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Abstract

The immune response to melanoma improves survival in untreated patients and predicts response 

to immune checkpoint blockade. Here we report genetic and environmental predictors of the 

immune response in a large primary cutaneous melanoma cohort. Bioinformatic analysis of 703 

tumor transcriptomes was used to infer immune cell infiltration and categorize tumors into 

immune subgroups, which were then investigated for association with biological pathways, 

clinicopathological factors, and copy number alterations. Three subgroups, with "Low”, 

“Intermediate", and "High" immune signals were identified in primary and replicated in metastatic 

tumors. Genes in the Low subgroup were enriched for cell cycle and metabolic pathways, whereas 

genes in the High subgroup were enriched for interferon and NF-κB signaling. We identified high 

MYC expression partially driven by amplification, HLA-B downregulation, and deletion of IFN-γ 
and NF-κB pathway genes as regulators of immune suppression. Furthermore, we showed that 

cigarette smoking, a globally detrimental environmental factor, modulates immunity, reducing 

survival primarily in patients with a strong immune response. Together these analyses identify a 

set of easily assessible factors that may serve as predictors of response to immunotherapy in 

melanoma patients.
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Introduction

The presence of tumor infiltrating lymphocytes (TILs) predicts better outcomes from 

primary melanoma [1][2] and therapeutic benefit from checkpoint blockade is more likely if 

tumors are PD-L1 positive [3] in response to T cell infiltration. Data have been published 

suggesting that higher mutational load is predictive of response to immunotherapy, and some 

studies with small numbers of patients have reported gene expression signatures with some 

predictive value [4][5]. However, the crucial need remains to identify the biological 

processes underlying “cold” unresponsive tumors. Bioinformatic analysis of large-scale 

“omic” datasets such as The Cancer Genome Atlas (TCGA) increasingly contribute to our 

understanding of tumor immunology [6][7] but the tumors are highly selected/biased, at 

advanced stage and with limited clinical metadata. In this report, we have used 

transcriptomic data generated from 703 of the 2184 participants in a population-based 

primary melanoma cohort (the Leeds Melanoma Cohort, LMC) [8][9] to explore the drivers 

of immune responses/failure at diagnosis, with the aim, ultimately, of improving adjuvant 

therapeutic choices.

In a previous report, we applied an approach to inferring the tumour immune 

microenvironment described by Bindea et al. [10] and identified 6 immunologically different 

tumour subgroups [11]. The Immunome Compendium used in that study contained genes 

specific to 24 immune cells [11]. In the current study, we utilized a refined version of the 

immunome compendium derived from a more extensive literature screening and covering 31 

immune cell subtypes as published by Angelova et al. [12]. We defined transcriptomic 

scores for these immune cells and used them to classify tumors with unsupervised methods 

to identify immunologically different subgroups. The classification was based on the 

immune cell scores generated from the expression of genes attributed to each cell subtype 

rather than on individual genes as we reported in our previous study [11]. We postulated that 

reducing the number of dimensions prior to classification analysis could identify tumor 

groupings with a clearer difference in survival, facilitating subsequent in depth biological 

and epidemiological characterization, directed towards the identification of candidates for 

therapeutic targets.

There is evidence that environmental factors may modify immune responses to tumors [13]. 

We have previously reported that smoking was associated with microscopic tumor ulceration 

and vitamin D was protective [9] and here we demonstrate the effect of smoking as a 

modifier of outcome within each immune subgroup.

Methods

The Leeds Melanoma Cohort transcriptomic data

The transcriptomic data from 703 tumors were generated and pre-processed as previously 

reported using the Illumina DASL whole genome array [14][15][11]. These data are 

accessible for the purposes of melanoma research from the European Genome-Phenome 

Archive with the accession number EGAS00001002922. All survival analyses used 

melanoma specific survival (MSS). The median follow-up for 703 samples at the time the 

data set was fixed, was 7.5 years. Detailed information about the cohort is provided in 
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Supplementary Methods. The participants gave written informed consent and the study 

received ethical approval (MREC 1/03/57 and PIAG3-09(d)/2003) and was conducted in 

accordance with recognized ethical guidelines (Declaration of Helsinki).

Immune cell scoring

Angelova et al. generated a list of genes identified as specific to certain immune cells in the 

blood [12] (the compendium of immune genes). These 1,980 genes were identified from 

reports of 36 studies comprised of 813 microarrays generated from 30 purified immune cell 

subtypes (activated and memory B cells, activated CD4+ and CD8+ cells, central memory 

CD4+ and CD8+, cytotoxic cells, dendritic cells (DC), effector memory CD4+ and CD8+, 

eosinophils, immature B cells, macrophages, mast cells, monocytes, natural killer cells 

(NK), natural killer 56 bright, 56 dim and natural killer T, neutrophils, T cells, T follicular 

helper (TFH), T gamma delta (TGD), T helper 1 (Th), 2, 17, T regulatory cells (Treg), 

immature, plasmacytoid and memory dendritic cells (iDC, pDC, mDC)), as well as genes 

(searched from literature) for myeloid-derived suppressor cells (MDSCs), resulting 

altogether in 31 subtypes.

