annotation and identify the direction and 

the sign of the interactions. This pipeline provided a highly curated mitochondrial muscle-

specific GRN that integrated information of both disease effects (COPD) and adaptation to 

training.

2.4 Discrete modeling of the GRN

A discrete network model is a network abstracted in such a way that it can serve as a simple, 

efficient tool for the extraction of the very basic design principles of molecular regulatory 

networks (such as a GRN or a signaling pathway), without having to deal with all the 

biochemical details (de Jong et al., 2006). Typically, the mathematical description of GRN 

using discrete modeling approach is based on the asynchronous logical description proposed 

by R. Thomas (Thomas and Kaufman, 2001). This approach allows a semi-qualitative 

analysis of complex biological networks that describes the dynamics of the system (Corblin 

et al., 2010) (Figure 1C). A detailed description of the basis of discrete modeling is provided 

as on-line Supplementary Material 1. This approach was used to study the functional 

behavior of the reconstructed GRN.

2.5 Constraint integration into the model

To improve the predictive capabilities of the discrete model representing the reconstructed 

GRN, constraints must be integrated. This was performed in two different ways (Figure 1C, 

step 8).

Firstly, we introduced constraints based on differential gene expression analysis by 

analyzing the microarray data from skeletal muscle biopsies (Rodriguez et al., 2011) of 
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control group and COPD patients with normal or low BMI before and after training (6 

states). Here, we compared the same group before and after training and the three study 

groups at pre- and post-training state (9 comparisons, Figure 1A). This information was 

integrated into the discrete model in the form of inequalities. In this way, we formalized the 

situation in which the expression of gene “a” is significantly higher in “state 1” than in “state 

2” (log2FC>0, p<0.01) as follows: Gastate1> Gastate2, which imposes a higher discrete value 

to gene “a” in “state 1” (Gastate1) than in “state 2” (Gastate2). Thus, we defined correlations 

in the discrete values of the nodes between states.

A second set of constraints, based on correlation analysis, was integrated as constraints in 

the discrete model in the form of inequalities. This analysis is based on the rationale that the 

discrete values of two genes that are significantly correlated cannot evolve in opposite 

directions (one increasing its expression and the other decreasing its expression), 

analogously two anti-correlated genes cannot evolve in the same direction.

Table 1 illustrates an example of how this approach is implemented. Here, we have two 

genes, “A” and “B”, with 4 and 3 possible discrete values, respectively, and no direct 

interactions between them. Assuming a significant correlation between gene “A” and “B” 

and on the basis of the discrete values depicted in table 1, there is only one possible discrete 

value of B in condition 2 (Bcon2), 2. This scenario excludes Bcon2=0 and 1. If instead, there 

is a significant anti-correlation, then Bcon2 only can be 0, excluding Bcond2=2 and 1.

We applied this approach to analyze a skeletal muscle gene expression dataset [GSE9405] in 

order to determine the existing correlations between the genes of different sample. Next, 

those correlations with a level of significance above a certain threshold are converted into 

constraints based on the criteria previously described and integrated into the discrete model 

in the form of inequalities. This approach is based on the Pearson correlation test and can be 

used to integrate information from probabilistic analysis into a deterministic model as 

constraints.

The probabilistic approaches, based on correlation and differential expression analysis, were 

integrated into our discrete model-based analysis to further reduce the number of feasible 

solutions.

2.6 Determine the level of significance of model predictions

To determine the accuracy of the predicted gene expression levels in response to an 8-week 

training program in healthy individuals and COPD patients by applying cross-validation. 

This method can be used to assess how the results of our analysis can be generalized to an 

independent data set. Here, we simulated the dynamics of the activity state of the GRN in 

response to endurance training by randomly removing a random number of constraints. 

