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Primary hyperparathyroidism (PHPT) is a common endocri-
nopathy characterized by hypercalcemia and elevated levels of
parathyroid hormone. The primary cause of PHPT is a benign
overgrowth of parathyroid tissue causing excessive secretion of
parathyroid hormone. However, the molecular etiology of
PHPT is incompletely defined. Here, we demonstrate that
semaphorin3d (Sema3d), a secreted glycoprotein, is expressed
in the developing parathyroid gland in mice. We also observed
that genetic deletion of Sema3d leads to parathyroid hy-
perplasia, causing PHPT. In vivo and in vitro experiments using
histology, immunohistochemistry, biochemical, RT-qPCR, and
immunoblotting assays revealed that Sema3d inhibits parathy-
roid cell proliferation by decreasing the epidermal growth factor
receptor (EGFR)/Erb-B2 receptor tyrosine kinase (ERBB) sig-
naling pathway. We further demonstrate that EGFR signaling is
elevated in Sema3d�/� parathyroid glands and that pharmaco-
logical inhibition of EGFR signaling can partially rescue the
parathyroid hyperplasia phenotype. We propose that because
Sema3d is a secreted protein, it may be possible to use recombi-
nant Sema3d or derived peptides to inhibit parathyroid cell pro-
liferation causing hyperplasia and hyperparathyroidism. Col-
lectively, these findings identify Sema3d as a negative regulator
of parathyroid growth.

The parathyroid glands synthesize and secrete parathyroid
hormone (PTH)3 to regulate serum calcium concentration in
the body (1–4). In mice, there are two parathyroid glands
located bilaterally in the neck and near the superior border of

the thyroid gland. The parathyroid glands develop from the
common parathyroid/thymus primordia, derived from the
third pharyngeal pouch (5, 6). As the development proceeds,
parathyroid is separated from the thymus and becomes situated
near or embedded within the thyroid gland (7, 8). The early
development and patterning of the parathyroid and thymus
domains are controlled by a set of common regulatory genes
(9 –13). However, once the domains are specified within the
same primordium, parathyroid cells express specific transcrip-
tion factors such as glial cells missing 2 (Gcm2) (8). Gcm2 is
essential for the differentiation and survival of parathyroid
cells. Mice with Gcm2 deficiency develop aparathyroid pheno-
type because their parathyroid precursor cells fail to proliferate
and differentiate and die via programmed cell death (8, 14, 15).
Parathyroid hormone (PTH) gene expression is detected in the
parathyroid domain before its separation from the thymus and
is maintained throughout development (14).

Primary hyperparathyroidism (PHPT) is a common endo-
crine disorder caused by excessive secretion of PTH from the
parathyroid glands (16, 17). PHPT is the third most common
endocrine disorder, with a prevalence of 0.1–1.0%. It is more
common in elderly females, with a prevalence of up to 2.1% in
postmenopausal women (16, 18). In most cases of nonfamilial
origin PHPT, hyperparathyroidism results from either benign
single adenoma (80 – 85% cases) or multiglandular parathyroid
hyperplasia (15–20% cases) (16, 17). In rare cases (�1%), para-
thyroid carcinoma has been associated with PHPT (19). The
parathyroid gland maintains calcium homeostasis by sensing
fluctuations in extracellular calcium levels through the calcium-
sensing receptor (CaSR) and responding to changes in PTH
secretion (1–4). PHPT is characterized by increased parathy-
roid cell proliferation and calcium-insensitive hypersecretion
of parathyroid hormone (20). Another form of hyperparathy-
roidism is secondary hyperparathyroidism (SHPT), in which
parathyroid glands become enlarged and hyperactive in
response to a condition outside of the parathyroid causing
hypocalcemia. SHPT is most frequently seen in patients with
chronic kidney disease (21). In most primary or secondary
hyperparathyroidism cases, increased serum PTH levels are
associated with increased serum calcium levels, causing com-
plications such as renal stones, neuropsychiatric disorders, and
bone abnormalities (16). Parathyroidectomy is the most com-
mon treatment for hyperparathyroidism. However, reoperative
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treatment for persistent or recurrent hyperparathyroidism
remains technically challenging due to fibrotic scar and dis-
torted anatomy that make it more difficult to identify the
abnormal parathyroid glands (17, 22).