From the initial list of genes, we removed those also strongly expressed (in the top 25%) in a 

melanocyte cell line (GSE4570) and in melanoma cell lines, MEWO and SK-MEL28 (in-

house data). In a second step, we removed cell subsets for which more than 90% of genes 

were eliminated (in the previous step) or if there was insufficient published evidence for the 

remaining genes to be considered representative of those cell types. We expected that 

expression of the majority of genes specific to a particular cell type would be positively 

correlated within the cell type, as this was the basis of gene selection in the Angelova et al. 
study. However, in our dataset this was not always the case, so in a third step of filtering, we 

removed genes negatively correlating with the majority within each cell subset to reduce the 

risk of noise due to technical factors. After applying the filters described above, we devised 

a score for each immune cell type, calculated as the mean of expression values of all genes 

attributed to that cell, after z-score normalization of the log2 transformed gene expression 

data as described before [11]. The scores were calculated in the LMC primary melanomas 

and in the TCGA metastatic melanomas. The reciprocal correlations of genes within each 

immune cell score were compared between these two datasets.

Clustering of LMC tumors

We applied consensus cluster analysis [16] within the R package ConsensusClusterPlus [17] 

to classify primary melanomas of LMC based on their immune cell scores. This approach 

generates a varying number of clusters (to a fixed maximum number, K) using resampling of 

the data. It is widely used to find stable sample subgroups in high-dimensional data as a 

better alternative to the standard one-off clustering, which might be affected by random 

variation. Additionally, consensus clustering offers useful metrics (see below) to indicate the 

optimal number of clusters, unavailable in standard clustering. K-means was chosen as the 

clustering algorithm with maximum K=12, Euclidean distance, 5000 repetitions, 80% genes 

and tumor resampling. Examination of the consensus cluster matrices, the cumulative 

density function (CDF) and delta CDF (the change in the area under the CDF curve) allowed 

definition of the optimal number of tumor clusters [16].
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Clustering replication in TCGA

We downloaded RNAseq gene expression and survival data for The Cancer Genome Atlas 

(TCGA) metastatic melanoma data (xhttp://www.cbioportal.org/data_sets.jspx) (339 

samples downloaded in 2016). We hypothesized that the immune subgroups observed in the 

primaries would be recapitulated in metastatic melanomas, and to test this hypothesis we 

calculated cluster centroids (vector of cell score means within clusters) in the LMC dataset 

and utilized them to classify TCGA metastatic melanomas using the nearest centroid 

method, as described elsewhere [15]. Briefly, immune cell scores were calculated in the 

TCGA data in a similar manner as in the LMC and each TCGA tumor was assigned to one 

of the new clusters, with which it had the strongest Spearman correlation.

Overrepresentation analysis (ORA) and networks

To test the whole transcriptome differences between the immune subgroups in the LMC, the 

Kruskal-Wallis test was used for 3 groups, the Mann-Whitney U test was used for 2 groups 

and Bonferroni correction was applied for multiple testing correction (0.05/29354=1.7x10-6, 

the number of probes tested was 29354). To visualize the expression of significantly 

differentially expressed genes (DEGs) (excluding the compendium of immune genes) among 

immune subgroups, these DEGs were hierarchically clustered and a heatmap plotted. 

Reactome FiViz [18] and Centiscape [19] in Cytoscape [20] were utilized to analyse the 

protein-protein interaction (PPI) network and infer pathways enriched in the DEGs 

characterizing each immune subgroup. The networks were created based on existing protein-

protein interaction networks built in Reactome FiViz, which covers over 50% of human 

proteins. From the network, pathway enrichment was calculated at FDR <0.001. In order to 

identify the most influential (hub) genes in the networks, the “betweenness” metric 

(indicating a key role in communication between proteins) was used as a centrality measure 

in Centiscape [19]. Graphical adjustments for network visualization were made in Gephi 

software [21]. The Spearman rank correlation was used to evaluate the correlation between 

the expression of a hub gene and the whole transcriptome patient-derived primary melanoma 

cell line cultures.

Primary melanoma cell lines validation experiment

As previously described, primary melanoma cells were isolated from surplus surgical 

specimens of consenting patients (approved by the local IRB [EK.647/800]) at the 

University of Zurich, and maintained by the University Research Priority Program in 

Translational Cancer Research at the University of Zurich Hospital [22]. The cell lines were 

authenticated by Sanger sequencing for the oncogenes seen from the tumor and tested for 

mycoplasma infection using the PlasmoTest Kit (InvivoGen). Cells were passaged about 5 

times before RNA extraction. Details are provided in Supplementary Methods.

Immunohistochemistry (IHC) validation

The most influential genes identified in our analyses were further examined by IHC staining 

of sections of available primary tumors from the LMC, to assess the protein-level and gene 

expression correlations. Primary antibodies were supplied by Abcam (UK): anti-MYC 

(ab32072), anti-NF-κB p105 (ab32360), anti-HLA-B (ab193415). The details of scoring are 
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described in the supplementary methods. The Mann-Whitney U test was used to compare the 

mRNA level and the IHC scores. The nuclear staining scores in tumor cells and in TILs were 

compared using the Fisher’s exact test. The correlation of continuous scoring was tested 

using Spearman’s rank correlation. Images presented are of digitally scanned slides 

generated by the Digital Pathology Group, Leeds Institute of Medical Research at St. 