Next, the results were compared with the results of the analysis considering all the 

constraints. This analysis is performed up to 1,000 times in order to build a matrix of 

contingencies. Finally, the p-value is calculated by χ2 test analysis on the table of 

contingencies.
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2.7 Evaluate the effect of perturbation on key regulatory nodes aiming at retrieving post-
training COPD to a healthy state

We simulated the effect of perturbations (e.g., a drug affecting the expression of a given 

gene) on one or a pair of genes that, along with 8-week endurance training program 

(Rodriguez et al., 2011), return the COPD patients to a healthy state (Figure 1 D.2). This is 

achieved in three main steps evaluating: i) the different adaptation to training between 

control group and COPD patients, ii) the effects of perturbations affecting key regulatory 

nodes in the adaptation to training in the COPD groups and iii) synergies between key 

nodes. To this end, we analyzed three aspects of the similarities observed between groups 

(number of nodes with the same response to endurance training): i) the degree of similarity 

between COPD and control groups, ii) the degree of improvement when a single gene is 

targeted in COPD groups compared with the wild type and iii) the degree of synergy when 

targeting a pair of nodes compared with the expected additive. The details of these analyses 

are explained in the Supplementary material 1.

3 Results

3.1 Gene Regulatory Network reconstruction of mitochondrial muscle-specific adaptation 
to training in COPD patients

We reconstructed a mitochondrial skeletal muscle-specific GRN that integrates information 

on mechanisms of training-induced adaptations in health and in COPD. This was achieved in 

three steps: i) gene expression analysis, ii) automated regulatory network reconstruction and 

iii) manual curation of the network reconstruction.

First, we determined the genes showing significant differences between the study groups 

(Rodriguez et al., 2011; Turan et al., 2011) by normalizing gene expression (Irizarry et al., 
2003) and applying the rank product method (Breitling et al., 2004). We focused our 

network reconstruction on genes associated with mitochondrial processes, using the Gene 

Ontology Database (GO) (Berardini et al., 2010), String (Franceschini et al., 2013), Uniprot 

(Apweiler et al., 2014) and Human Protein Atlas (Uhlen et al., 2010) to identify those genes 

related with mitochondrial processes (GO: 0005743) expressed in human skeletal muscle. 

Finally, we obtained a list of 105 genes that showed significant variations between two or 

more of the six states of study in the context of mitochondrial processes (Supplementary 

Material 1, Table S1).

Next, these genes were used to reconstruct a mitochondrial musclespecific GRN by using a 

variety of tools and databases (Methods and Supplementary material 1). Since this study is 

focused on conditions in which the machinery of ROS detoxification is saturated, this node 

was defined just as an input node. In other words, it is not directly affected by the network 

but rather its activity state can be inferred from the activity state of the network (Figure 1B, 

step 4 and Supplementary Figure S6). Figure 1B shows an interaction network where the 

nodes represent two types of genes: i) genes differentially expressed between at least two of 

the six states (control, COPD with normal and low BMI, before and after training) and ii) 

genes included to connect the above-mentioned genes in a single GRN. The arrows represent 

the interactions between the nodes (activations or inhibitions). Thus, the resulting GRN 
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accounted for 59 nodes (58 genes + ROS) and 170 gene regulatory interactions 

(Supplementary material 2) (Figure 2B, step 6 and Supplementary Figure S17). Since the 

resulting GRN captures the key genes, interactions and mechanisms related with responses 

to endurance training and with COPD disease, it offers an excellent platform to integrate 

various sorts of omics data into a discrete model, allowing the identification of the dynamics 

governing abnormal adaptation to training in COPD patients. It was also useful for 

simulating physiological responses of the GRN to perturbations produced by training-

induced ROS levels.

We evaluated the predictive capability of our GRN reconstruction by integrating a 'validation 

data set' into a discrete model-driven analysis by using SysBiOX framework (Corblin et al., 

2009; Thomas and Kaufman, 2001) (Methods and Supplementary material 1). The 

expression datasets corresponded to mouse muscle biopsies from three independent single 

gene knock-out experiments of myc, tp53 and insr and the gene expression information of 

these genes was omitted from the analysis. The resulting models correctly predicted the lack 

of activity of the corresponding knock-out genes in all three datasets, lending support to the 

GRN reconstruction (Supplementary material 3).