Semaphorins are highly conserved secreted membrane-
bound glycoproteins originally identified as axon guidance
molecules in the developing nervous system (23). However,
work in recent years has implicated them in a wide range of
developmental, physiological, and pathological processes out-
side of the central nervous system, including tumor progression
(24 –26). The primary receptors for semaphorins are plexins
and neuropilins. Most membrane-bound semaphorins bind
directly to plexins, whereas secreted class 3 semaphorins may
require neuropilin as obligate plexin co-receptors (26, 27).
Increasing evidence has shown that semaphorins also can sig-
nal through a nonplexin receptor complex (28, 29).

We have previously shown that Sema3d is expressed in the
proepicardial organs and Sema3d-expressing proepicardial
cells give rise to coronary vascular endothelium. While study-
ing epicardial function of Sema3d, we noticed that Sema3d was
expressed in the third pharyngeal pouch, giving rise to the para-
thyroid gland. Here, we report that Sema3d is expressed in the
developing parathyroid gland and required for its proper devel-
opment. Genetic deletion of Sema3d leads to PHPT due to the
enlarged parathyroid gland. Molecular and biochemical
analyses suggest that Sema3d inhibits parathyroid cell prolif-
eration by decreasing the EGFR/ErbB signaling pathway. We dem-
onstrate that EGFR signaling is elevated in Sema3d�/� parathy-
roid glands, and pharmacological inhibition of EGFR signaling can
partially rescue the parathyroid hyperplasia phenotype. Because
EGFR/ErbB signaling pathway is activated in the parathyroid
glands in both PHPT and SHPT, the Sema3d-EGFR/ErbB
signaling axis may be targeted to treat parathyroid hyperpla-
sia, especially in persistent or recurrent hyperparathyroid-
ism after parathyroidectomy.

Results

Sema3d-deficient mice develop primary hyperparathyroidism

To determine the expression of Sema3d during parathyroid
development, we performed expression and lineage tracing
analyses in Sema3dGFPCre/� mice (30). Bright field and direct
GFP fluorescence in E9.5 Sema3dGFPCre/� embryos demon-
strated that Sema3d is expressed in the third pharyngeal
pouch. Stronger GFP signals were observed in the dorso-
anterior domain of the third pouch that represents the parathy-
roid domain (Fig. 1A). Similarly, when we crossed the
Sema3dGFPCre/� line with the R26RlacZ reporter line, strong
�-gal activity was observed in the third pharyngeal pouch (Fig.
1B). Our results are consistent with a previous report suggest-
ing that Sema3d is expressed in the parathyroid-specific
domain of the common primordium that gives rise to the thy-
mus and parathyroid (31). Thus far, Sema3d�/� mice survive
and have abnormal pulmonary vein patterning causing left-to-
right shunt, as characterized by severely enlarged right atria and
ventricle (30). To demonstrate the functional requirement of
Sema3d in parathyroid development, we performed histologi-
cal and molecular analyses on the parathyroid gland in both

control and Sema3d�/� mice. Morphological and histological
examinations of the parathyroid glands from postnatal day 0
(P0), P6, and 12-month-old control and Sema3d�/� mice
revealed a marked increase in size and hypercellularity, sug-
gesting hyperplasia (Fig. 2, A and B and Fig. S1). Only one of
the two parathyroid glands was hyperplastic, suggesting ade-
nomatous transformation. Gross morphological and histo-
logical abnormalities resembling parathyroid hyperplasia
were observed in 40% (19 of 46) of Sema3d�/� mice. Gcm2
immunohistochemistry was performed to mark the parathy-
roid glands in control and Sema3d�/� mice (Fig. 2C). Signif-
icant increase in the parathyroid area was observed in
Sema3d�/� mice (Fig. 2D).