James’s, using Aperio technology (Leica Biosystems, UK).

Analysis of CNA among the immune subgroups

We extracted copy number profiles in the genomic regions spanning the hub genes from the 

network analysis and compared them between immune subgroups and with gene expression 

and patient survival. Next-Generation Sequencing (NGS)-derived copy number alteration 

(CNA) profiles were available from 276 tumor samples among the 703 transcriptomic-

profiled. To evaluate the full extent of the role of structural variation, we expanded the gene 

list to other genes of the same family or the same pathway as the hub genes (plus NF-κB and 

its regulators, and IFN-γ signaling genes). The association between CNAs and gene 

expression was tested using Fisher’s exact test. Since we have previously reported β-catenin 

signaling pathway to be upregulated in 42% of primary melanomas overall and in 73% of 

those with the worst outcome [11], we tested the overlap between the CTNNB1 expression 

signature with the immunosuppressive mechanisms identified in this study and their joint 

effect on survival (Cox-proportional hazard regression). For the CNA visualization, the 

ComplexHeatmap package in R was used [23]. The CNA data analysis in detail is included 

in supplementary methods.

Statistical analyses

The univariable Cox proportional hazards model was used to test the association between 

tumor immune subgroups and melanoma specific survival (MSS) in the LMC and overall 

survival (OS) in TCGA datasets. To test independence between the tumor immune 

subgroups and clinico-pathological factors, Chi-square and Kruskal-Wallis tests were used. 

A univariable Cox proportional hazard model was used to test the prognostic value of the 

immune cell scores and the clinical and environmental factors (AJCC staging version 7, age 

at diagnosis (median: 58.34 years), sex, site of melanoma (limbs vs rest), smoking never/

ever (median duration of smoking in the smoking group was 23 years), vitamin D levels at 

recruitment (median level in winter: 39.5 nmol/L)) and a social status/deprivation index 

measured by Townsend score [24] in the whole LMC dataset. Subsequently, the significant 

clinical and environmental predictors were included in a multivariate model (adjusting for 

the immune clusters). The predictors with the strongest degree of independence in the whole 

dataset were jointly tested within each immune subgroup.

Results

Devising a list of genes indicative of specific immune cells infiltrating melanoma

The first filtration step resulted in 458 genes representing 30 distinct immune cell subsets 

(Subset 1, Figure 1, Supplementary Data 1). The second step resulted in the elimination of 

scores for effector memory CD4+ T cells, activated CD8+ T cells and activated CD4+ T 

cells (Subset 2, Figure 1, Supplementary Data 1). The plasmacytoid dendritic cell score 
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(pDCs) was retained despite having only 1 attributed gene (IL3RA), as in the previous 

version of the Immunome compendium [10] because it is known to be highly expressed in 

pDCs [25][26]. The final filtration step left 376 genes representing 27 immune cell subsets 

(Subset 3, Figure 1, Supplementary Data 1). We noted that when applied to TCGA 

transcriptomes, the correlation matrices between genes within each cell type also 

demonstrated a number of negatively correlated genes although fewer than in our primary 

melanoma cohort (data available upon request).

The association of 27 immune cell scores with survival

We tested the association of the immune cell scores with melanoma specific survival (MSS) 

(univariable analysis) and the results revealed that the majority of immune cell scores (17 

out of 27) in the LMC and (23 out of 27) in TCGA were associated with improved survival 

after Bonferroni correction (27 tests, P<0.002). For 8 of the remaining 10 cell scores in the 

LMC, a similar protective effect was found but the effects did not withstand adjustment for 

multiple testing (Supplementary Table S1). The survival analysis was repeated after removal 

of the 16 participants known to have received checkpoint therapies and the results for all the 

immune cell scores were essentially unchanged.

Identification of three prognostic immune subgroups

Consensus clustering analysis of tumor samples using the 27 immune cell scores identified 3 

clusters with distinct immune phenotypes (Supplementary Fig. S1), which we termed Low, 

Intermediate and High Immune Subgroups (Figure 2A). Importantly, by classifying the 

TCGA metastatic melanomas in these 3 immune subgroups (supervised classification), we 

were able to replicate the results obtained in LMC with strong similarities in overall 

immunological profiles (Figure 2B). Furthermore, the three immune subgroups were 

associated with survival in both datasets: in the LMC, a significantly lower hazard of 

melanoma death was observed for patients assigned to the High compared to Low and 

Intermediate Immune Subgroups (Hazard Ratio (HR)=0.5, P=0.001 (95% CI 0.3-0.7); 

HR=0.6, P=0.05 (95% CI 0.4-1.0), respectively) (Figure 2C).

For TCGA, tumors classified as High Immune also exhibited a lower overall death hazard 

with HR=0.3, P=1.1x10-7 (95% CI 0.2-0.5) compared to those classified in the Low Immune 

Subgroup. Tumors in the Intermediate Immune Subgroup had a HR=0.5, P=4.6x10-5 (95% 

CI 0.4-0.7) when compared to those of the Low Immune Subgroup (Figure 2D).