3.2 Building a multi-state discrete model of mitochondrial muscle-specific GRN on the 
basis of molecular mechanisms and probabilistic-based constraints

We performed a reduction transformation of the GRN while conserving the properties of the 

initial network (Kobayashi et al., 2003 and Naldi et al., 2011) (Methods). We also integrated 

constraints through various probabilistic approaches (Methods and Supplementary material 

1).

Next, we analyzed the system in order to infer the parameter ranges (and thus possible 

functional behaviors) of the observed activity state of the network in the six different 

conditions. To this end, we imposed an objective function that minimizes the overall discrete 

value of the nodes of the network, which maximizes the gene expression efficiency. As a 

result of this procedure, we obtained a vector of discrete values representing the activity 

state of the genes (nodes in the model) in each of the six conditions. Some of the values in 

these vectors were directly inferred from the gene expression data that were previously 

integrated as constraints (Methods), and the others were predicted. Next, we performed a 

cross-validation analysis to assess the predictive capability of our method. In this process we 

simulated the evolution of the node values in the GRN in response to endurance training by 

randomly removing a random number of constraints (extracted from gene expression 

analyses). This analysis was performed 1,000 times and showed that our computational 

approach was able to predict 85.37% of the node changes associated with the 8-week 

endurance training program, with an associated p-value lower than 10-5 (χ2 test) (Methods 

and Supplementary material 3).

3.3 Key adaptive differences associated with abnormal metabolic adaptations to training 
in COPD patients

COPD patients show abnormal physiological adaptations to training compared with the 

control group, as indicated in Table 2, wherein changes displayed are consistently predicted 
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by all best-fit models in our analysis. Specifically, endurance training provokes more 

extensive transcriptional changes in the control group than in both COPD groups (Table 2 

and Figure 1 D.1).We observed well-defined patterns of alterations in energy metabolism 

and muscle remodeling in COPD patients (Table 2). As compared to healthy individuals, the 

models predicted an abnormal low activity of ETC, TCA cycle and creatine kinase in 

response to an 8-week training program in COPD patients with low BMI. Interestingly, for 

COPD patients with normal BMI, the models predict up-regulation of complex I (as in 

healthy patients) and a slight increase in citrate synthase and succinyl-CoA ligase. However, 

the models also predict that complexes III, IV and V, other key enzymes of TCA cycle, and 

creatine kinase activities decrease after training in COPD patients with normal BMI, 

suggesting a defective energetic metabolism adaptation to training in this group. Thus, the 

physiological response to endurance training in the healthy individuals is consistent with a 

higher capacity for O2 utilization and energy production than in COPD patients. 

Interestingly glycerol-3-phosphate dehydrogenase cytosolic isoform is up-regulated in 

healthy individuals and down-regulated in the two COPD groups. We observed the opposite 

pattern in the mitochondrial isoform which enters electrons from NADH into the ETC that 

could partially compensate the reduction in ETC and TCA cycle activity. The model also 

shows differences in cdk4 and tnf in response to exercise in both COPD groups compared 

with healthy individuals. Both cdk4 and tnf have an important role promoting adaptive 

changes in myofiber cytoar-chitecture and protein composition in muscle (muscle 

remodeling) (Lee et al., 2009). The models also predicted differences in acadvl (very long-

chain specific acyl-CoA dehydrogenase), insulin receptor factor (insr) and pyruvate 

dehydrogenase (pdha) that are up-regulated after training in healthy group and down-

regulated in both COPD groups. While pdh and insr regulate glycolysis, advl is a key 

activator of beta-oxidation. These pathways fuel TCA cycle and ETC. Then, unlike control 

group, COPD patients reduce the expression of these enzymes that in turns deprives the 

energy metabolism. The predicted abnormal metabolic response to endurance training in 

