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Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known 

about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased 

sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We 

systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 

antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, 

antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial 

peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-

resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral 

sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the 

lipopolysaccharide (LPS) composition of the bacterial outer membrane. These advances allow the 

identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity 

against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, 

when co-administered as an adjuvant, the antimicrobial peptide PGLA caused up to 30-fold 

decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for 

the development of efficient peptide-based therapies of antibiotic-resistant infections.

Introduction

Evolution of resistance towards antibiotics, or any other drug, can simultaneously increase 

(cross-resistance) or decrease (collateral sensitivity) fitness to multiple other drugs1–5. The 

molecular mechanisms driving cross-resistance are well-described2,4,5. In contrast, it 

remains unclear how frequently genetic adaptation to a single drug increases bacterial 

sensitivity to other drugs and what the underlying molecular mechanisms of collateral 

sensitivity are. The issue is important as collateral sensitivity could direct future multidrug 

therapeutic strategies6. However, such strategies are limited by the scarcity of available 

drug-pairs showing collateral sensitivity that could also be used in clinical settings. Clearly, 

the concept of collateral sensitivity needs to be expanded by studying a broader scope of 

antimicrobial agents.

Here we systematically study the effect of antibiotic-resistance mechanisms on susceptibility 

to antimicrobial peptides, a promising class of new antibacterial compounds. Antimicrobial 

peptides are short peptides with a broad spectrum of antibacterial activities7. Such peptides 

are found among all classes of life, and are part of the defense mechanisms against microbial 

pathogens7. Because antimicrobial peptides have diverse chemical features and cellular 

targets, they are promising antibacterial agents8,9. However, the degree of similarity 

between the resistance mechanisms to peptides and to small-molecule antibiotics remains 

disputed10. This is relevant as some peptides have now reached advanced stages in clinical 

trials8.

We had previously initiated laboratory evolutionary experiments starting with a single clone 

of Escherichia coli K122,3. Parallel evolving populations were exposed to gradually 

increasing concentrations of one of 12 clinically relevant antibiotics (Supplementary Table 

1), leading to up to 328-fold increases in their minimum inhibitory concentrations (MICs) 

relative to the wild-type2. The resistance levels were equal to or above the EUCAST clinical 

breakpoints, and 52% of the antibiotic-resistant strains showed resistance to multiple 

Lázár et al. Page 2

Nat Microbiol. Author manuscript; available in PMC 2019 May 31.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



antibiotics2. Here, we focus on a representative set of 60 antibiotic-resistant strains (five 

strains per antibiotic) that have been subjected to whole-genome sequence analysis in order 

to identify the molecular mechanisms underlying antibiotic resistance2. Many of the 

observed mutations have also been detected in clinical drug-resistant isolates, and are known 

to target cellular systems involved in inner-and outer membrane transport and permeability 

(e.g. efflux pumps, porins), and cell envelope biogenesis2.

We hypothesized that such membrane-altering antibiotic-resistance mutations not only 

influence susceptibility to other antibiotics, but to antimicrobial peptides as well. Why 

should it be so? The action of most antimicrobial peptides relies on the interaction between 

the positively charged peptide and the negatively charged membrane components, for two 

reasons. First, the structural and physicochemical properties of antimicrobial peptides, (e.g. 

net positive charge, hydropathicity) and their capacity to adapt an amphipathic conformation 

upon membrane binding influence this interaction8,11,12. Second, the insertion of 

antimicrobial peptides into the hydrophobic core of the membrane depends on the general 

properties of the bacterial outer membrane11,12. For instance, lipopolysaccharide (LPS) 

composition has a major impact on the killing efficiency of cationic antimicrobial 

peptides13. For these reasons, it is plausible that membrane-affecting antibiotic-resistance 

mutations shape genetic susceptibility to antimicrobial peptides. However, no systematic 

study has been devoted to address this problem in detail.

Here we first measured the susceptibility of the 60 antibiotic-resistant strains2,3 against a set 

of 24 antimicrobial peptides of diverse origin and various modes of action. We found 

widespread bacterial collateral sensitivity towards antimicrobial peptides. Analysis of the 

mutational and transcriptome profiles of the antibiotic-resistant strains revealed that 

antibiotic-resistance mutations increase sensitivity to peptides via regulatory changes in 

lipopolysaccharide biosynthesis. The consequent alteration in the surface charge presumably 

strengthens the interaction of cationic antimicrobial peptides with the outer membrane, and 

thus enhances the killing efficiency of these peptides. Finally, we demonstrated that the 

antimicrobial peptide PGLA, when co-administered as an adjuvant, restores antibiotic 

activity against resistant bacteria and slows down antibiotic-resistance evolution.

Results

Widespread collateral sensitivity to antimicrobial peptides

To study whether antibiotic resistance in E. coli leads to cross-resistance or collateral 

sensitivity towards antimicrobial peptides, we measured the changes in the susceptibilities of 

60 antibiotic-resistant strains to a set of 24 peptides. Peptides were chosen based on the 

following criteria: diverse sources (synthetic/natural), different putative mechanisms of 

action, structural diversity, and clinical relevance (Supplementary Table 2). The obtained 

results allowed us to chart the map of cross-resistance/collateral sensitivity of the antibiotic-

resistant strains towards the 24 antimicrobial peptides, and identify several general patterns 

(Figure 1A, Supplementary Table 3).

First, cross-resistance to antimicrobial peptides was relatively rare: only 12% of all possible 

antibiotic-resistant strain and peptide pairs showed cross-resistance, whereas 31% showed 
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collateral sensitivity. The observed strength of cross-resistance and collateral sensitivity was 

usually a 2-fold change in MIC relative to the wild-type (Supplementary Figure 1, 

Supplementary Table 4). In typical clinical settings, drug concentrations well above the 

wild-type MIC are applied14. Therefore, we asked how collateral sensitivity shapes the 

killing kinetics when peptides were applied at a concentration 10-15 fold above the wild-

type MIC. We focused on five resistant strains that showed collateral sensitivity to at least 

one of the peptides studied (Figure 2A-C). Upon antimicrobial peptide stress, collateral 

sensitive populations showed a far more rapid decline in size than the wild-type. For 

example, 15 minutes of protamine exposure nearly completely eradicated ciprofloxacin-

resistant bacteria, whereas the size of the wild-type population declined only by 10-fold 

(Figure 2A).

Second, collateral sensitivity and cross-resistance patterns clustered the antimicrobial 

peptides into three main groups (Figure 1) with major differences in their physicochemical 

properties and modes of action. Antimicrobial peptides belonging to the P1 and P3 groups 

generally insert themselves into membrane bilayers to form pores and thus induce cell lysis 

(i.e. pore formers). However, these two groups differ both in their physicochemical 

properties and their interactions with antibiotic-resistant strains: P1 peptides have lower 

isoelectric point and hydropathicity index compared to P3 peptides (see Supplementary 

Figure 2) and are depleted in cross-resistance and collateral sensitivity interactions, whereas 

collateral sensitivity towards P3 peptides is prevalent (Figure 1A, Supplementary Table 5).

On the contrary, members of the P2 group typically penetrate into the cell and have 

intracellular targets (Supplementary Table 2). Unlike P1 and P3, the P2 group consists of 

proline-rich peptides which are characterized by unstable secondary peptide structure, high 

propensity for aggregation in aqueous solutions, and relatively low aliphatic and 

hydropathicity indices (Supplementary Figure 3, Supplementary Table 6). Notably, cross-

resistance towards P2 peptides is frequent compared to the other peptide groups (Figure 1A, 

Supplementary Table 5).

Third, not all peptides were equally effective against antibiotic-resistant bacteria (Figure 

1B). Most notably, 82% of the antibiotic-resistant strains showed collateral sensitivity to the 

peptide glycine-leucine-amide (PGLA), a member of the magainin family15 (Figure 1C). 

Consistent with their conserved evolutionary roles, human peptides, such as beta-defensin 

HBD3 and cathlecidin LL37, also showed few, if any, cross-resistance interactions (Figure 

1B, Supplementary Table 3). In contrast, various antibiotic-resistant strains showed cross-

resistance to the proline-rich peptide apidaecin IB (AP). This result could be of clinical 

relevance, as AP is currently being investigated for therapeutic usage16.

We next tested the evolutionary conservation of collateral sensitivity by measuring the 

susceptibility of clinically-derived E. coli strains towards 9 relevant antimicrobial peptides. 

Three clinical isolates were previously allowed to adapt to three different antibiotics 

(gentamicin, nalidixic acid and ampicillin) in the laboratory1. The peptide susceptibility 

profiles of these antibiotic-resistant strains showed good agreement with those presented in 

Figure 1, indicating that collateral sensitivity is partly conserved across multiple genetic 

backgrounds (Supplementary Table 7).
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Aminoglycoside resistance induces cross-resistance to antimicrobial peptides

Whereas cross-resistance to antimicrobial peptides was generally much less common than 

collateral sensitivity, the distribution of cross-resistance interactions was far from random 

(Figure 1C). Specifically, strains resistant to aminoglycosides (tobramycin and kanamycin) 

showed cross-resistance to proline-rich peptides (P2 group, see Figure 1A). These strains are 

reminiscent of aminoglycoside-resistant small-colony variants observed in clinical settings, 

as they accumulated membrane potential altering mutations17. Moreover, they uniquely 

carried a loss-of function mutation in the gene encoding the inner-membrane transport 

protein sbmA2 (Figure 1A). sbmA is commonly mutated in response to aminoglycoside 

stress18, and is involved in the uptake of proline-rich peptides10,19.