The 3 class signature reported here (High, Intermediate and Low Immune) was concordant 

with the 6 consensus immunome clusters (CICs) we published previously [11], (Cramer’s 

V=0.72) (see Supplementary Fig. S2A).

However, there was only moderate concordance with another 3-class signature (immune, 

keratin and MITF low) published by TCGA, (Cramer’s V=0.47). In essence, our High 

Immune group overlapped well with the TCGA immune class but the Intermediate and Low 

Immune subgroups had much less overlap with TCGA groups (Supplementary Fig. S2B). 

Kaplan Meier curves for our three immune subgroups were more clearly/significantly 

separated than the three TCGA classes. Generally, we observed the expected prognostic 

trend of the immune signature but there was no difference between the immune and keratin 
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groups of the TCGA signature (Supplementary Fig. S2C). There were 70 genes identified 

that were shared between our and TCGA signature (listed in Supplementary Data 2X).

The immune subgroups were associated with tumor thickness, TILs and mitotic number

In the LMC data, the High Immune, in comparison to the Low and Intermediate Subgroups, 

featured consistently thinner tumors (Kruskall Wallis P=0.004) and, crucially, more TILs 

reported by both clinical dermato-pathologists (Chi2 P=4.0x10-7) and a single observer from 

our research group who was blinded to the transcriptomic data (Chi2 P=3.6x10-8) (see 

Supplementary Table S2). The mitotic number was significantly lower in the High Immune 

Subgroup (Kruskal Wallis P=2x10-4). The Low Immune Subgroup had the lowest proportion 

of tumors harboring a BRAF mutation (40%) and the highest proportion with an NRAS 
mutation (30%), although these observations were only marginally significant 

(Supplementary Table S2). The recorded site of melanoma was significantly different across 

the immune subgroups, with primary tumors located at “rare” sites (not exposed to the sun) 

most frequently classified in the Low (19%) compared to the Intermediate (9.5%) and the 

High Immune Subgroups (8%) (Chi2 P=0.02). AJCC stage, patient sex, age at diagnosis, 

smoking status and levels of season-adjusted serum vitamin D were not significantly 

different between the subgroups (Supplementary Table S2).

Identification of MYC as the regulator of immune response in network analyses

We compared gene expression among the 3 immune subgroups (Supplementary Fig. S3). 

5607 differentially expressed genes across the genome were identified between the High vs 

Low Immune Subgroups. The genes upregulated in the Low Immune Subgroup (n=3324) 

were predominantly associated with high proliferation and metabolic activity 

(Hypergeometric test adjusted P value 10-14 to 10-7) with lower levels of expression of the 

genes coding immune checkpoint molecules (expressed by tumor) such as CD274 coding for 

PD-L1. The most enriched pathways were the citric acid (TCA) cycle and respiratory 

electron transport, mitochondrial translation and mitosis pathways (Figure 3A and 

Supplementary Data 2A). Network analysis of genes enriched in the Low Immune Subgroup 

revealed that the proto-oncogene MYC had the highest centrality (Figure 3A). 

Unsurprisingly, network analysis indicated that the genes upregulated in the High Immune 

Subgroup (n=2283) were mostly involved in immune pathways (Hypergeometric test 

adjusted P value 10-14 to 10-10). The top enriched pathways were: Interferon alpha/beta 

signaling, antigen processing and presentation, interferon gamma and NF-κB signaling 

(Figure 3B and Supplementary Data 2B), with the nodal gene in this network being NFKB1 
encoding the p105/p50 subunit of NF-κB (Figure 3B).

The identification of MYC as the gene with the highest centrality in the Low Immune 

network suggested that it might fulfil a key role in immune evasion. We took an agnostic 

approach to testing correlations between MYC expression and the rest of the genome in 

transcriptomes from patient-derived primary melanoma cell lines (lacking immune cells) 

[22]. Genes were ranked according to their correlation with MYC and of 50 genes most 

significantly negatively correlated with MYC one tenth were involved in antigen processing 

and presentation (HLA-B, HLA-C, B2M, TAP1 and ERAP1), with HLA-B representing the 
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strongest results (R=-0.57, P=1.6x10-10) (Figure 3C and Supplementary Data 2C). The 

correlation of MYC with HLA-B gene expression in the LMC was: R=-0.3 (P=5.5x10-14).

An immunosuppressive effect of oncogenic MYC has previously been demonstrated, 

although by different mechanisms than suggested in this study: MYC was reported to 

increase expression of genes encoding CD47 and PD-L1 on lymphoblastic leukemia cells 

[27]. We tested this observation using Spearman’s rank correlation, but MYC expression did 

not significantly correlate or correlated negatively with CD47 or PD-L1 expression in either 

the primary melanoma cell lines (R=-0.17, P=0.09; R=-0.16, P=0.1, respectively) or in the 

LMC tumors (R=0.04, P= 0.3; R=-0.17, P=2.3x10-6, respectively).

mRNA gene expression correlation with protein scores – Immunohistochemistry (IHC)

A subset of tumors was immunohistochemically stained using antibodies for key proteins. 