COPD could explain the potential harm of short duration, high-intensity endurance training 

programs in severe COPD patients (Barreiro et al., 2009). The fact that abnormal adaptation 

to training affects genes and proteins related with muscle remodeling could explain the loss 

of muscle mass observed in the most severe group of COPD patients. In addition, cancer-

associated genes such as tnf or tp53 also increase their activity in response to training in both 

COPD groups which could be related with the reported increase of COPD-lung cancer co-

morbidity (Cohen et al., 2014). To determine the robustness of our computational method 

predicting specific gene changes associated with the endurance training, we evaluated the 

adaptation to training in the activity state of one specific node (value of a given gene at 

trained state compared with sedentary state) when the constraints related with that node were 

omitted. This analysis was performed with all the genes of the network (the node values 

supported by experimental measurements and the node values with no associated differential 

expression data, 58 analyses in total). We observed that the non-constrained analyses 

provided the same predictions for the unconstrained nodes as the analysis considering all the 

constraints in 74.01% of the cases, which is higher than expected by chance (P<10-5, χ2 test, 

Supplementary material 3).
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3.4 Anomalous ROS levels in low-BMI COPD patients in response to training

All the models predicted a reduction of ROS in healthy subjects after training, which is 

consistent with previously reported observations (Puente-Maestu et al., 2012; Rabinovich et 
al., 2001). A training-induced reduction of ROS levels in COPD group with normal BMI 

was also consistently predicted. Moreover, ROS levels in COPD group with low BMI were 

predicted to increase in response to the endurance training, as observed in independent 

studies (Rabinovich et al., 2001). Since the intracellular production of ROS may lead to 

oxidative stress and the damage of cellular components, the increment of ROS could explain 

the deficient adaptation to training observed in COPD patients with low BMI (Barreiro et al., 
2009). To examine the robustness of these findings, we analyzed how ROS was predicted to 

change after training assuming that: i) all the sedentary groups had the same levels of ROS 

and ii) omitting all the constraints relating to ROS from experimental measurements (i.e. 

discrete value of ROS in the control group is equal or higher before than after training; see 

Methods for details of the analysis) (Puente-Maestu et al., 2012; Powers and Jackson, 2008). 

This non-constrained ROS analysis provided the same predictions as our original ROS 

analysis (Supplementary material 3). Additionally, the changes in ROS levels predicted in 

the control group in response to endurance training are consistent with experimental 

observations (Puente-Maestu et al., 2012; Powers and Jackson, 2008). These results validate 

the predictions on the variations in the level of ROS in response to endurance training in 

COPD patients.

3.5 Key players underlying abnormal metabolic adaptation to training in COPD patients

According to our model, the differences lie mainly in those genes that are directly related 

with the training-induced energy metabolism response (Table 2), which is activated in 

healthy people but is abnormally low in both COPD patients groups. We next identified key 

nodes regulating this abnormal adaptation to training. To this end, we explored the effects of 

training on the activity state of gene regulatory interactions in the three study groups (i.e. 

activation or inactivation in response to training). In our discrete model, if the effector node 

is below the threshold of a given interaction, the interaction is inactive and the target node is 

not perturbed through this interaction. The analysis identified different abnormal adaptations 

to training, at the level of gene regulatory interactions, in COPD individuals compared to 

healthy ones. Interestingly, these interactions were not randomly distributed in the network, 

but were concentrated around specific effectors: myc, tnf, inha or insr (Figure 1 D.2). 

Moreover, in the previous analyses tnf and insr presented clear and robust differences in 

their adaptations to training in healthy people compared with both COPD groups (Table 2). 

These results indicate that changes in activity state in tnf and insr in response to endurance 

training may be propagated through the GRN with significant effects on the state of the 

overall network, regulating the different adaptation to training observed in the three patient 

groups.