To determine whether parathyroid hyperplasia in Sema3d�/�

mice leads to hyperparathyroidism, we measured serum
PTH in 6-month-old mice. We observed elevated PTH levels
in Sema3d�/� mice compared with their littermate controls
(Fig. 2E). In most cases of PHPT, increased serum PTH levels
are associated with increased serum calcium levels. However, in
some cases of normocalcemic PHPT, PTH levels are elevated
but serum calcium levels remain normal (18, 32). To determine
whether elevated PTH levels in Sema3d�/� mice are associated
with changes in calcium levels, we measured serum calcium
levels in the same set of animals. We observed elevated calcium
levels in Sema3d�/� mice compared with their littermate con-
trols, suggesting PHPT (Fig. 2F). To determine the molecular
changes associated with parathyroid hyperplasia, we isolated
RNA from dissected parathyroid gland from control and
Sema3d�/� mice and performed qPCR analysis for parathy-
roid-specific genes such as parathyroid hormone (PTH), glial
cells missing homolog 2 (Gcm2), and calcium-sensing receptor
(CaSR). Expression levels of PTH and Gcm2 were significantly
elevated in Sema3d�/� parathyroid compared with controls.
However, the expression of CaSR was not altered in Sema3d�/�

parathyroid glands (Fig. 2G).

Figure 1. Sema3d expression in the developing third pharyngeal pouch.
A, bright field and direct GFP fluorescence in E9.5 Sema3dGFPCre/� mouse
embryos. B, whole-mount X-gal staining of E9.5 and E10.5 Sema3dGFPCre/�;
R26RLacZ embryos. pp1, pharyngeal pouch 1; pp2, pharyngeal pouch 2; pp3,
pharyngeal pouch 3; H, heart.
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Figure 2. Primary hyperparathyroidism in Sema3d�/� mice. A and B, morphological and histological examination of parathyroid glands from 6- (n � 12 per
genotype) and 12-month-old (n � 15 per genotype) control and Sema3d�/� mice. C, GCM2 immunohistochemistry on parathyroid sections from 12-month-
old control and Sema3d�/� mice. D, quantification of parathyroid area in 12-month-old control and Sema3d�/� mice (n � 12). E, serum PTH levels in
12-month-old control (n � 8) and Sema3d�/� mice (n � 10). F, serum calcium levels in 12-month-old control (n � 7) and Sema3d�/� mice (n � 8). G, real-time
qPCR for PTH, Gcm2, and CaSR on RNA isolated from the microdissected parathyroid gland of 6-month-old control (n � 3) and Sema3d�/� mice (n � 3). -Fold
changes in gene expression are presented. T, thyroid; PT, parathyroid. Scale bars, 200 �m. Error bars, S.D.
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Sema3d inhibits parathyroid cell proliferation

To determine whether observed hyperplasia in Sema3d�/�

mice is due to abnormal parathyroid cell proliferation, we per-
formed Ki-67 immunostaining on P0 and 6-month-old para-
thyroid sections from control and Sema3d�/� mice. A dra-
matic increase in the number of Ki-667–positive cells was
noted in the Sema3d�/� parathyroid sections compared with
controls at both time points. This suggests that abnormal cell
proliferation is the primary cause of parathyroid hyperplasia
(Fig. 3A). To determine the molecular changes associated with
increased parathyroid cell proliferation and hyperplasia in
Sema3d�/� mice, we analyzed the expression of cell cycle reg-
ulators, including cyclins, cyclin-dependent kinases (CDKs),
and cyclin-dependent kinase inhibitor (CDKIs) by qPCR on
RNA isolated from microdissected parathyroid glands. We
observed a 4-fold increase in the expression of Ccdn1 (cyclin
D1), an oncogene known to be overexpressed in 20 – 40% of
parathyroid adenomas (33–35). We also observed an increase
in Cdkn2a (p21) and a modest decrease in Cdk4 expression in
Sema3d�/� parathyroid (Fig. 3B). Increased expression of