Here we asked whether a loss-of-function mutation in sbmA contributes to the observed 

cross-resistance pattern of the aminoglycoside-resistant strains against P2 peptides. As 

expected, deletion of this gene in E. coli BW25113 and in the clinical isolate E. coli ATCC 

25922 conferred mild, but significant resistance to both aminoglycosides and proline-rich 

peptides (Table 1, Supplementary Text 1, Supplementary Figure 4A-F). For a possible 

contribution of other mutations to cross-resistance between aminoglycosides and proline-

rich peptides, see Supplementary Text 2.

Multidrug-resistance mutations confer collateral sensitivity to antimicrobial peptides

We next explored the mutations underlying collateral sensitivity. To this end, we first 

clustered the antibiotic-resistant strains based on their peptide susceptibility profiles and 

compiled the set of mutations shared among them (Figure 1A). This procedure revealed four 

main groups of resistant strains (S1-S4), each of them carrying distinct sets of mutations.

Strains belonging to group S1 were adapted to a range of different antibiotics, including 

cefoxitin (FOX), a cell-wall inhibitor, and nitrofurantoin (NIT) that targets several 

biochemical processes within the bacterial cell. However, they mostly exhibited collateral 

sensitivity to P3 peptides (Figure 1A), and accumulated mutations in a similar set of genes. 

Enrichment analysis revealed that they typically carry mutations in the EnvZ/OmpR two-

component regulatory system, and in the outer membrane porin C (ompC)2; for details and 

statistics, see Figure 1A. The EnvZ/OmpR system, through regulating the outer membrane 

porin genes ompC and ompF, mediate bacterial defense against antimicrobials by reducing 

the uptake of hydrophilic antibiotics20,21. Consistent with a causal role in collateral 

sensitivity, inserting an ompC loss-of function mutation into wild-type E. coli conferred 

resistance to nitrofurantoin and cell-wall inhibitor antibiotics, and simultaneously increased 

sensitivity to multiple antimicrobial peptides (see Table 1 and Supplementary Text 3 for a 

proposed mechanism).

We further identified a group of strains (S3, see Figure 1A) that typically showed collateral 

sensitivity to pore-forming peptides (clusters P1 and P3). These strains carry mutations in 

marR, a transcriptional repressor of antibiotic stress response22 (Figure 1A). MarR represses 

the mar regulon that controls genes involved in membrane permeability and efflux of toxic 

chemicals23. Elevated expression of the mar regulon is frequently found in multidrug-

resistant clinical isolates23. Insertion of a recurrently observed marR mutation2 either into 
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wild-type E. coli BW25113 or into the antibiotic-sensitive clinical isolate E. coli ATCC 

25922 conferred mild, but significant resistance to several antibiotics, and simultaneously 

enhanced sensitivity to P3 antimicrobial peptides (Table 1, Figure 2D, Supplementary Text 

1, Supplementary Figure 4G-J).

Overall, these findings demonstrate that collateral sensitivity to antimicrobial peptides is 

induced by multidrug-resistant mutations that appeared repeatedly in response to various 

antibiotic stresses (for further examples, see Table 1).

Gene expression changes in lipopolysaccharide biosynthesis contribute to collateral 
sensitivity

We next hypothesized that changes in the outer membrane composition of antibiotic-

resistant bacteria underlie the observed collateral sensitivity to antimicrobial peptides.

To test this possibility, we started by determining the sensitivity of the antibiotic-resistant 

strains to bile acid, a membrane-damaging agent. As expected, 75% of the antibiotic-

resistant strains were more susceptible to bile acid than the wild-type, and the bile-acid 

sensitive strains showed collateral sensitivity to an especially high number of antimicrobial 

peptides (Figure 3A). To explore the common mechanistic basis of this pattern, we 

compared the transcriptome profiles of the wild-type and 24 antibiotic-resistant strains 

covering all investigated 12 antibiotics (see Materials and Methods). All strains were grown 

in antibiotic-free medium to ensure comparability between strains that display vastly 

different resistance levels.

Several lines of evidence support the hypothesis that antibiotic resistance leads to alterations 

in outer membrane composition. In 75% of the analyzed antibiotic-resistant strains, 

transcriptional changes are significantly enriched in LPS- and outer membrane-related genes 

(Figure 3C, left panel), including genes involved in LPS biosynthesis, and phospholipid 

binding and transfer. Importantly, strains with an especially high number of upregulated 

LPS-related genes (Supplementary Table 8 and Supplementary Table 9) display an enhanced 

susceptibility to bile acid (Figure 3B). Finally, strains with upregulated genes in membrane-

related functions were more likely to show collateral sensitivity to specific antimicrobial 

peptides (Figure 3C and Supplementary Figure 5).

Chemogenomic analysis of collateral sensitivity

To directly investigate the causality between upregulation of membrane-related genes and 

collateral sensitivity, we carried out a chemogenomic screen to identify genes that, when 

overexpressed, sensitize E. coli to the membrane-interacting 18-kDa cationic antimicrobial 

peptide (CAP18). CAP18 is an ideal choice for two reasons. First, it displaces divalent 

cations in the lipopolysaccharide layer and thereby permeabilizes the outer membrane24. 

Second, strains that are sensitive to CAP18 displayed upregulation of genes involved in LPS 

biosynthesis, and phospholipid binding and transport (Figure 3C, Supplementary Tables 8 

and 9).

Chemogenomic screen of CAP18 was carried out by applying an established plasmid 

collection overexpressing all E. coli ORFs25 in a pooled fitness assay with a deep 
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sequencing readout (for details see Supplementary Figure 6). Following growth of the 

pooled collection both in the presence and absence of CAP18, we identified genes that 

produce a growth defect when overexpressed in CAP18-treatment only (see Supplementary 

Figure 6C). Such growth defects indicate increased CAP18 sensitivity upon overexpression 

of single genes. As a control, we performed the same assay on CP1, a peptide to which 

antibiotic-resistant strains rarely show collateral sensitivity (Figure 1B). Our chemogenomic 

screen revealed 624 and 258 sensitizing genes for CAP18 and CP1, respectively (see 

Supplementary Table 10). As expected, LPS-related genes were highly enriched among 

genes that sensitize to CAP18, but not to CP1 when overexpressed (Supplementary Table 

11). For example, LPS biosynthesis genes were especially likely to sensitize the bacteria to 

CAP18 when overexpressed (odds ratio=4.4, p=0.004, two-sided Fisher’s exact test). 

Furthermore, CAP18–sensitizing LPS biosynthesis genes, as inferred by chemogenomics, 

showed higher average expression levels in those antibiotic-resistant strains that are sensitive 

to CAP18 compared to the rest (p=0.008, two-sided Wilcoxon rank-sum test, Figure 3D). 

We note that, although also frequently upregulated in CAP18-sensitive strains (Figure 3C), 

genes with phospholipid-related functions were not enriched among sensitizing genes in the 

chemogenomic screen (Supplementary Table 11). Taken together, these analyses indicate 

that altered LPS biosynthesis plays a causal role in the widespread collateral sensitivity of 

antibiotic-resistant strains to antimicrobial peptides.

A marR mutation induces collateral sensitivity

We next deciphered a mechanistic link between a specific regulatory mutation and its impact 

on antibiotic resistance and collateral sensitivity. We focused on marR, as mutation in this 

gene affects bacterial response to antimicrobials in two opposite ways: it increases resistance 

to multiple antibiotics, but simultaneously sensitizes to membrane-interacting peptides 

(Table 1). Why is it so?

Lipopolysaccharide (LPS) is a major component of the bacterial outer membrane that 

stabilizes the membrane structure, regulates its permeability and contributes to its negative 

charge26. The mar regulon is known to mediate LPS modification by positively regulating 

WaaY, a kinase responsible for phosphorylation of the inner core of LPS, leading to an 

increased negative surface charge of the bacterial outer membrane27,28 (Figure 4). As an 

increased negative surface charge of the membrane generally promotes antimicrobial peptide 

killing efficiency9,27, upregulation of waaY is expected to enhance bacterial susceptibility 

to peptides.

Based on these facts, we hypothesized that mutations in marR increase antimicrobial peptide 

susceptibility through upregulation of waaY. Such upregulation should lead to an increase in 

phosphorylation of LPS and, as a consequence, elevated negative surface charge of the 

bacterial outer membrane (Figure 4). Several lines of evidence support this hypothesis. First, 

the antimicrobial peptide susceptibility profiles of the marR single-mutant and the waaY-

overexpressing strain showed substantial overlap (Table 1). Second, qRT-PCR analysis 

confirmed that waaY is nearly 4-fold upregulated in the marR single-mutant strain when 

compared to the wild-type (fold-change: 3.88 ± 0.026 SEM, see Materials and Methods). 

Third, we carried out zeta potential measurements and demonstrated that both the marR 
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mutant and the waaY-overexpressing strain display relatively high negative surface charge 

compared to the wild-type (Supplementary Figure 7). Finally, inactivation of waaY 
abolished collateral sensitivity to P3 peptides in marR mutants (Supplementary Figure 8). To 

summarize, these results indicate that collateral sensitivity of the marR mutant to peptides 

occurs via modulation of the LPS phosphorylation pathway. We propose that the consequent 

altered outer membrane composition facilitates the interaction of antimicrobial peptides with 

the cell membrane and thereby enhances their killing efficiency (Figure 4).