We found that the protein expression of MYC localized to the tumor cell nuclei while HLA-

B localized to the tumor cell membrane and the expression of both proteins was positively 

associated with their mRNA transcripts (P=0.056 and P=0.002 respectively) (Figure 4). 

MYC staining was only detected in tumor, not immune cells. Using the Nuance software for 

calculation of number pixels of positive staining per analyzed image of MYC and HLAB we 

observed a negative correlation (R=-0.6, P=0.02) only for samples where MYC was detected 

(N=15) (Figure 4C). For samples where MYC was barely detected (<1%) the correlation 

was not seen, which indicated that there are other factor regulating HLAB expression in the 

absence of MYC. NF-κB p105 was detectable in the nuclei of both tumor cells and TILs and 

the levels of expression from these were positively correlated (P=3x10-5). Importantly, 

mRNA expression of NFKB1 was positively correlated with tumor NF-κB p105 nuclear 

staining (P=0.02) (Figure 4).

MYC was more frequently amplified, while NF-κB and IFN-γ signaling genes was more 
frequently deleted, in the Low Immune Subgroup

Given that we observed upregulation of MYC and downregulation of NFKB1 expression 

(the nodal genes) in the Low Immune Subgroup, we hypothesized that MYC amplifications 

and NFKB1 deletions would be more common in this immune subgroup in the LMC. Using 

next-generation sequencing derived copy number data from a subset of the LMC tumors, we 

observed that 29% had amplifications of MYC and 14% deletions of NFKB1 in the Low 

Immune Subgroup, more than in the Intermediate or the High Immune Subgroup (P= 0.02 

for MYC, P=0.0003 for NFKB1) (Figure 5A, Supplementary Data 2D). Interestingly both of 

these copy number changes were strongly predictive of poor prognosis overall (adjusted for 

AJCC stage) separately (MYC amplifications: HR=1.8 (95% CI 1.8-2.6), P=0.006; NFKB1 
deletions: HR=1.5 (95% CI 1.1-2.1), P=0.007) and when combined (HR=3.7 (95% CI 

1.6-8.5), P=0.002, adjusted for AJCC) (Figure 5B, Supplementary Data 2E and F).

Because the NF-κB and IFN-γ pathways were amongst the most enriched pathways in the 

High Immune Subgroup, we then asked if other genes within these pathways were deleted in 

the Low Immune Subgroup. Indeed, we found evidence of deletion of NFKB2 (26% of 

whole dataset), CHUK (22%), MYD88 (5%), IRAK2 (5%), MAP3K7 (17%), JAK2 (10%), 

and STAT1 (4%). These copy number changes were not mutually exclusive (Figure 5A) but 
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were much more frequent in the Low Immune than in other subgroups (Figure 5B, 

Supplementary Data 2D). Deletion of CHUK, MYD88, IRAK2 or JAK2 each were 

predictive of death from melanoma after adjusting for AJCC stage (Figure 5B, 

Supplementary Data 2E and F). As expected, these copy number changes were highly 

correlated with mRNA expression of corresponding genes (Supplementary Data 2F).

In our previous study [11] we demonstrated that CTNNB1 expression alone was 

overexpressed in 30% of all primaries and 59% of in the CIC4 (Immune Low/β-catenin 

high). Here, we observed a similar pattern across the three immune subgroups: CTNNB1 
was more commonly overexpressed in the Low Immune Subgroup compared to other groups 

(Figure 5A). Comparing the copy number alteration of genes in the NF-κB pathway and 

CTNNB1 expression, we found some overlap but also heterogeneity in the Low Immune 

Subgroup. Specifically, 15% of tumors had evidence of increased CTNNB1 expression 

alone, 32% had a deletion in at least one gene of the NF-κB pathway in the absence of 

CTNNB1 overexpression, whilst 31% had both (i.e. increased β-catenin and a deletion in at 

least one gene). In prognostic terms, in the whole dataset the HR for melanoma death in the 

presence of CTNNB1 upregulation was HR=2.2, P=5x10-5, 1.5-3.1; for NF-κB pathway 

deletions was HR=2.03, P=2x10-4, 1.4-3.0; and for the combination of these two pathways 

was HR=3.4, P=5x10-5, 95% CI 2.2-5.5.

These data demonstrate the involvement of genetic factors in modulating immunity and 

shaping the tumor immuno-phenotype. However, it is commonly postulated that 

environmental factors also play a role in this process, and we therefore tested this 

hypothesis.