Cdkn2a has been associated with tumor progression (36).
Growing evidence suggests that, depending on its environment,
Cdkn2a can act as either tumor suppressor or an oncogene (37,
38). No significant changes were observed in Ccdn2 (cyclin D2),
Cdkn2c (p18), Cdkn1b (p27), and Cdkn1c (p57). To determine
total RNA quality isolated from the microdissected parathyroid
tissues, we performed qPCR analysis for thyroid-stimulating
hormone receptor (TSHR), troponin T1 (Tnnt1), and Sox9.
This allowed us to detect possible contamination from thyroid,
skeletal muscle, and cartilage tissues, respectively. No signifi-
cant changes were observed (Fig. S2). Together, these results
suggest that Sema3d inhibits parathyroid cell proliferation in
vivo by regulating the expression of cell cycle genes.

Because parathyroid tissues from mice are limited, we used a
human parathyroid cell line, sHPT-1, to dissect the molecular
mechanism of Sema3d-mediated inhibition of parathyroid cell
proliferation. sHPT-1 is established from a hyperplastic para-
thyroid gland surgically removed from an SHPT patient (39).
To determine whether sHPT-1 cells are sufficiently similar to
primary parathyroid cells with regard to their semaphorin sig-

Figure 3. Sema3d inhibits parathyroid cell proliferation in vivo and in vitro. A, immunohistochemistry for Ki-67 on parathyroid sections from P0 and
6-month-old control (n � 5) and Sema3d�/� (n � 5) mice. High-magnification images show nuclear Ki-67 staining. Scale bars, 50 �m. B, real-time qPCR for cell
cycle regulators, such as Ccdn1, Ccdn1, Cdk4, Cdkn2c, Cdkn2a, Cdkn1b, and Cdkn1c on RNA isolated from the microdissected parathyroid gland of 6-month-old
control (n � 3) and Sema3d�/� mice (n � 3). C, immunostaining for Ki-67 on sHPT cells treated with control or recombinant Sema3d for 48 h. Nuclei were
visualized by DAPI staining (blue), and the percentage of Ki-67–positive cells was quantified. T, thyroid; PT, parathyroid. Error bars, S.D.
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naling pathways, we treated sHPT-1 cells with recombinant
Sema3d and analyzed proliferation by Ki-67 staining. Consis-
tent with the in vivo data, we see significant reduction in
sHPT-1 cell proliferation in Sema3d-treated samples compared
with controls. This suggests that Sema3d inhibits parathyroid
cell proliferation under both in vivo and in vitro conditions (Fig.
3C).

Sema3d inhibits EGFR signaling pathway to control
parathyroid cell proliferation

Semaphorins signal through their classical Plexin and neuro-
pilin receptors and other receptors, such as receptor tyrosine
kinases (28, 40, 41). Sema3d binds and signals through Neuro-
pilin-1 (Nrp1) to regulate endothelial cell patterning during
pulmonary vein development (30, 42). However, Nrp1 is not
expressed during parathyroid development, suggesting that
Sema3d may signal through other receptors expressed by the
parathyroid gland (31). In a candidate-based screening, we
found that Sema3d inhibits the epidermal growth factor recep-
tor (EGFR) signaling pathway. EGFR is a member of the ErbB
family of receptor tyrosine kinases that includes ErbB2, ErbB3,
and ErbB4. Ligand binding induces homo- or heterodimeriza-
tion of EGFR with other family members, including ErbB2, and
activation of intracellular tyrosine kinase through formation of
an asymmetric kinase dimer. Activation of ErbB receptors results
in activation of mitogen-activated protein kinase and phosphati-
dylinositol 3-kinase/Akt signaling, leading to enhanced prolifera-
tion, primarily due to aberrant changes in cell cycle gene expres-
sion, including cyclin D1 (43, 44). Enhanced EGFR signaling has
been associated with parathyroid adenomas and hyperplasia in
both PHPT and SHPT (45–49).