Peptide PGLA restores antibiotic activity in antibiotic-resistant bacteria

The above results have important implications for future development of drug combinations. 

Recently, two complementary mechanisms were proposed to contribute to the selective 

eradication of drug-resistant bacteria29. First, resistance to one drug can induce 

hypersensitivity to the other (collateral sensitivity, see also Supplementary Text 4)1,2; and 

second, interactions can become more synergistic with the evolution of resistance, making 

the mutant more sensitive to the combination (resistance mutation-induced synergy)30.

We focused on PGLA for two reasons. First, it shows an exceptionally high number of 

collateral sensitivity interactions (Figure 1). Second, when used in combination, antibiotic-

PGLA pairs show strong synergism in antibiotic-resistant, but not in the corresponding wild-

type bacteria (Figure 5A-D, Supplementary Table 12). Remarkably, strong synergism is 

prevalent in antibiotic-resistant strains carrying mutations in marR, envZ or ompF. As these 

genes influence membrane permeability, we speculate that PGLA may interfere with the 

activity of multidrug efflux systems and/or porins responsible for the observed antibiotic-

resistance in these strains.

We then tested whether PGLA could be used as an adjuvant and selectively potentiate 

antibiotic activity against antibiotic-resistant bacteria. We tested ciprofloxacin, nalidixic 

acid, tetracycline and doxycycline resistant E. coli, including laboratory-evolved strains 

(Figure 5E-G) and clinical isolates (Figure 5H-J, Supplementary Figure 9). The dataset was 

also augmented with nalidixic acid resistant Klebsiella pneumoniae and Shigella flexneri 
isolates (Supplementary Figure 10). PGLA was administered at subinhibitory 

concentrations, i.e. it allowed growth of the wild-type and the antibiotic-resistant strains 

alike. Strikingly, when used in combination, PGLA caused up to 30-fold decrease in the 

antibiotic resistance level of the resistant strains (Figure 5E-G, Supplementary Figures 9 and 

10, and Supplementary Table 13). We conclude that PGLA can restore antibiotic 

susceptibility against resistant bacteria when administered as an adjuvant.

PGLA inhibits de novo evolution of resistance to antibiotics

Finally, we asked whether concurrent administration of antibiotics with subinhibitory 

dosages of PGLA hinders de novo resistance evolution in the laboratory (Figure 6). To this 

end, we focused on two antibiotic-peptide combinations, ciprofloxacin-PGLA and 

tetracycline-PGLA. We evolved the wild-type E. coli strain in the presence of these 

antibiotic-PGLA combinations and their corresponding single drug components. The 

protocol aimed to maximize the level of antibiotic resistance in the evolving populations 

Lázár et al. Page 8

Nat Microbiol. Author manuscript; available in PMC 2019 May 31.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



during a fixed time period. For each of the 8 drug conditions, 10 parallel bacterial lineages 

were evolved (Materials and Methods).

After only 160 generations, bacterial populations evolving in the presence of a single 

antibiotic reached 40- and 390-fold increase in tetracycline and ciprofloxacin MIC levels 

relative to their ancestor, respectively (Figure 6 A-B). Reassuringly, collateral sensitivity to 

PGLA arose in these lineages (Figure 6 D-E). In contrast, antibiotic-PGLA co-treatment 

significantly slowed down the evolution of antibiotic resistance. In the presence of 

subinhibitory dosages of PGLA, the level of antibiotic resistance reached during the course 

of laboratory evolution was 10-fold lower than in the absence of PGLA, and it remained 

consistently below the suggested EUCAST clinical breakpoints (Figure 6 A-B). In addition, 

evolution of resistance to PGLA was marginal (Figure 6 D-E). Reassuringly, no substantial 

cross-resistance was observed between PGLA and the antibiotics ciprofloxacin or 

tetracycline (Figure 6). These patterns are not due to variations in population size across 

treatments (Supplementary Figure 11).

We suspect that the efficiency of the antibiotic-PGLA co-treatment reflects an elevated 

fitness cost of antibiotic resistance mutations under such conditions. In other words, 

collateral sensitivity to PGLA may reduce the number of available resistance-conferring 

mutations under ciprofloxacin-PGLA or tetracycline-PGLA co-treatment (see also 

Supplementary Figure 12). A full answer to this question will require detailed molecular and 

phenotypic characterization of laboratory-evolved bacteria. As a preliminary test, we used 

the drug pair tobramycin-BAC5, as tobramycin-resistant strains showed cross-resistance 

rather than collateral sensitivity to the peptide BAC5 (Figure 1). As expected, the 

tobramycin-BAC5 combination did not reduce the rate of antibiotic resistance evolution 

(Figure 6C and Figure 6F).

Discussion

How do mutations conferring antibiotic resistance change the susceptibility to antimicrobial 

peptides? This question is all the more relevant as antimicrobial peptides are promising 

antibacterial alternatives to antibiotics currently used in the clinics8,9. In this work, we 

applied an integrated approach to study the susceptibilities of antibiotic-resistant Escherichia 
coli strains towards antimicrobial peptides.

First, we found that antibiotic-resistant bacteria generally exhibited collateral sensitivity 

(increased susceptibility) to antimicrobial peptides, while cross-resistance was relatively 

rare. Several prior works have investigated cross-resistance and collateral sensitivity 

interactions between conventional antibiotics1–3,31,32. Despite substantial differences in 

the protocols, these systematic studies agreed that cross-resistance is generally 2-3 times 

more frequent than collateral sensitivity. By contrast, we see nearly three times more 

collateral sensitivity than cross-resistance towards antimicrobial peptides (Figure 1).

Second, although we studied bacteria adapted to a diverse set of antibiotics with major 

differences in their mechanisms of action (Supplementary Table 1), bacterial susceptibilities 

to antimicrobial peptides revealed several general trends. This is partly due to mutations in 
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canonical resistance genes that emerged repeatedly in response to various antibiotic stresses. 

By introducing these mutations into a wild-type genetic background, we showed that 

mutations conferring resistance to one or more antibiotics simultaneously increase 

sensitivity to several antimicrobial peptides (Table 1). The most noteworthy example is the 

transcriptional repressor of the mar regulon (marR). Mutations in this gene are frequently 

observed both in the laboratory and in clinical settings, and increase resistance to multiple 

unrelated antibiotics2,22. Here we showed that a mutation in this gene increases the negative 

surface charge of the bacterial outer membrane (Supplementary Figure 7), and eventually 

leads to elevated susceptibility to several antimicrobial peptides.

More generally, our findings indicate that susceptibility to antimicrobial peptides arises as a 

by-product of genomic expression changes in antibiotic-resistant bacteria (Figure 3), 

presumably because these alterations modify the chemical structure of the bacterial outer 

membrane. Importantly, these conclusions do not hold for all combinations of antimicrobial 

peptides and resistant bacteria studied. Most notably, aminoglycoside-resistant bacteria 

accumulated a distinct set of mutations showing practically no overlap with other laboratory-

evolved antibiotic-resistant bacteria2. They uniquely carried deleterious mutations in the 

gene encoding the inner membrane transport protein sbmA2,3. This mutation delivered 

resistance to proline-rich peptides and aminoglycosides as well (Figure 1 and Table 1).

These considerations could be important for the development of combination therapies. The 

fact that antibiotic-resistant strains showed extensive collateral sensitivity to certain 

antimicrobial peptides led us to study one of them, PGLA, in more detail. We identified two 

important properties of PGLA. First, antibiotic resistance generally resulted in collateral 

sensitivity to this peptide (Figure 1) and second, antibiotic-PGLA combinations induced 

synergism in certain antibiotic-resistant bacteria (resistance mutation-induced synergy, 

Figure 5A-D). Based on these properties, we hypothesized that PGLA could be used for the 

eradication of drug-resistant bacteria as well as the inhibition of de novo resistance 

evolution. When used in combination, a subinhibitory dose of PGLA caused up to 30-fold 

increase in susceptibility in antibiotic-resistant bacteria (Figure 5E-J). Furthermore, the co-

administration of the same subinhibitory dose of PGLA efficiently slowed down the 

evolution of antibiotic resistance and kept resistance levels under the EUCAST breakpoints 

(Figure 6). Future works should examine whether such a combination strategy can be 

maintained over longer time scales without the appearance of resistance mutations that 

diminish the antibiotic-PGLA synergy33. Needless to say, we only consider PGLA as a first 

step towards the development of an adjuvant therapy. By studying the structural and 

functional properties of promising antimicrobial peptides, peptidomimetic molecules could 

be developed that are less prone to resistance, stable against human proteases8,34 and 

efficient against a broad range of drug-resistant pathogens.

An important unresolved issue is whether collateral sensitive peptide - antibiotic 

combinations could also be employed sequentially to select against resistance. This strategy, 

termed collateral sensitivity cycling, has remained controversial1,35. Our preliminary results 

indicate that the two key ingredients of this strategy are present. First, evolving resistance to 

an antimicrobial peptide (CAP18) results in collateral sensitivity to several conventional 

antibiotics, and this collateral sensitivity is reciprocal (Supplementary Figure 13). Second, 
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both antibiotic- and CAP18-resistant bacteria can be selectively eradicated by deploying the 

collateral sensitive drug partner (Supplementary Figure 14).