Smoking as a strong independent risk factor for melanoma death in the High Immune 
Subgroup

In addition to clinico-pathological tumor characteristics, the LMC has a record of patient 

smoking behaviors, a vitamin D level from a blood sample at diagnosis and a deprivation 

index measured by the Townsend score [24]). In a univariable Cox proportional hazard 

model, AJCC staging, mitotic number, site of primary melanoma, age at diagnosis, sex and 

smoking (never/ever), were significantly predictive of MSS in the whole dataset while 

season-adjusted vitamin D was not. Among these variables, AJCC stage, mitotic number, 

site of melanoma, age at diagnosis, and smoking remained significant in multivariable 

analysis of the whole dataset but different sets of variables were significant in each of the 

three immune subgroups (Table 1). Body site of the primary melanoma was a strong 

predictor of MSS in the Low Immune Subgroup along with AJCC stage, driven by tumors 

arising in sun-protected body sites which were predominantly classified within this group 

and are known to have a particularly bad outcome [28] (Table 1). The prognostic effect of 

smoking was heterogeneous across the three immune subgroups (P<0.03 for equal HRs 

across the subgroups). In the High Immune Subgroup (HR=4.6 for “ever smoked”, P=0.003, 

N=156), compared to within the Intermediate Immune Subgroup (HR=1.8, P=0.05, N=275) 

and the Low Immune Subgroup (HR=0.9, P=0.7, N=272) (Figure 6). The deleterious effect 

of smoking in the High Immune Subgroup was reproduced when the analysis was repeated 

using two alternative definitions of smoking habits: duration of smoking (number of years) 
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and the cumulative number of smoked cigarettes (packs per year) (Supplementary Data 2G 

and H). The negative prognostic effect of cigarette smoking in the High Immune Subgroup 

remained significant after adjusting for the deprivation index (HR=1.6, P=0.001). To gain a 

deeper insight into the interplay between smoking and immune responses, we assessed the 

expression of GPR15 which has previously been described as a biomarker of exposure to 

tobacco smoke, with increased expression previously demonstrated in a number of immune 

cell types measured in the peripheral blood [29][30]. In the tumors, we found no significant 

association between GPR15 expression with smoking (never/ever) across the whole LMC 

dataset (fold change=1.07, P=0.12). However, the association was stronger in the High 

Immune Subgroup (fold change=1.32, P=0.02) (Supplementary Fig. S4A). Furthermore, 

GPR15 expression was the highest in the High Immune Subgroup when testing a subset of 

data of ever smokers: P=5x10-5, while the result was not significant for the second subset - 

never smokers: P=0.3 (Supplementary Fig. S4B). GPR15 expression in the blood is reported 

to decrease after cessation of smoking [30] and therefore we assessed its expression in ‘still 

smokers’ compared to ‘non-smokers’. We observed a markedly stronger differential 

expression in the High Immune Subgroup for still smoking (fold change=1.9, P=0.002) than 

in the whole dataset (fold change=1.32, P=0.01) (Supplementary Fig. S4B). We tested the 

differences in immune cell scores between never/ever smokers (in the High Immune 

Subgroup), but we did not find any statistically significant results (Supplementary Table S3). 

We also examined the association between smoking and tumor histological features 

(Supplementary Table S4) as well as the whole genome expression, including cytokine 

genes, but no significant associations were identified after multiple testing.

Discussion

The dramatic survival benefit of checkpoint blockade in melanoma, in around half of 

patients with advanced disease [31], has highlighted the need to understand the drivers of 

Low Immune (“cold” tumors) which are less likely to respond to treatment. In silico immune 

cell analysis in cancer has been adopted in recent years in order to better understand these 

drivers [32][12][33] although these approaches do not allow distinction to be made between 

weak signals coming from numerous infiltrating immune cells and strong signals from fewer 

cells.

Previously we reported the survival analysis of 24 immune cell scores [11], derived from an 

earlier version of the immunome [10]. In the current analysis, we used an updated version of 

the immunome [12] allowing inference of 31 immune cell scores, which we reduced to 27 

after the gene filtration. We noted that in the earlier report, 10/24 cells were significantly 

prognostic and replicated in TCGA (41% of cells) but in this study the number increased 

17/27 (63%).

In evaluating the updated Immunome, we showed that almost half of the genes proposed to 

be specific to particular immune cell subsets were also expressed at significant levels in 

melanoma cell lines, disqualifying them as immune specific. The fact that not all of the 

genes postulated to characterize a particular immune cell type were positively correlated 

may represent in part a technical feature of our dataset, as we observed that the correlations 

between these genes were slightly higher in the TCGA dataset sourced from fresh-frozen 
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tumors rather than archived Formalin-Fixed Paraffin-Embedded (FFPE) specimens. These 

observations suggest that use of “off the shelf” algorithms to infer immune activity may have 

limited application.

We have identified three immune subgroups with distinct survival profiles indicating better 

survival in the presence of stronger immune responses. We also showed that these subgroups 

were stronger in terms of prognosis prediction than the 3-class identified in metastatic 

melanoma from TCGA, which we applied to our primary tumors from LMC. We 

recapitulated three immune subgroups in the TCGA metastatic melanomas, suggesting that 

similar immune infiltration and exclusion mechanisms span the whole spectrum of disease 

progression.

All the immune scores were highly correlated with each other (including those known to 

play an immunosuppressive role), the majority being upregulated in the High Immune 

Subgroup. We did not observe increasing representation of immunosuppressive cells e.g. 