To determine whether Sema3d inhibits parathyroid cell pro-
liferation through the EGFR signaling pathway, we treated
sHPT-1 cells with control and alkaline phosphatase (AP)-
tagged Sema3d (Sema3d-AP) conditioned medium and ana-
lyzed the expression of EGFR signaling components, such as
pEGFR-Y1045, pEGFR-Y992, EGFR, pErbB2-Y1248, ErbB2,
pAkt, Akt, pErk1/2, Erk1/2, and cyclin D1, by Western blotting.
Sema3d-AP conditioned medium treatment reduced the
amount of total EGFR, as well as pEGFR-Y1045 and pEGFR-
Y992, suggesting that Sema3d may inhibit EGFR signaling by
inducing receptor endocytosis/internalization and degrada-
tion. In parallel with EGFR down-regulation, ErbB2 and
pErbB2-Y1248 levels were also decreased after nanomolar
quantities of Sema3d treatment. To determine whether the
downstream components of EGFR pathway were also affected
after Sema3d treatment, we analyzed expression and activation
of Akt and Erk1/2. The phosphorylation level of Akt and Erk1/2
was reduced. However, the total amount of Akt and Erk1/2 was
not changed. Cyclin D1, one of the known targets of ErbB sig-
naling in cancer cells, was significantly reduced in Sema3d-AP–
treated cells (Fig. 4A). Next, we treated sHPT-1 cells with
recombinant Sema3d at different time points and analyzed
EGFR signaling components. Consistent with earlier observa-
tion, all signaling components were significantly down-regu-
lated after Sema3d treatment (Fig. 4B). Treatment of sHPT-1
cells with increasing recombinant Sema3d concentrations

affected the EGFR signaling pathway in a manner similar to that
described above (Fig. 4, C and D).

Inhibitory effects of Sema3d on ErbB2 are EGFR-dependent

Although Sema3d does not bind to ErbB2 alone, it can bind
as part of a receptor complex. This suggests that changes in
pErbB2 levels in sHPT cells after Sema3d treatment were likely
from the impact of EGFR signaling pathway (Fig. 4 and Fig. S3)
(29). To determine whether the inhibitory effect of Sema3d on
ErbB2 activation was EGFR-dependent, we co-transfected
HEK293T cells with WT ErbB2 and a plasmid expressing either
WT EGFR or kinase-inactive EGFR. The transfected cells were
then treated with recombinant epidermal growth factor (EGF)
in the presence/absence of Sema3d. Consistent with previous
observations, when WT EGFR and WT ErbB2 were co-ex-
pressed, both receptors were phosphorylated in response to
EGF (Fig. 4E). Sema3d exposures inhibited EGF-induced phos-
phorylation of both EGFR and ErbB2. However, when kinase-
inactive EGFR and WT ErbB2 were co-expressed, no EGFR
phosphorylation and a low level of ErbB2 phosphorylation were
observed after EGF stimulation (Fig. 4E). The addition of
Sema3d did not change ErbB2 phosphorylation, suggesting that
the inhibitory effect of Sema3d on ErbB2 activation is EGFR-
dependent (Fig. 4E).