Last, we need to emphasize the limitations of our work. The molecular mechanisms 

underlying collateral sensitivity need to be addressed in more detail. It also remains to be 

established whether antimicrobial peptide–antibiotic combinations generally outperform 

conventional antibiotic combinations in their ability to hinder resistance evolution. At best, 

we made the first step in these directions. An important objection to clinical usage of 

antimicrobial peptides is that acquisition of resistance against synthetic antimicrobial 

peptides could drive cross-resistance towards antimicrobial peptides of the host innate 

immune system36,37. While this is certainly a realistic danger - at least in laboratory 

settings - two notes must be made. First, the diverse susceptibility profiles of antibiotic-

resistant strains towards antimicrobial peptides (Figure 1) confirm major differences both in 

the mechanisms of action of antimicrobial peptides and the potential routes to antimicrobial 

peptide resistance. Second, our data indicates that certain peptide-antibiotic combinations 

could select against the de novo evolution of resistance against both agents (Figure 6).

In summary, our work establishes that antibiotic-resistant bacteria frequently show collateral 

sensitivity to antimicrobial peptides, a finding that can be utilized to identify peptide-

antibiotic combinations that effectively eradicate resistant bacteria and slow down the de 
novo evolution of resistance to antibiotics.

Materials and Methods

Medium, antimicrobial agents and strains used in the study

Antimicrobial peptides—24 cationic antimicrobial peptides were used in this study: 

SB006 (SB), human beta defensin 3 (HBD3), protamine (PROA), PR-39, Peptide Glycine-

Leucine Amide (PGLA), pexiganan (PEX), indolicidin (IND), bactenecin 5 (BAC5) and 

bactenecin 7 (BAC7), NCR335, magainin 2 (MAG), R8, D28, anginex (ANG), apidaecin IB 

(AP), rabbit 18-kDa cationic antimicrobial protein (CAP18), pyrrhocoricin (PYR), 

pleurocidin (PLEU), synthetic cecropin-melittin hybrid (CEME), protegrin-1 (PRO1), 

polymyxin B (PXB), LL-37 cathelicidin (LL37), tachyplesin II (TPII), cecropin P1 (CP1) 

(see also Supplementary Table 2). Antimicrobial peptides were custom synthesized by 

ProteoGenix, except for PROA and PXB, which were purchased from Sigma-Aldrich. The 

antimicrobial peptide solutions were prepared in sterile water and kept in -80ºC until usage.

Antibiotics—The following antibiotics (ABs) were used in this study (see also 

Supplementary Table 1): chloramphenicol (CHL), tetracycline (TET), ampicillin (AMP), 

cefoxitin (FOX), ciprofloxacin (CPR), erythromycin (ERY), doxycycline (DOX), 

trimethoprim (TRM), tobramycin (TOB), kanamycin (KAN), nitrofurantoin (NIT) and 

nalidixic acid (NAL). Most of the antibiotics were purchased from Sigma-Aldrich, except 

for ERY (AMRESCO) and DOX (AppliChem). Fresh antibiotic solutions were prepared 

from powder stocks on a weekly basis, kept at -20ºC and were filter sterilized before use.

Strains—Escherichia coli K12 BW25113 was used as the wild-type strain. The 60 

laboratory-evolved resistant strains, adapted to twelve different clinically relevant antibiotics 
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(5 evolved lines per antibiotic with the exception of AMP and NAL, for which 4 and 6 

replicates were used, respectively) were established in our previous work3. Briefly, the 

parallel-evolved populations reached up to 328-fold increases in the minimum inhibitory 

concentrations relative to the ancestor. In all cases, the resistance levels were equal to or 

above the current clinical breakpoints according to The European Committee on 

Antimicrobial Susceptibility Testing (EUCAST) or the European Reference Laboratory for 

Antimicrobial Resistance (EURL-AR). The evolution of multidrug resistance (i.e. resistance 

to two or more drugs) was frequent under a single antibiotic pressure: on average, 52% of all 

investigated antibiotic pairs showed cross-resistance in at least one direction. Parallel-

evolved lines were subjected to whole-genome sequencing to characterize the mutations 

responsible for multidrug resistance. On average, we detected 4.2 point mutations, 1.2 

deletions, 0.26 insertions and 0.07 duplications per clone. Details of the laboratory evolution 

experiments as well as the results of the whole-genome sequencing of the evolved strains are 

available in our previous works2,3.

The four E. coli single-mutant strains (envZ[Ala396Thr], ompC[Met1Ile], marR[Val84Glu], 

trkH[Thr350Lys]) were established using a highly precise allele replacement protocol 

described in our previous studies2,3,38. The sbmA single-gene deletion mutant was derived 

from the KEIO collection39. Both the wild-type and ompC[Met1Ile] strains were 

transformed with the waaY overexpression and the empty plasmids isolated from the ASKA 

collection25.

The three E. coli uropathogen clinical isolates (0370, 3538, CFT073) before and after 

adaptation to three different antibiotics (gentamicin (GEN), nalidixic acid (NAL) and 

ampicillin (AMP)), the Klebsiella pneumoniae r1 (A) and the Shigella flexneri 668 clinical 

isolates and their NAL evolved strains were kindly provided by Morten Sommer, Technical 

University of Denmark, Hørsholm. Four ciprofloxacin-resistant Escherichia coli isolates 1 to 

4 were obtained from the local hospital and kindly provided by Edit Urbán, Department of 

Clinical Microbiology, University of Szeged, Hungary. Strains 1 to 3 were isolated from 

urine samples, while Strain 4 was isolated from intraperitoneal punction. E. coli ATCC 

25922, BAA 2469 and BAA 2340 strains were obtained from Microbiologics.

Medium—In line with previous, methodologically relevant laboratory evolution 

studies31,32,40, the physical conditions (including the medium) were the same during the 

course of laboratory evolution and all forthcoming assays on the resulting resistant lines. 

The logic is to minimize any potential confounding effects unrelated to adaptation to the 

antibiotic studied (i.e. the only difference being the presence/absence of a given drug). 

Therefore, as a general rule, the same chemically defined medium and growth conditions 

were employed throughout the experiments in which the investigated antibiotic-resistant 

strains were evolved. This medium was optimized for a large set of antimicrobial peptides 

by decreasing the sodium citrate and the magnesium sulfate concentrations. This optimized 

medium was minimal salts (MS) medium (1g/L (NH4)2SO4, 3g/L KH2PO4 and 7g/L 

K2HPO4) supplemented with 0.1mM MgSO4, 0.54 μg/mL FeCl3, 1 μg/mL thiamine 

hydrochloride, 0.2% Cas amino-acids and 0.2% glucose). Phosphate was available in the 

medium. This is important as scarcity of phosphate can modify the membrane composition 

and therefore the activity of antimicrobial peptides41,42. Unlike Muller-Hinton broth, the 
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minimal salts medium used in our work is a chemically defined, highly controlled and 

reproducible environment, a characteristic that is particularly important in laboratory 

evolution and high-throughput screenings. As an exception, note that Muller-Hinton II 

medium was used to study drug susceptibility of Shigella flexneri 668 strain, as this strain 

cannot grow in MS medium. Reassuringly, the applied medium did not have an effect on the 

activity of PGLA when used as an adjuvant (see Supplementary Figure 10 where 

experiments with K. pneumoniae were done in MS medium while the ones using S. flexneri 
were performed in Muller-Hinton II medium). All components were obtained from Sigma-

Aldrich.

Systematic measurement of antimicrobial peptide susceptibilities

We aimed at detecting changes in the sensitivities of a large number of antibiotic-resistant 

strains compared to the wild-type strain towards a wide variety of antimicrobial peptides as 

well as bile acid. To this end, we developed a high-throughput screening and a robust 

statistical analysis methodology for the systematic detection of cross-resistance and 

collateral sensitivity interactions in E. coli. We compared the susceptibility of 60 antibiotic-

resistant strains (5 evolved lines per antibiotic, established in our previous work3) to the 

wild-type strain across the entire set of antimicrobial peptides (n=24) and bile acid (Figure 1 

and Supplementary Table 3). The three main steps of our methodology were i) high-

throughput measurement of growth inhibition of strains in liquid cultures in 96-well 

microtiter plates with the aim of detecting collateral sensitive and cross-resistant phenotypes 

without precise MIC measurements (see below); ii) validation of the high-throughput results 

by standard MIC measurements on a subset of strain-peptide condition pairs and using 

receiver operating characteristic (ROC) curve analysis; iii) further validation of collateral 

sensitivity interactions at high antimicrobial peptide dosages using kill curve assays.