3.6 Potential therapeutic targets to modulate skeletal muscle dysfunction in COPD

We next evaluated the effects of in silico inhibition/activation of the key regulatory nodes: 

myc, tnf, inha and insr. These simulations were performed by perturbing key regulatory 

nodes, single or pairs of nodes, in order to explore their potential to retrieve post-training 
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COPD patients to a state as close as possible to the healthy state. The aim of the simulations 

was threefold: i) to identify the functional impact of perturbing all single and pairwise 

combinations of nodes; ii) to assess the synergies between nodes; and, iii) to explore 

potential therapeutic strategies to modulate muscle dysfunction in COPD, either based on 

novel therapies or drug repositioning. To this end, we fixed the training-induced response in 

healthy individuals (Table 2) and eliminated all the constraints related with adaptation to 

training in both COPD groups (Methods). Thereafter, we analyzed the training response of 

the two COPD groups while imposing the same post-training value on the key target node(s) 

in both COPD groups as observed in post-training healthy subjects. Next, we evaluated if the 

training response was closer to healthy group adaptation compared with the results of each 

COPD group summarized in table 2. This approach was performed for all the key single 

nodes and their possible pairs (Methods and Supplementary Material 1).

Most of the perturbations targeting pairs of regulatory nodes yielded functional improvement 

in retrieving COPD patients to a state closer to healthy individuals. The combination of tnf 

and insr showed high potential to improve the training-induced response in both COPD 

groups (13% and 11% in COPD normal BMI and low BMI, respectively; Figure 2A). 

Moreover, the tnf-insr pair showed high synergistic potential. More specifically, our 

simulations predicted that the improvement in the training-induced response in COPD 

patients with normal BMI was 106% higher than expected by additive effects while it was 

36% higher in COPD patients with low BMI (Figure 2B and Supplementary material 1). We 

note that while tnf is down-regulated in healthy and up-regulated in both COPD groups after 

training, insr has an opposite pattern. The predicted adverse effects of tnf on skeletal muscle 

bioenergetics is consistent with the reported correlation between COPD severity and tnf 

levels (Victor Pinto-Plata et al., 2012; Qi et al., 2014) and is consistent with our predictions 

that the impact of using tnf inhibitors as a drug is higher in COPD with low BMI than in 

COPD patients with normal BMI, compared with the wild types simulations (Table 2; 23% 

higher and 33% lower in COPD with normal and low BMI respectively; Figure 2A). The 

synergies between tnf and insr rely on bibliographic evidence indicating that COPD may 

directly increase insulin resistance through the effects of chronic inflammation on skeletal 

muscle insr (Lorenzo et al., 2008; Plomgaard et al., 2005). Overall, these reports support the 

results of our simulations predicting low effects of an insr-related drug alone (18% and 31% 

lower COPD with normal and low BMI respectively; Figure 2A). While most of the 

perturbations on target regulatory pairs of genes that included insr showed low effectiveness, 

interventions on the pair tnf-insr generated a significant improvement in both COPD groups. 

The effects predicted in our simulations were supported by a number of experimental results 

(Pinto-Plata et al., 2012; Qi et al., 2014; Lorenzo et al., 2008).

The current findings on potential therapeutic interventions seem to pave the way for novel 

drug repositioning for COPD patients. For example, it has been demonstrated that statins 

affect insulin receptors by decreasing skeletal muscle insulin resistance (Lalli et al., 2008; 

Saito et al., 2007). Moreover, compounds with statin activity, such as simvastatin, can inhibit 

tnf alpha activity (Lin et al., 2013) and are used, along with exercise, to reduce elevated lipid 

levels and prevent cardiovascular diseases (Pyörälä et al., 2004). Our predictions suggest the 

potential for drug repositioning (i.e statins) in COPD with important clinical implications.
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4 Conclusion

In this study, we developed a novel strategy to reconstruct a highly curated mitochondrial 

muscle-specific GRN and the integration of mechanisms described by this network with 

information extracted from probabilistic approaches into a discrete model-driven analysis.