Next, we tested whether Sema3d can inhibit the EGFR-acti-
vated pathway, a condition associated with parathyroid hyper-
plasia in both PHPT and SHPT (45–49). We treated sHPT-1
cells with different doses of NSC 228155, an EGFR activator
(50), and performed Western blotting analyses on pEGFR-
Y1045 and pEGFR-Y992 to determine the optimal dose
required to activate the pathway. We observed that 100 �M

NSC 228155 significantly increased the level of pEGFRs (Fig.
5A). Recombinant Sema3d inhibited NSC 228155–induced
EGFR activation (Fig. 5B). Cyclin D1 expression was also
increased with NSC 228155 treatment, but it was decreased
following Sema3d treatment (Fig. 5B). To determine whether
increased cyclin D1 expression correlated with increased cell
proliferation, we treated sHPT-1 cells with NSC 228155 in the
presence/absence of recombinant Sema3d and analyzed their
proliferation (Fig. 5C). Activation of the EGFR pathway by NSC
228155 resulted in a significantly increased proportion (�80%,
p � 0.001) of Ki-67–positive cells. However, the addition of
Sema3d significantly decreased (�30%, p � 0.001) the number
of Ki-67–positive cells induced by NSC 228155 treatment. This
suggests that Sema3d regulates cell cycle progression by signal-
ing through the EGFR (Fig. 5C). Together, both in vivo and in
vitro results suggest that Sema3d inhibits the EGFR signaling
pathway to restrict parathyroid cell proliferation. A recent
study by Aghajanian et al. (29) demonstrated that Sema3d acti-
vates the ErbB2 signaling pathway in endothelial cells during
coronary vasculature patterning. This indicates that, depend-
ing on its biological context, Sema3d can act as either agonists
or antagonists for the ErbB signaling pathway (29).

Blocking EGFR signaling can partially rescue the parathyroid
hyperplasia phenotype in Sema3d�/� mice

To determine whether Sema3d inhibits the EGFR pathway in
vivo, pEGFR immunohistochemistry was performed on para-

Sema3d and parathyroid hyperplasia

8340 J. Biol. Chem. (2019) 294(21) 8336 –8347

http://www.jbc.org/cgi/content/full/RA118.007063/DC1


Figure 4. Sema3d inhibits parathyroid cell proliferation by decreasing the EGFR signaling pathway. A, Western blotting and quantification for EGFR
signaling pathway molecules from sHPT cells incubated with control or Sema3d conditioned medium for 30 min. B–D, Western blotting and quantification for
EGFR signaling pathway molecules from sHPT cells treated with 4 nM recombinant Sema3d for 0, 5, 15, and 30 min (B) or sHPT cells treated with 0, 0.1, 1, and 10
nM recombinant Sema3d for 30 min (C and D). *, p � 0.05; **, p � 0.01; ***, p � 0.001; NS, not significant (one-way ANOVA between groups, post hoc multiple
comparisons, Tukey’s test). E, EGFR signaling in cells expressing mixed WT and kinase-inactive EGFR/ErbB2 heterodimers. HEK293T cells expressing the
indicated pairs of EGFR and ErbB2 receptors were treated with recombinant EGF with and without recombinant Sema3d for 30 min. Cell lysates were prepared
for Western blots to detect pEGFR, EGFR, pErbB2, ErbB2, and �-actin levels. Western blots were quantified for pEGFR and pErbB2 relative to �-actin levels. Six
bars in the graph represent six conditions labeled above the blots. Experiments were repeated three times and quantified. Error bars, S.D.
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thyroid sections from control and Sema3d�/� mice. We
observed elevated levels of pEGFR in Sema3d�/� parathyroid
sections compared with controls (Fig. 6A). Next, we tried to
determine whether hyperplasia seen in Sema3d�/� mice was
due to an abnormal increase in the EGFR signaling and whether
blocking EGFR signaling can rescue the hyperplasia phenotype.
To examine whether elevated EGFR signaling resulted in para-
thyroid hyperplasia, we treated Sema3d�/� mice with either
vehicle or erlotinib, an EGFR signaling pathway inhibitor, and
analyzed their parathyroid glands. We observed a significant
size reduction of the parathyroid glands in Sema3d�/� mice
treated with erlotinib compared with vehicle-treated controls
(Fig. 6B). Consistent with reduced parathyroid size, we also
observed that Ki-67–positive cells were reduced in erlotinib-
treated samples when compared with controls (Fig. 6C). To
determine whether the reduced parathyroid glands impact
PTH levels, we measured serum PTH levels in Sema3d�/� mice
treated either with vehicle or erlotinib. PTH levels were signif-
icantly reduced after erlotinib treatment (Fig. 6D). Together,
these results indicate that blocking EGFR signaling could par-
tially rescue the hyperplasia and hyperparathyroidism pheno-
type seen in Sema3d�/� mice.