High-throughput estimation of collateral sensitivity and cross-resistance—To 

infer collateral sensitivity and cross-resistance interactions, we compared the growth 

sensitivity of antibiotic-resistant and wild-type strains by measuring their propensity to be 

arrested in growth by two specific dosages. In this screen, approximately 103 bacteria/ml 

were inoculated into each well of the 96-well microtiter plate with a 96-pin replicator, and 

were propagated at 30°C shaken at 300 r.p.m. Bacterial growth was monitored by measuring 

optical density (OD600) of the liquid cultures at a single time point after 24h of incubation in 

the presence of a given antimicrobial peptide. Growth arrest was defined as the failure to 

obtain growth at a given peptide concentration (i.e. OD was below the mean + 2 x standard 

deviations of OD values of bacteria-free wells containing only growth medium). In order to 

be able to discern condition-specific growth arrest from slow growth caused by a general 

cost of resistance, we chose an incubation time of 24 hours where all populations reached 

detectable growth in medium devoid of antimicrobial peptide. In order to maximize 

reproducibility and accuracy, a robotic liquid handling system and an automatic incubator 

were used.

Antibiotic-resistant strains and wild-type strain were inoculated in four and twelve replicate 

populations on the same 96-well plate, respectively. Growth arrest was determined for each 

of them and an inhibition score (IS) was calculated based on the replicate measurements as 
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follows: IS = (NGAcontrol/12) - (NGAABstrain/4). NGA is the number of replicates showing 

growth arrest out of the 12 control populations (NGAcontrol) or out of the 4 antibiotic-

resistant populations (NGAABstrain). Two different peptide concentrations were chosen as 

one above (~1.2x) and one below (~0.8x) the minimum inhibitory concentration (MIC) of 

the wild-type strain. The lower and the higher concentrations were applied to calculate IS for 

collateral sensitivity and cross-resistance interactions (CR), respectively. Specifically, to 

detect collateral sensitivity against a given peptide, we tested whether a peptide dosage 

below the wild-type MIC (0.8x) fully inhibits growth of a particular antibiotic-resistant 

strain, but not the wild-type. To detect cross-resistance, we applied a peptide dosage 

somewhat above the wild-type MIC (1.2x), and asked whether antibiotic-resistant strains can 

grow. We conducted at least 4 independent experimental runs for each combination of strains 

and peptide conditions. Next, to filter out unreliable measurements for the detection of 

cross-resistance (CR) / collateral sensitivity interactions (CS), we excluded cases where (i) 

cross-contamination might have occurred on the plate during susceptibility measurements 

(based on growth in non-inoculated wells), (ii) the control wells devoid of peptide showed 

large variations (coefficient of variation was above 20%), iii) in the case of CS interactions 

where the applied dosages were too high and arrested the growth of more than 50% of the 

control populations, iv) in the case of CR interactions where the applied dosages were too 

low and only arrested the growth of less than 50% of the control populations. This quality 

control procedure resulted in 2-4 replicates for each combination of strains and peptide 

conditions. Then, we calculated the average of the inhibition score (IS) derived from the 

multiple independent experimental runs, and defined cut-off values of the IS to detect cross-

resistance and collateral sensitivity interactions, respectively (see below).

To define a robust cut-off value on the IS, we first performed a detailed analysis of minimum 

inhibitory concentrations (MIC) on a subset of strain-peptide condition pairs (n=110) 

(Supplementary Table 4). Each antibiotic-resistant strain was characterized as to show cross-

resistance (CR) or collateral sensitivity (CS) to a certain antimicrobial peptide if it showed at 

least 20% difference in its MIC value compared to the wild-type strain. Next, we chose an 

inhibition score threshold that maximized the fit between the results of the high-throughput 

susceptibility screen and those of the traditional MIC measurements. The fit between the two 

datasets was defined as the area under the receiver operating characteristic (ROC) curve 

calculated from the inhibition score (IS) of the high-throughput susceptibility screen and the 

CS / CR classification of the detailed MIC measurements. The area under the ROC curve 

(AUC) is a measure of how well the IS can distinguish between CR/CS interactions and the 

absence of interactions. The calculated AUC was 0.89 and 0.93 for the collateral sensitivity 

and cross-resistance interactions, respectively. A random classifier has an AUC of 0.5, while 

AUC for a perfect classifier is equal to 1. The cut-off point of the IS was chosen as the value 

that minimizes the Euclidean distance between the ROC curve and the optimum point of the 

graph (true positive rate=1, false positive rate=0).

Minimum inhibitory concentration (MIC) measurements—Minimum inhibitory 

concentrations (MIC) were determined using a standard serial broth dilution technique43. In 

order to maximize reproducibility and accuracy, we used a robotic liquid handling system to 

prepare 12-step serial dilutions automatically in 96-well microtiter plates. In case of 
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determination of relative MIC involving the measurement of small changes, 1.15 to 1.5 

times dilutions were used, and approximately 104 bacteria/ml were inoculated into each well 

using a 96-pin replicator, and were propagated at 30°C shaken at 300 r.p.m. (3 replicates per 

strain per antimicrobial peptide concentration). This protocol was previously established 

with the aim of identifying small changes in relative MICs in a high-throughput and 

reproducible manner2,3. Otherwise, experiments on the impact of PGLA co-treatment of 

antibiotic resistant levels or determination of antibiotic and peptide MIC levels upon 

evolution of resistance used 2 times dilutions and an inoculum of 5x105 bacteria/ml as 

suggested by the CLSI guidelines. To avoid possible edge effects, rows A and H contained 

only media devoid of cells. The environment during incubation was also set to minimize 

evaporation and hence edge effects. After 24h of incubation at 30ºC, raw OD values were 

measured in a Biotek Synergy microplate reader. MIC was defined by a cutoff OD value 

(i.e., mean+2 standard deviations of OD values of bacteria-free wells containing only growth 

medium). Relative MIC was calculated as follows: MICrelative = MICABresistant / MICcontrol.

Kill curve assay—Tolerance of antibiotic-resistant strains to antimicrobial peptides was 

measured by determining changes in population size upon exposure to lethal concentrations 

of PGLA (15xMIC), PROA (15xMIC), IND (10xMIC) in the wild-type, various antibiotic-

resistant and single-mutant strains. The experiments were conducted in 96 deep-well plates 

(1000 μl medium supplemented with the peptide). Each well initially contained 

approximately 106 cells. During antibiotic treatment, 3 samples were taken at multiple time 

points (0, 15, 30, 60, 90 and 120 minutes post-exposure) from each 3 parallel populations 

per strain. The total number of viable cells (CFU) was estimated from colony counts after 

plating the diluted cells on agar plates and incubating them for 24 hours.

Membrane integrity measurements

Membrane integrity of the antibiotic-resistant strains was investigated by measuring their 

sensitivity to the amphipathic LPS and outer membrane related genes-damaging agent bile 

acid (see Materials and Methods: High-throughput estimation of collateral sensitivity and 

cross-resistance). Antibiotic-resistant strains were then grouped by their sensitivity to bile 

acid: sensitive strains could not grow on medium supplemented with 6% bile acid while 

non-sensitive strains were able to grow on this concentration. We compared the number of 

antibiotic-resistant strains that showed collateral sensitivity to antimicrobial peptides 

between the above two groups (Figure 3A). Because the number of antibiotic-resistant 

strains qualifies as a count data, we assessed statistical significance in this comparison using 

a generalized linear mixed model (GLMM) with binomial response distributions and logit 

link functions as implemented in the R package “lme4”44. We note that the variable 

representing the number of antibiotic-resistant strains was set as an observational-level 

random effect to account for overdispersion45.

Total RNA isolation

Total RNA was extracted, as described previously46, from samples grown in minimal 

medium devoid of any antibiotic, to ensure comparability of strains that show vastly 

different resistance levels across antibiotics. Samples were collected in log-phase growth 

(optical density ≈ 0.5 for RT-PCR experiments and optical density ≈ 1 for RNA sequencing) 
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applying the QIAGEN RNA Protect bacteria reagent and stored at -80°C until RNA 

isolation. RNA isolation was performed using NucleoSpin RNA extraction kit (Macherey-

Nagel) according to the manufacturer’s protocol. Purity of total RNA was determined as 

260nm/280nm absorbance ratio with expected value of 2.0 by the NanoDrop 1000 

spectrophotometer (Thermo Scientific). RNA integrity was confirmed by gel electrophoresis 

using 1% agarose with GelRed staining. Total RNA was DNase I treated by Ambion DNase 

I to eliminate residual genomic DNA.

Whole transcriptome sequencing and data analysis

Whole transcriptome sequencing was performed on 24 antibiotic-resistant strains (2 strains 

per antibiotic, 3 biological replicates per strain) as described previously47. Reference 

genome sequence (U00096.3) as well as genome annotation data was downloaded from the 

EcoGene 3.0 database (http://www.ecogene.org/)48 for E. coli strain K-12 MG1655. Raw 

sequence data was size-selected by discarding reads shorter than 50 bp. This filtering was 

applied to ensure maximum read quality and consistent read mapping parameters. CLC 

Genomic Workbench tool version 7.5.1 (CLC Bio now part of Qiagen) was used to obtain 

gene expression estimates (mapped read counts) for each annotated gene in all samples 

using the following CLC RNA-Seq analysis parameters: the maximum number of 

mismatches was set to 2 with minimum length and similarity fractions both set to 0.8 and 

unspecific match hit set to 10. It is important to note, that the applied alignment length 

parameter is expressed as a fraction of the raw read length. This could result in a more 

permissive mapping for shorter reads. In order to ensure the same mapping stringency for all 

reads, we decided to exclude reads shorter than 50 bp. Please also note, that the excluded 

short raw read fraction is generated by the SOLiD analysis pipeline due to the removal of 

low quality read parts. SOLiD low quality readouts, as well as the resulting short reads are 

expected to appear randomly within the sequencing run. That way, the removal of reads 

shorter than 50 bp is not expected to cause any bias in the subsequent differential gene 

expression analysis. Read count data was then imported into R version 3.0.249 excluding 

rDNA genes. Genes were filtered based on their expression levels, keeping only those 

features that were detected by at least 5 mapped reads in at least 25% of the samples 

included in the study. Subsequently, “calcNormFactors” from package “edgeR” version 

3.4.250 was used to perform data normalization based on the “trimmed mean of M-values” 

(TMM) method51. Log transformation and quantile normalization was carried out by the 

“voom” function of the “limma” package version 3.18.152. “ComBat” tool from the “sva” 

package version 3.8.053 was applied to correct for systematic batch effects that was caused 

by growing subsets of the samples in separate batches. Linear modeling, empirical Bayes 

moderation as well as the calculation of differentially expressed genes were carried out 

using “limma”.