The novel computational method developed in this work combines probabilistic and model-

driven approaches. Model-driven approaches can be used to analyze the dynamics of a 

system which cannot be carried out through classical gene expression data analysis. This is 

because these approaches are based only on the significant gene expression differences 

between conditions but do not take into account the interactions between the elements of the 

system. Thus, relatively small changes in a key gene may modify dramatically the behavior 

of a system but not be captured by significant changes in its gene expression value. 

However, model-driven methods are limited in size due to the lack of parameters that drive it 

to a large number of feasible solutions. On the other hand, probabilistic approaches allow the 

integration of constraints from a large number of sources which significantly reduces the 

number of feasible solutions allowing the expanded use of model-driven method to larger 

interaction networks. Our combined method has permitted us to overcome existing 

limitations in mechanistic approaches to deal with complex networks. More specifically, this 

approach allowed the data-driven integration of large-scale constraints into a model-driven 

analysis, enabling its application to large systems that cannot otherwise be studied due the 

lack of experimentally measured quantitative parameters. Additionally, it has enabled us to 

expand the use of probabilistic methods to the study of underlying molecular mechanisms. 

In addition, our approach can provide more information than other currently available data-

driven methods. Thus, for instance, rank product analysis (R Breitling et al, 2004) depicted 

in table S1 (Supplementary material 1) shows few gene expression differences between 

conditions while our analysis was able to determine how training modulates the expression 

of all the genes in the three study groups. We also analyzed the skeletal muscle 

transcriptomic data using SamNet (Gosline SJ. et al, 2012), a tool which permits the 

integration of gene expression data into a case-specific interaction network reconstruction 

analysis. Importantly, in all the analyses our model-driven approach showed superior 

predictive performance compared to SamNet. More specifically, our approach, unlike 

SamNet, was able to integrate all the relevant genes into a single GRN adding fewer new 

nodes and a larger number of interactions per node. In addition, our approach could predict 

with more accuracy the activity state of each interaction in response to training and 

consequently define the key genes underlying abnormal metabolic adaptation to training in 

COPD patients (Supplementary material 1).

Our study has permitted us to unlock important mechanisms underlying the abnormal 

adaptation to training in COPD patients and the role of ROS in this disease. This new 

understanding can be used to design more efficient strategies combining optimal endurance 

training programs with drug treatments targeting specific key nodes of the energy 

metabolism.

This novel approach can be also extrapolated to other complex and multifactorial diseases 

with strong metabolic components, such as cancer, cardiovascular disorders or diabetes that 
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often occur as comorbid conditions in COPD patients. In addition, our in silico analysis is 

suitable for integrating not only transcriptomic data, but also proteomic data. Further efforts 

to improve automated network reconstruction and probabilistic-based constraint integration 

methods that use patient-specific multi-omic data are expected to extend the applicability of 

this approach for personalized medicine. We anticipate that the approach presented here will 

open a new avenue in the study of COPD and other multifactorial and complex diseases, 

facilitating the development of more efficient treatments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overall process of GRN reconstruction and its integration with probabilistic-based 
constraints into a discrete-model driven analysis.
Fig. 1A, step 1: Comparison of the trancriptomic data of the six study states Fig. 1A, step 2: 

Identify differentially expressed genes between conditions Fig. 1A, step 3: Since both 

energy metabolism and ROS production occur mainly in the mitochondria, the GRN 

reconstruction was focused on differentially expressed genes associated with mitochondrial 

processes using GO and Human Proteins Atlas databases. Fig. 1B, step 4: Automated 

interaction network reconstruction generated by IPA software (Krämer et al., 2014), DroID 

(Murali et al., 2011) and BioXM (Maier et al., 2011) databases based on the list of 

differentially expressed genes. This network includes gene regulatory and protein-protein 

interactions. Fig. 1B, step 5: Manual curation of the GRN reconstruction using a bibliomic 

data sources (Supplementary material 1.2) to identify and correct incomplete or erroneous 

annotations and identify the direction and sign of interactions. Fig. 1B, step 6: Since our 

analysis is based on transcriptomic data, we focused on gene regulatory interactions only. 