Tregs, nor a relative increase in expression of checkpoint molecules in the Low Immune 

Subgroup. Rather, our data suggest a coordination of the immune cell populations as a 

whole. This is entirely in keeping with previously published observations of increased Treg 

numbers and accompanying expression of checkpoint molecules as a results of homeostatic 

mechanisms driven by melanoma infiltrating CD8+ T cells [34]. We cannot however exclude 

the possibility that the inference of immune cell subgroup infiltration from transcriptomic 

datasets may be insensitive to subtle variations that nevertheless might have an impact on 

immune function.

The protein-protein network analysis in Reactome FIViz of genes upregulated in the Low 

Immune Subgroup revealed enrichment for genes in cell proliferative pathways with MYC 
as the major node (the gene with the highest centrality). MYC is a pro-proliferative 

oncogene which has in recent years been reported to have various immunosuppressive 

functions [27][35][36][37], and to have specific involvement in melanoma metastasis and 

invasiveness [38]. However, the relation of MYC and immune response within melanoma is 

unclear.

In our study we were able to show evidence for a negative relationship between MYC and 

antigen processing and presentation machinery especially with HLA-B in tumors and patient 

derived melanoma cell lines. An inverse relationship between HLA class I genes and MYC 

expression has previously been reported [39] in melanoma cell lines. Moreover, it was 

described that MYC down-regulates the expression of HLA-B by directly binding to its 

proximal promoter [40]. Our data therefore provide strong evidence that MYC contributes 

significantly to immune evasion in primary melanoma making it a therapeutic target, 

notwithstanding the difficulties of achieving this [41]. The requirement for MYC in T cells 

suggests that a more targeted approach may be required, or that regulators/effectors of MYC 
activity might prove more appropriate targets [41].

NFKB1 was the network hub gene in the High Immune Subgroup. A number of important 

NF-κB family genes (NFKB1, NFKB2, c-REL, RELB) were also upregulated in this group 

suggesting activation of the pathway. RELA was stable across the immune subgroups, 
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reflecting its constitutive expression in different tissues. IHC staining showed that tumor and 

TILs nuclear localization of NF-κB significantly correlated with lymphocytic infiltration, 

suggesting a reciprocal NF-κB-driven phenotype generated between the tumor and its 

immediate microenvironment, as described in other cancers [42][43]. Conversely in the Low 

Immune Subgroup we found loss of genes important in NF-κB and IFN-γ signaling, 

resulting in decreased gene expression. JAK2 mutations have recently been reported to be 

involved in acquired and primary resistance to anti PD-1 therapy [44][45]. Our hypothesis 

therefore is that a significant proportion of melanoma tumors in the Low Immune Subgroup 

may have primary resistance to this therapy even in adjuvant usage.

In our study, we report for the first time the association of smoking with immune responses 

to primary melanoma. Our results implied that smoking had an adverse effect on outcome by 

reducing the protective value of immune infiltration. That there were no obvious 

transcriptomic differences between melanomas in smokers and non-smokers may however 

suggest that the immune infiltrate in smokers may simply represent non-specific systemic 

inflammation or even that we see similar transcriptomic signals from pro-tumorigenic 

(cigarette driven) and anti-tumour immune responses.

We did observe a positive correlation between smoking and the expression of the GPR15 
gene which codes for a chemo-attractant receptor which is regarded as a biomarker of 

smoking known to be hypo-methylated and hence overexpressed in circulating immune cells 

in smokers [46][29]. The GPR15 protein is reported to play a role in the trafficking of T 

cells [47][48], but its full biological function and significance with respect to smoking is still 

unknown. The overall pattern of association between reported smoking and death from 

melanoma however reinforces the view that discontinuation of smoking should be strongly 

recommended in melanoma patients. As it is not known whether the adverse effects of 

smoking in melanoma are mediated by nicotine or other components of cigarettes, the 

recommendation should probably be to avoid vaping [49], despite the acknowledged 

difficulty of smoking cessation for many.

In conclusion we report the use of bioinformatics to define broad prognostic 

immunophenotypes of primary melanoma, with evidence of a prominent role of NF-κB and 

IFN-γ signaling downregulation (including by deletion) and MYC overexpression 

(including amplification) in driving immunosuppression. We report evidence that a key 

mechanism in this process is perturbation of the antigen presentation machinery and that 

smoking predicted significantly worse melanoma specific survival in patients with evidence 

for a stronger immune responses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Devising a list of genes indicative of specific immune cells infiltrating melanoma.
From the initial gene list, genes found to be highly expressed in melanoma cell lines (in-

house data) were removed, resulting in 458 genes retained representing 30 distinct immune 

cell types (Subset 1). In a second step, cell subsets where more than 90% of genes were lost 

in the previous step were removed, resulting in Subset 2. In the third step of filtering, all 

genes negatively correlating with the majority of the genes within each cell subset were 

removed, and thus the final number of genes was 376 representing 27 immune cell scores 

(Subset 3). Next, those genes were used to calculate a score for each immune cell, and these 

were used for consensus clustering of the tumors in immunologically different groups.
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Figure 2. Identification of three prognostic immune subgroups in LMC primaries and TCGA 
metastatic melanoma datasets.
(A) Heatmap showing the three identified immune subgroups from the consensus clustering 

of immune cell scores in LMC (N=703). (B) Similar heatmap in TCGA (N=339). (C) 