The selection of differentially expressed genes was based on the comparison of the 

normalized counts per reads of the control and the antibiotic-resistant strains. Genes with 

significant differences (false-discovery rate corrected p-values < 0.05) and with fold change 

(FC) greater than a chosen threshold (|log2(FC)|>1) were regarded as differentially 

expressed. The log2 fold change values of the normalized expression data and the false-

discovery rate corrected p-values are provided in Supplementary Table 8. Finally, we note 
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that although obtaining RNA samples at optical density ≈ 1 may be close to stationary 

phase, the inferred differential expressions of LPS and phospholipid-related genes are 

unlikely to be byproducts of the applied RNA sample extraction condition. Specifically, our 

conclusions remain after excluding genes with potential stationary phase dependent 

expression from our analyses (see Supplementary Figure 15). The set of stationary phase 

regulated genes (N=449) was compiled from literature54–56 and by identifying those genes 

in our dataset whose expression level was significantly correlated (p<0.05) with OD at the 

time of sample collection in our experiments.

The transcriptome data can be accessed from the Gene Expression Omnibus (GEO) 

repository (https://www.ncbi.nlm.nih.gov/geo/) with the following access number: 

GSE96706.

Functional analyses of differentially expressed genes

To obtain a detailed functional annotation of the genes associated with outer membrane LPS 

and phospholipid synthesis, we selected the following Gene Ontology categories: lipid-A 

biosynthetic process (GO:0009245), extracellular polysaccharide biosynthetic process (GO:

0045226), lipopolysaccharide biosynthetic process (GO:0009103), lipopolysaccharide core 

region biosynthetic process (GO:0009244), lipopolysaccharide transport (GO:0015920), 

phospholipid transport (GO:0015914), phospholipid binding (GO:0005543). The selection 

was based on EcoGene 3.0 database48.

The category ‘All LPS-related genes’ includes all the genes that are associated with at least 

one of the following GO categories: lipid-A biosynthetic process, extracellular 

polysaccharide biosynthetic process, lipopolysaccharide biosynthetic process, 

lipopolysaccharide core region biosynthetic process and lipopolysaccharide transport. The 

category ‘All Phospholipid-related genes’ includes all the genes that are associated with 

phospholipid transport or phospholipid binding GO categories. Further information about 

the full gene sets is provided in Supplementary Table 9.

To investigate the upregulated LPS-related genes in more detail, we performed Fisher’s 

exact tests on all resistant strains and all subcategories of LPS-related genes (Figure 3C, left 

heatmap). In addition, student’s t-tests were used to identify differences in the average gene 

expression in a given GO category among antibiotic-resistant strains grouped according to 

their antimicrobial peptide sensitivity (Figure 3C, right heatmap, Supplementary Figure 5).

Chemogenomic screen

Competition experiment—A high-throughput gene overexpression screen was 

performed to study the impact of upregulating each E. coli ORF on the susceptibility to a 

particular antimicrobial peptide (CAP18 and CP1). For a schematic workflow see 

Supplementary Figure 6A. The screen was carried out using a well-established plasmid 

library (A complete set of E. coli K-12 Open Reading Frame Archive library (ASKA)), 

where each E. coli ORF is cloned into a high copy number expression plasmid (pCA24N-

ORF-GFP(-))25. A previously described, pooled version of the plasmid collection57 was 

transformed into E. coli K12 BW25113 strain by electroporation, as well as the empty 
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plasmid pCA24N (without an ORF). The empty plasmid serves as a control to measure read 

counts that come from genomic DNA contamination during plasmid preparation 

(background). The resulting strain collection and the strain carrying the empty plasmid were 

grown in parallel in MS medium and expression of the ORFs was induced mildly with a 

relatively low inducer concentration (100μM isopropyl-ß-D-thiogalactopyranoside (IPTG)). 

Following 1h of incubation at 30°C, 500,000 cells from the library were used to inoculate 

each well of a 96-well microtiter plate prefilled with a concentration gradient of the peptide 

in MS media supplemented with 10μg/mL chloramphenicol and 100μM IPTG, the same way 

as for a standard MIC measurement (described above). As a further control, both the library 

and the empty plasmid were also grown in the absence of peptide. Growth was monitored in 

a microplate reader (Biotek Synergy 2). Wells that showed 50% growth inhibition in late log 

phase were transferred into 20 mL MS media supplemented with the corresponding peptide. 

Peptide concentration was set again to result in 50% growth inhibition. Growth was stopped 

at late log phase (OD600>1). Following plasmid isolation, the samples were digested 

overnight with a mixture of lambda exonuclease and exonuclease I (Fermentas) at 37°C to 

remove genomic DNA contamination. The cleaned samples were subjected to next-

generation sequencing with the SOLiD System (Life Technologies) to determine the 

diversity of the pooled library as described previously57. Each treatment was carried out in 

two replicates, except the untreated sample (in the absence of peptide), which had 5 

replicates. The experiment with the empty plasmid was also carried out twice.

Data analysis—Raw sequence data processing and mapping onto E. coli ORFs were 

carried out the same way as in the whole transcriptome analysis. Raw sequence data was 

also mapped to the plasmid backbone. In order to make the mapped read counts comparable 

between the different samples, we carried out the following data processing workflow based 

on established protocols58,59, using a custom made R script: The extra read counts coming 

from the genomic DNA contamination (background) was estimated by assuming that the 

reads mapping to the unit length of the plasmid and the ORFs should have a ratio of 1:1. The 

total extra read count estimated thereof was partitioned among the ORFs based on their 

background frequency (i.e. their relative frequency obtained from the experiment involving 

the empty plasmid). Next, these ORF-specific backgrounds were subtracted from the read 

counts. Then, a loglinear transformation was carried out on the background-corrected 

relative read counts. This transformation has the advantage over canonical logarithmic 

transformation of avoiding the inflation of data variance for ORFs with very low read 

counts60. The transformed relative read counts showed bimodal distributions 

(Supplementary Figure 6B-C). The lower mode (peak) of the distribution corresponds to 

ORFs that were not present in the sample. The upper mode represents those ORFs that grew 

unaffected by the overexpression. To make the different samples comparable, the two modes 

of the distribution of each sample were set to two predefined values. These values were 

chosen such as the original scale of the data was retained. In order to align the modes 

between samples, we introduced two normalization steps: one before and one after the 

loglinear transformation. The first normalization step identified the lower mode 

corresponding to the absent strains and shifted it to zero. Next, we performed the loglinear 

transformation step described above. The second normalization step was a linear 

transformation moving the upper mode to a higher predefined value. Following this 
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normalization step, genes that were close to the lower mode in the untreated samples were 

discarded from the analysis as these represent strains that displayed poor growth even in the 

absence of drug treatment (i.e. antimicrobial peptide sensitivity could not be reliably 

detected). Differential growth was calculated as the ratio of the normalized relative read 

counts in the treated and the non-treated samples at the end of the competition. Genes 

showing at least a 2-fold decrease in relative abundance in both replicates upon peptide 

treatment were considered as sensitizing genes.

In the next step, we examined the enrichment of CAP18- and CP1-sensitizing genes 

(Supplementary Table 10) in various GO categories using Fisher’s exact test. Obtained p-

values were corrected for multiple testing using the Benjamini & Hochberg method61 

(Supplementary Table 11).

Real-time PCR analysis

The waaY gene expression of the wild-type and marR mutant strains was determined by 

quantitative reverse-transcription Real-Time PCR (qRT-PCR) as described previously38. 

Briefly, quantitation of cysG expression level was applied as a reference-standard across 

both samples62. qRT-PCR was performed in a Bio-Rad CFX96 Real Time System (Bio-Rad 

Laboratories). The PCR mixtures consisted of ~300 ng of total RNA sample, 0.1 μM of the 

waaY_FW-waaY_REV primer pair (5’-ATCGATCTCTCCGGAAAGC, 5’-

CCTTTCAAACGCCGCATA) or 0.1 μM of the cysG_FW-cysG_REV reference primer pair 

(5'-TTGTCGGCGGTGGTGATGTC, 5'- ATGCGGTGAACTGTGGAATAAACG)62 and 

Verso one-step RT-qPCR Master Mix with low ROX reference dye (Thermo Scientific) in a 

final volume of 25 μL. The assay included “nontemplate” and “non-RT” controls to detect 

reagent contamination and presence of gDNA. RT reaction was performed at 50ºC for 15 

min and the thermal profile of the PCR procedure repeated for 40 cycles was: 95ºC for 10 

min; 20 sec denaturation at 95ºC, 20 sec annealing at 60ºC and 60 sec at 72ºC coupled to 

data collection at the end of each amplification step. Dissociation curve consisted of 10 sec 

incubation at 95ºC, 5 sec incubation at 65ºC, and ramp up to 95ºC. Melting curves were used 

to validate product specificity. All samples were amplified in triplicates from the same total 

RNA preparation and the mean value was used for further analysis. Cycle threshold (Ct) 

values were determined using Bio-Rad CFX96 software.