The nodes in the networks represent genes that are either differentialy expressed between 

groups or were included to construct a single GRN; violet nodes represent ROS and edges 

represent interactions between nodes, with green and red arrows indicating negative and 

positive interactions, respectively. Interactions with unknown direction and/or sign are in 

yellow. Fig. 1C step 7: Mathematical formalization of the reconstructed GRN based on R. 
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Thomas formalism (Thomas and Kaufman, 2001). This approach describes mechanistically 

the interactions between differentially expressed mitochondrial-associated genes. Fig. 1C 
step 8: Impose constraints based on publicly available muscle-related gene expression data-

sets Fig D.1: Applying the discrete model which integrates the gene-regulatory mechanisms 

(step 7) and the constraints (step 8) to determine the mechanisms associated with abnormal 

adaptation to training in COPD patients. Graphical representation of the predicted metabolic 

adaptation to endurance training program in healthy people (A), COPD patients with normal 

BMI (B) and COPD patients with low BMI (C). The figure represents a scheme of 

glycolysis, β-oxidation, TCA cycle and electric transport chain (ETC). Continuous arrows 

represent the metabolic reactions, while dashed arrows represent the activation of glycolysis 

and β-oxidation by insr and acadvl, respectively. Metabolic reactions/pathways associated 

with genes predicted to be up-regulated (down-regulated) after the training program are 

colored in green (red). White arrows represent metabolic reactions not directly associated 

with any gene in the reconstructed GRN. Gene abbreviations: insr: insulin receptor factor, 

acadvl: acyl-CoA dehydrogenase, very long chain. Metabolic reaction abbreviations: pk: 

pyruvare kinase, pdh: pyruvate dehydrogenase, cs: citrase synthase, idh: isocitrate 

dehydrogenase, ogdh: oxoglutarate dehydrogenase, suclg: succinate-CoA ligase, CI: NADH 

dehydrogenase, CII: succinate dehydrogenase, CIII: cytochrome c reductase, CIV: 

cytochrome c oxidase, CV: ATP synthase; the metabolites and cofactors represented in this 

figure are: pep: phosphoenol pyruvate, pyr: pyruvate, acoa: acetyl CoA, cit: citrate, akg: 

alpha-ketoglutarate, suc: succinate, fum: fumarate, oaa, oxalacetate, H+: proton, NAD+: 

nicotinamide adenine dinucleotide oxidized, NADH: nicotinamide adenine dinucleotide 

reduced, FAD: flavin adenine dinucleotide oxidized, FADH2: flavin adenine dinucleotide 

reduced, ATP: adenosine triphosphate, ADP: adenosine diphosphate, Q: ubiquinol, QH2: 

ubiquinone, cytCox: cytochrome c oxidized, cytCred: cytochrome c reduced. Fig D.2: 

Prediction of key regulators underlying the abnormal adaptation to training in COPD.
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Fig. 2. Evaluation of potential therapeutic targets in COPD
In the overall figure the first four columns represent the results of simulations on single 

target nodes and the six last correspond to simulations targeting pairs of nodes. Light and 

dark blue bars represent the results of the simulations of COPD patients with normal and 

low BMI, respectively Fig. 2 A: Evaluation of the % of improvement to training-induced 

response in both COPD groups compared with the results from table 2 and using as 
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reference the response to training in control group. Fig. 1 B Evaluation of the % of 

synergistic potential compared with the expected additive effect.
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Table 1

Illustrative example of using expression correlations as constraints

Genes/Prediction Condition 1 Condition 2

A 2 3

B 1 Bcond2

Discrete values for genes A and B in conditions 1 and 2
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