Discussion

The pathogenesis of parathyroid gland hyperplasia in hyper-
parathyroidism is poorly understood. Thus, a better molecular
understanding is essential for prevention and therapeutic inter-

vention. In this study, we demonstrate that Sema3d�/� mice
develop PHPT from parathyroid hyperplasia. However, only
�40% of Sema3d�/� mice develop hyperplasia. We suspect
that this incomplete phenotype is contributed by the genetic
background, as phenotypes in other class 3 semaphorin knock-
outs are also strain-dependent (51). Expression of parathyroid-
specific developmental genes such as PTH and Gcm2 was
increased in Sema3d�/� mice. However, CaSR expression was
not altered. Expression of CaSR enables the parathyroid cell to
respond to changes in extracellular calcium concentration.
CaSR activation by high extracellular calcium results in reduced
PTH secretion. On the other hand, deactivation of CaSR by low
extracellular calcium induces PTH secretion. Normal expres-
sion of CaSR in Sema3d�/� mice suggests that elevated PTH
levels are primarily caused by increased gland size and not from
individual parathyroid cells secreting more PTH.

Genetic inactivation of Sema3d leads to an activated EGFR
signaling pathway and cyclin D1, a cell cycle regulator and an
oncogene. This results in increased parathyroid cell prolifera-
tion. Cyclin D1 binds and activates CDKs that phosphorylate
several downstream proteins to ensure cell cycle progression
through the G1/S checkpoint. The role of cyclin D1 in parathy-
roid tumorigenesis is well-established. Cyclin D1 is overex-
pressed in 20 – 40% of parathyroid adenomas (33–35). How-
ever, these numbers are much higher (�80%) in sporadic
parathyroid adenomas from Asian Indians. Cyclin D1 is also

Figure 5. Sema3d inhibits chemically induced EGFR signaling pathway. A, optimizing NSC 228155 concentrations to activate the EGFR signaling pathway
in sHPT cells. Western blotting for pEGFRs from sHPT cells incubated with increasing concentrations of NSC 228155 for 30 min. B, Western blotting and
quantification for pEGFR and cyclin D1 from sHPT cells incubated with 100 �M NSC 228155 with or without increasing amounts of recombinant Sema3d (5, 10,
and 12 nM) for 30 min. *, p � 0.05; **, p � 0.01; ***, p � 0.001 (one-way ANOVA between groups, post hoc multiple comparisons, Tukey’s test). C, immuno-
staining for Ki-67 on sHPT cells treated with either control or NSC 228155 (100 �M) or NSC 228155 (100 �M) together with 10 nM recombinant Sema3d for 24 h.
Nuclei were visualized by DAPI staining (blue), and the percentage of Ki-67–positive cells was quantified. Experiments were repeated three times and quanti-
fied. ***, p � 0.001 (one-way ANOVA between groups, post hoc multiple comparisons, Tukey’s test). Error bars, S.D.
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activated in a subset of parathyroid adenomas from chromo-
somal rearrangement, bringing the cyclin D1 gene under the
influence of the PTH promoter region (34). Studies in trans-
genic mice have demonstrated that targeted overexpression of
cyclin D1 in parathyroid tissues can lead to parathyroid adeno-
mas (33).