The waaY expression level was calculated by relative mRNA quantitation, based on the 

mean of technical replicates, normalized to the expression level of the cysG control, taking 

into consideration the efficiency level of each primer pair. Each primer efficiency (E) was 

determined as E=10−1/slope−1 based on the slope of four point standard curves with 10 times 

concentration intervals, in duplicate, using wild-type strain RNA. Efficiency of waaY and 

cysG primer pairs was determined as 1.6 and 1.8 respectively. waaY expression level in the 

marR mutant strain was calculated relative to that of the wild-type strain as follows: 

Expression level=(1.6(CtwaaY_WT-CtwaaY_marR*)/(1.8(CtcysG_WT)-(CtcysG_marR*)); and is 

presented as the mean of triplicates ± standard error of the mean.
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Measurement of antibiotic and PGLA combinations

We selected the peptide glycine-leucine-amide (PGLA) antimicrobial peptide, which 

interacts with the bacterial lipopolysaccharide layer, and 10 different antibiotics with a wide 

range of mechanisms of action (Supplementary Table 1). All experiments were conducted in 

the antibiotic sensitive wild-type Escherichia coli K-12 (BW25113) strains and in 21 

different antibiotic-resistant strains adapted to one of 10 antibiotics (established in our 

previous work3) (Supplementary Table 12). Combination screens were performed in 96-well 

plates, using a liquid-handling robotic system (Hamilton Star workstation) to improve 

reproducibility.

Interactions between the two drugs were classified as synergistic, independent (additive) or 

antagonistic based on growth measurements at multiple concentration combinations (see 

below). Drug interaction was defined as deviation from non-interaction under the Loewe 

additivity model63, which assumes that a drug does not interact with itself. We followed a 

previously published protocol64 with two important modifications. First, instead of 

examining all pairwise combinations of a pre-defined number of linearly increasing 

concentration points, we focused on a set of different antibiotic-PGLA relative concentration 

ratios and their dilution series (see Supplementary Figure 16). This setup enabled us to 

efficiently sample the most informative regions of the two-dimensional concentration space. 

Second, we inferred drug interactions based on concentration combinations that led to 90% 

growth inhibitions (Supplementary Figure 16). This enabled an especially robust detection 

of growth inhibition for antimicrobial peptides, which often exhibit steep dose-response 

curves that hinders precise measurement of, say, 50% inhibition concentrations.

As a first step, for each single agent (antibiotic and peptide alike), a 1.6-fold 8-step dilution 

series was prepared with dose points determined based on the minimal inhibitory 

concentration (MIC) of the agents. The concentration range for each agent was between 10.5 

times lower and 2.6 times higher than the MIC of the strain. Then for each antibiotic-peptide 

pair, we setup a 96-well plate as follows: we defined 7 different antibiotic:peptide relative 

concentration ratios (7:1, 3:1, 5:3, 1:1, 3:5, 1:3, 1:7) and generated dilution series thereof 

across the plate. As a result, each plate contained dilution series of 7 antibiotic:peptide ratio, 

dilution series from the given antibiotic or peptide alone, 4 bacteria-free wells (no growth 

control) and 4 wells containing only medium without any drugs (growth control) (see 

Supplementary Figure 16A).

Combination screen plates were inoculated with 5×104 cells/well from overnight culture 

(grown at 30°C, with shaking at 300 rpm). The culture volume was 100 μl. Assay plates 

were incubated at 30°C, with shaking at 300 rpm and bacterial growth was monitored by 

measuring the optical density (OD600) of the liquid cultures after 24 h. We chose an 

incubation time of 24 hours in order to be able to discern condition-specific fitness defects 

from general costs of resistance of the antibiotic-resistant strains.

Identifying interactions between antibiotics and PGLA—To assess antagonism and 

synergy between pairs of antibiotics and PGLA in the sensitive wild-type and in the 

antibiotic-resistant strains, we used the Loewe additivity model63 which assumes that a drug 

does not interact with itself. To identify interactions for each pair of antibiotics and PGLA 
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we first calculated relative inhibition values based on the initial OD (maximum inhibition) 

and the average OD of antibiotic-free control wells (maximum growth). Then we identified 

those two concentration points for each antibiotic:peptide ratio where the inhibition of the 

growth was just above and below 90%, respectively. By fitting a linear model between these 

two concentration points we could interpolate the dosages for each antibiotic:peptide ratio 

that is responsible for the 90% growth inhibition (90% effective dosage: EC90%). Based on 

the Loewe model from the EC90% values of the single agents, we then calculated the 

theoretical EC90% dosages for each of the 7 antibiotic:peptide ratio. Geometrically, the 

theoretical EC90% based on the Loewe model can be represented as a straight line between 

the EC90% of the single agents in the two-dimensional linear concentration space. Deviation 

of the shape of the lines connecting the experimentally measured EC90% from linearity 

indicates either synergy (concave isoboles) or antagonism (convex isoboles) (Supplemetary 

Figure 12). For each of the 7 antibiotic:peptide ratio we defined the expected and the 

experimentally measured EC90% values. The combination index was calculated as: 

[theoretical EC90%] / [experimental EC90%] for each antibiotic:peptide ratio (CIr). The 

combination index (CI) for a given antibiotic and peptide pair was defined as the average of 

the combination index of the 7 antibiotic:peptide ratio (mean[CIr1,CIr2…CIr7]). Where 

multiple independent experimental runs were available, we calculated the average value of 

the measured CIs.

Measurement errors of interaction screens were estimated from two independent 

experimental runs of 24 combinations by calculating the pooled variance (SD) of CI of the 

replicate experiments. The cut-off values were defined as 1.95xSD value of the CI. The cut-

off values were as follows: CI≥1.14 for antagonism; CI≤0.86 for synergism; and 

0.86<CI<1.14 for no interaction.

Experimental evolution of resistance

Experimental evolution was preformed based on a previously established automated 

evolution experiment65,66 during approximately 160 generations (24 transfers). 10 parallel 

independent cultures were propagated in 8 experimental conditions such as tetracycline 

(TET) or ciprofloxacin (CPR) in the presence or absence of ½ and ¼ of the MIC of the 

peptide glycine-leucine-amide (PGLA); tobramycin (TOB) in the presence or absence of ½ 

and ¼ of the MIC of the bactenecin 5 (BAC5); as well as ½ and ¼ of the MIC of PGLA and 

½ and ¼ of the MIC of BAC5, alone. Chess-board layout was used on the plate to monitor 

potential cross-contamination events. Starting with subinhibitory drug concentration, each 

culture was allowed to grow for 24 hours. 20 μl of culture was transferred to four 

independent wells containing fresh medium and increasing dosages of antibiotic (0.5x, 1x, 

1.5x and 2.5x the concentration of the previous step). At each transfer, cell growth was 

monitored by measuring the optical density at 600 nm (OD600 value, Biotek Synergy 2 

microplate reader was used for this purpose). Only populations of the highest drug 

concentration that reached OD600 > 0.2 were selected for further evolution. Accordingly, 

only one of the four populations was retained for each independently evolving lineage. This 

protocol was designed to avoid population extinction and to ensure that populations with the 

highest level of resistance were propagated further during evolution.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Susceptibility profiles of 60 laboratory-evolved antibiotic-resistant E. coli strains
a, Hierarchical clustering of 60 antibiotic-resistant strains (rows) and a set of 24 

antimicrobial peptides (columns) based on the cross-resistance and collateral sensitivity 

interactions between them (for abbreviations of antibiotics and antimicrobial peptides see 

Supplementary Tables 1 and 2, respectively). Hierarchical clustering was performed 

separately on rows and columns, using Ward’s method67. Black squares on the right side of 

each antibiotic-resistant strain denote previously identified mutations in antibiotic-resistance 

genes2,3 that were significantly enriched in one or more strain clusters (p<0.05, two-sided 
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Fisher’s exact test). S1 strains were enriched in envZ, ompR and ompC mutations, whereas 

S3 strains were enriched in marR mutations (P<0.05 for all cases, two-sided Fisher’s exact 

test). While S3 strains show widespread collateral sensitivity to antimicrobial peptides, 

especially to P1 and P3 peptides, aminoglycoside-resistant strains (S4) show extensive cross-

resistance to proline-rich peptides (P2) (p<0.0001, two-sided Fisher’s exact test). b, 
Efficiency of antimicrobial peptides against antibiotic-resistant bacteria expressed as the 

percentage of strains showing collateral sensitivity (blue), no interaction (white), or cross-

resistance (orange) against each peptide. A total of 56 to 60 strains per antimicrobial peptide 

was employed for the analysis. c, Relative frequency of collateral sensitivity and cross-

resistance interactions towards antimicrobial peptides upon adaptation to single antibiotics 

(n=5 strains per antibiotic). The frequency of interactions for each peptide was calculated by 

counting the number of cross-resistance (orange), no interaction (white) and collateral 

sensitivity (blue) interactions displayed by all strains adapted to a given antibiotic. Antibiotic 

modes-of-action are shown on the top of the figure. 30SAG refers to aminoglycosides. 