Kaplan Meier survival curves for melanoma-specific survival (MSS) in LMC by the three 

immune subgroups. (D) Similar curves for overall survival (OS) in TCGA. P values from 

likelihood ratio test.
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Figure 3. Identification of “hub” genes and enriched pathways in the network analyses.
(A) The most enriched pathways in the Low Immune Subgroup, in the network. Protein-

protein interaction network of genes upregulated in the Low Immune Subgroup. (B) The 

most enriched pathways in the High Immune Subgroup, in the network. (K=KEGG, 

R=Reactome). Protein-protein interaction network of genes upregulated in the High Immune 

Subgroup. The size of nodes (protein from the interaction network) indicates the importance 

in the network (betweenness). (C) The 50 genes most positively and negatively correlated 
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with MYC in melanoma cell lines data (Spearman’s rank correlation). The arrows point to 

the genes coding for proteins involved in antigen processing and presentation via HLA.
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Figure 4. Gene expression levels correlate with protein scores - Immunohistochemistry (IHC).
(A) Representative images of positive and negative staining for MYC (nuclear), HLA-B 

(membranous), NF-κB p105 (Tumor and TILs nuclei), 20x magnification. (B) Dot and box 

plots show comparisons of mRNA level (y axis) and staining level (x axis), using Mann-

Whitney U test (MYC: N=48, HLA-B: N=30, NF-κB p105: N=29). NF-κB p105 nuclear 

staining is indicated by arrows, NF-κB p105 in tumor infiltrating lymphocytes by a star. 

Purple chromogen was used for staining, therefore the color representing the positive 

staining is lavender-purple. (C) The scatter plot represents the scoring values for HLA-B 
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(percentage of positive pixels for chromagen in outputs from Nuance software) on the y-axis 

and on the x-axis MYC (percentage of positive pixels for both haematoxylin and 

chromagen). The dashed line indicates MYC detection at less than 1%, which we considered 

as very low/absent expression. The red line is fitted for the MYC values higher that 1% of 

positive pixels.

Poźniak et al. Page 21

Cancer Res. Author manuscript; available in PMC 2019 November 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 5. MYC is amplified while NF-κB and IFN-γ signaling genes are deleted in the Low 
Immune Subgroup.
(A) Oncoprint figure for Low, Intermediate and High Immune group representing CNA of 

MYC, NF-κB and genes in the IFN-γ pathway with annotation of CTNNB1 expression and 

survival status. (B) Kaplan Meier plots for participants whose tumors showed MYC 
amplifications, NFKB1 deletions, and for a combination of MYC and NFKB1 CNAs in the 

whole dataset. Hazard ratios were calculated using the univariable Cox proportional hazard 

model.
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Figure 6. Kaplan Meier plots of smoking (never vs ever).
In the whole data set (N=703) - black, High Immune Subgroup (N=156) - red, Intermediate 

Immune Subgroup (N=275) - yellow, and Low Immune Subgroups (N=272) - blue. Hazard 

ratios were calculated using a Cox proportional hazard model for MSS. Figure shows that 

the detrimental effect of smoking on survival increases with the strength of the patient’s 

tumor immune signal.
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Table 1

Multivariable Cox proportional hazard model for MSS in different immune subgroups, showing variables 

statistically significant in the whole data analysis. Smoking categories: never/ever; AJCC stage was 

categorized as stage 1, 2 or stage 3. Site of melanoma was sun exposed vs non-sun exposed. Mitotic number 

was the count of mitoses per mm2. Significant associations are shown in bold.

Characteristics (risk category) HR P-value 95% CI

Whole dataset (N=703)

AJCC stage 2.05 2.4x10-8 1.59-2.64

Smoking (ever) 1.4 0.032 1.03-2.04

Site of melanoma (non-sun exposed) 1.64 0.012 1.11-2.41

Age at diagnosis (per year) 1.03 2.0x10-5 1.01-1.05

Mitotic number (per mitosis) 1.02 0.008 1.00-1.03

High Immune (N=156)

AJCC stage 3.99 0.0002 1.93-8.22

Smoking (ever) 4.58 0.003 1.68-12.53

Site of melanoma (non-sun exposed) 2.52 0.075 0.91-6.7

Age at diagnosis (per year) 1.05 0.025 1.00-1.10

Mitotic number (per mitosis) 1.02 0.71 0.93-1.11

Intermediate Immune (N=275)

AJCC stage 1.75 0.012 1.13-2.71

Smoking (ever) 1.77 0.05 1.01-3.12

Site of melanoma (non-sun exposed) 1.36 0.31 0.75-2.46

Age at diagnosis (per year) 1.03 0.021 1.00-1.06

Mitotic number (per mitosis) 1.04 0.0004 1.02-1.06

Low Immune (N=272)

AJCC stage 2.01 1.3x10-4 1.40-2.87

Smoking (ever) 0.92 0.73 0.56-1.50

Site of melanoma (non-sun exposed) 1.97 0.016 1.13-3.43

Age at diagnosis (per year) 1.03 0.002 1.01-1.06

Mitotic number (per mitosis) 1.01 0.26 0.99-1.03
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