Asterisks (*) mark significant deviations from hypergeometric distribution models 

calculated from all the interactions of all peptide-strain combinations separately for cross-

resistance and collateral sensitivity, respectively. Strains adapted to DOX and TET were 

depleted, whereas strains adapted to TOB and KAN were enriched in cross-resistance 

interactions towards peptides (p=0.005, p<0.008, p=0.003 and p<0.001, respectively, two-

sided Fisher's combined probability test). Furthermore, strains adapted to ERY and TRM 

were significantly depleted in collateral sensitivity interactions (p=0.003 and p<0.001 

respectively, two-sided Fisher's combined probability test).
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Figure 2. Survival of collateral-sensitive antibiotic-resistant strains under lethal antimicrobial 
peptide stress
a-c, The wild-type and antibiotic-resistant strains were exposed to high concentrations of 

antimicrobial peptides: (a) the tetracycline-resistant TET3 and the ciprofloxacin-resistant 

CPR7 strains were exposed to 15-fold (3000 μg/mL) MIC of protamine (PROA), (b) the 

ciprofloxacin-resistant CPR7 and the tobramycin-resistant TOB8 were exposed to 10-fold 

MIC (125 μg/mL) of indolicidin (IND), and (c) the doxycycline-resistant DOX3 and the 

kanamycin-resistant KAN8 were exposed to 15-fold MIC (1500 μg/mL) of PGLA. All 

antibiotic-resistant strains exhibited collateral sensitivity towards the applied peptide. d, A 

strain containing a single point mutation in marR (marR*) was also exposed to 15-fold MIC 

of PGLA. This strain exhibits resistance to multiple antibiotics and collateral sensitivity to 

many of the peptides tested, including PGLA (Table 1). Cells were incubated with the 

particular peptide for 120 minutes. Samples were taken at defined time points and plated in 

LB agar plates. Percentage of survival was calculated by counting the colony forming units 

(CFU). Each data point shows the mean ± standard error of the mean of 3 biological 

replicates.
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Figure 3. Altered membrane composition in antibiotic-resistant bacteria contributes to increased 
sensitivity to antimicrobial peptides
a, Antibiotic-resistant strains sensitive towards a membrane-damaging agent (bile acid) show 

especially large numbers of collateral sensitivity interactions to antimicrobial peptides. For 

antibiotic abbreviations see Supplementary Table 1. Strains sensitive to bile acid show 

significantly more collateral sensitivity interactions to peptides than those showing wild-type 

bile acid sensitivity (not sensitive group) (p<10-3, two-sided generalized linear mixed model 

with binomial response distributions, see Materials and Methods section). Relative 

frequency was calculated by dividing the number of the collateral sensitivity interactions by 

the number of all tested peptides (N=24). b, Resistant strains with sensitivity to bile acid 

have significantly more LPS-related synthesis genes being transcriptionally upregulated than 

those showing wild-type bile acid sensitivity (p<10-3, two-sided GLMM with binomial 

response distributions). Relative frequency was calculated by dividing the number of the 

upregulated genes by the number of all LPS-related genes (N=100). c, Left heatmap shows 

the average log2(fold change) of genes related to selected membrane-associated GO 

processes. Many antibiotic-resistant strains are enriched in significantly up- or 

downregulated genes (fold change>2 or <0.5, FDR-corrected p-value<0.05, two-sided 

Fisher’s exact test), associated with membrane-related functions. Significant enrichments 
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(p<0.05) are marked with an asterisk (*). Strains sensitive to a given peptide show 

significant upregulations in specific GO groups compared to non-sensitive strains (right 

heatmap, two-sided Student’s t–test; for further details, see Supplementary Figure 5). 

Peptides with either too few or too many collateral sensitivity interactions (n<4 or n>21, 

respectively) were excluded from the statistical analysis based on sample size calculation 

with alpha=0.1, power=0.8, delta=2, SD=1, and are indicated with a minus sign (-). Sample 

size used in this analysis is provided in Supplementary Table 3 d, Upregulation of LPS-

related genes sensitize to CAP18. CAP18-sensitive antibiotic-resistant strains (CS, n=12) 

have significantly higher expression levels of CAP18 sensitizing genes within the ‘LPS 

biosynthetic process’ GO category than non-sensitive strains (not CS, n=12) (p=0.008, two-

sided Wilcoxon rank-sum test). Boxplots show the median, first and third quartiles, with 

whiskers showing the 5th and 95th percentile. Significant difference (p<0.01) is marked with 

asterisks (**).
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Figure 4. A putative mechanism underlying collateral sensitivity of antibiotic-resistant bacteria 
to cationic antimicrobial peptides
a, The wild-type MarR represses marA, which leads to the reduced expression of the 

AcrAB-TolC efflux pump and hence the cytosolic accumulation of antibiotics. b, Upon a 

canonical resistance mutation in the marR gene (marR*), repression of marA is substantially 

decreased leading to the upregulation of the AcrAB-TolC efflux pump, and hence an 

increased resistance to multiple antibiotics. On the other hand, MarA simultaneously 

promote the upregulation of WaaY, a kinase responsible for phosphorylation of the inner 

core of lipopolysaccharides (LPS), which increases the net negative surface charge of the 

bacterial outer membrane. This in turn enhances susceptibility to membrane-interacting 

cationic antimicrobial peptides (CAP+). In addition, phosphorylation of the LPS core may 

also enhance the permeability barrier of the outer membrane by cross-linking of neighboring 

LPS molecules. Such changes promote both 1) a decreased uptake and increased efflux of 

antibiotics, thereby contributing to antibiotic resistance, and 2) a higher affinity of the 

positively charged antimicrobial peptides to the negative phosphoryl groups of the LPS core, 

leading to enhanced sensitivity to antimicrobial peptides.
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Figure 5. Interaction of PGLA and antibiotics, when applied in combination
Antibiotic-PGLA interactions were determined in E. coli K12 BW25133 wild-type and 

corresponding antibiotic-resistant strains. For antibiotic abbreviations see Supplementary 

Table 1. Figures a-d show the combination effect of PGLA and ciprofloxacin (CPR) or 

tetracycline (TET) on the wild-type strain (a and c), ciprofloxacin-resistant strain (CPR7) 

(b) and tetracycline-resistant strain (TET3) (d). While the combination shows strong 

antagonism (a) or no interaction (c) in the wild-type strain, the interaction shifted to strong 

synergism in the resistant strain (b and d). Dashed line represents no interaction calculated 
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based on the Loewe additivity model (see Materials and Methods). Growth rate is 

represented in the combination space by the shade of the grey color with darker shades 

denoting higher growth rates Figures e-j show the effect of subinhibitory concentrations of 

PGLA on antibiotic activity. Ciprofloxacin-resistant CPR7 (e), tetracycline-resistant TET3 

(f) and doxycycline-resistant DOX3 (g) strains, derived from E. coli K12 BW25133 were 

treated with subinhibitory concentrations of PGLA, while measuring the MIC for the given 

antibiotic to which they were adapted. The concentrations of PGLA used were 1/16, 1/8, 1/4 

and 1/2 of its MIC against the wild-type strain. The minimal inhibitory concentration of 

nalidixic acid (NAL) was measured in E. coli clinical isolates 0370 (h), 3539 (i) and 

CFT073 (j), and their corresponding nalidixic acid-resistant strains in the presence of 1/2 of 

the MIC for PGLA. None of the PGLA concentrations, when applied alone, affected the 

growth of the wild-type or the resistant strains (the only exception being the 40% growth 

rate reduction of the tetracycline (TET) resistant strain in response to ½ MIC PGLA). 

Dashed lines represent the clinical breakpoints for the antibiotics in E. coli (not available for 

doxycycline (DOX)). Data in this figure is representative of at least 2 biological replicates.
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Figure 6. Minimum inhibitory concentrations (MICs) of laboratory-evolved lines adapted to 
antibiotics in the absence and the presence of subinhibitory dosage of antimicrobial peptides
MIC was measured following a laboratory evolution of the wild-type E. coli strain to 

tetracycline (TET, green), ciprofloxacin (CPR, blue) and tobramycin (TOB, orange) in the 

absence or in the presence of ¼ or ½ of the MIC of the antimicrobial peptides PGLA (a, b, 

d, e) or BAC5 (c, f) against the wild-type strain. MICs of the wild-type and both PGLA and 

BAC5 evolved lines (in the absence of antibiotic) are represented by grey and white colored 

bars, respectively. Each data point represents the MIC value of one of each ten parallel-

evolved lines. Error bars represent the mean ± standard error of the mean for each 

experimental condition. Dashed lines represent clinical breakpoints for TET, CPR or TOB in 

E. coli. Both the CPR-PGLA and the TET-PGLA combinations, which are representatives of 

collateral sensitive interactions (Figure 1), significantly slowed down the evolution of 

resistance towards the given antibiotic when administered together. Reassuringly, the control 

combination (BAC5-TOB), representing a cross-resistance interaction, did not reduce the 

rate of TOB resistance evolution (P=0.0834, 1-way ANOVA).
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