Semaphorins signal through their classical plexin and neuro-
pilin receptors. However, semaphorins can also signal through
other receptors, such as receptor tyrosine kinases (28, 40, 41).
Our data suggest that Sema3d can modulate cell behavior by
regulating receptor tyrosine kinases activities. Growth factor
receptor tyrosine kinases, including EGFR and ErbB2, play an
important role in mediating cancer growth and survival. EGFR
is a member of the ErbB family of receptor tyrosine kinases that
also includes ErbB2, ErbB3, and ErbB4. Upon ligand binding,
ErbB family members can form homo- or heterodimer and acti-
vate downstream mitogen-activated protein kinase and the
phosphatidylinositol 3-kinase/Akt signaling pathway to regu-
late cell proliferation. Our data demonstrate that Sema3d can
inhibit both EGFR and ErbB2 signaling pathways. Down-regu-
lation of both total and phosphorylated form of EGFR suggests
that Sema3d may inhibit EGFR signaling by inducing receptor
endocytosis/internalization and degradation. Different post-
translational modifications, such as tyrosine and serine/threo-
nine phosphorylation, ubiquitylation, and acetylation, regulate
EGF receptor endocytosis (52). Among the class 3 semaphorins,
both Sema3a and Sema3e induce endocytosis of plexin recep-

tor/receptor complex during axon guidance (53, 54). Recent
work by Aghajanian et al. (29) demonstrated that Sema3d does
not bind to ErbB2 alone. However, it can bind as part of a recep-
tor complex, suggesting that inhibitory effects of Sema3d on
ErbB2 activation are likely from the EGFR signaling pathway
(29). Using plasmids expressing either the WT or kinase-inac-
tive form of EGFR, we demonstrate that the inhibitory effects of
Sema3d on ErbB2 are EGFR-dependent. In contrast to the
inhibitory effect of Sema3d on RTKs, another class 3 sema-
phorin, Sema3C, can activate RTKs during prostate cancer pro-
gression. This suggests that, depending upon its biological
context, class 3 semaphorins can act as either agonists or antag-
onists on the RTK pathway (40).

Our results demonstrate that pharmacological blocking of
EGFR signaling can partially rescue the parathyroid hyperplasia
phenotype seen in Sema3d knockout mice. It would be inter-
esting to explore whether Sema3d-EGFR signaling can be ther-
apeutically targeted to inhibit parathyroid hyperplasia in both
PHPT and SHPT conditions. Parathyroidectomy is the most
common treatment for hyperparathyroidism. Because the
neck’s anatomy was distorted with fibrosis following the initial
surgery, there were technical challenges in identifying and
safely removing the abnormal parathyroid glands. Therefore,
pharmacological treatment for persistent or recurrent hyper-
parathyroidism may be a good option to address this issue.
Administration of EGFR inhibitors has shown beneficial
effects. However, systemic inhibition could also suppress renal
EGFR signaling and compromise kidney function (49). In con-
trast to its broad expression during embryonic development,
Sema3d expression in adults is enriched in the spleen and thy-
roid gland (55). In this context, Sema3d may be a potential
therapeutic target to treat parathyroid hyperplasia, given its
more limited tissue expression in adult mice. Nonetheless, the
possible off-target effects of systemic or targeted delivery of
Sema3d need to be determined.

Because class 3 semaphorins are secreted proteins, it is pos-
sible to use recombinant semaphorins or derived peptides to
inhibit parathyroid cell proliferation causing hyperplasia. A
recent study by Casazza et al. (56) demonstrated that systemic
and targeted delivery of Sema3A inhibits tumor progression in
multiple mouse models. However, the inhibitory effect of sys-
temic or targeted Sema3d delivery on parathyroid tumor pro-
gression remains to be investigated. Our finding that Sema3d
inhibits EGFR signaling to restrict aberrant parathyroid tumor
cell proliferation may also be relevant to other tumor types.
Aberrant activation or overexpression of EGFR is reported in
many tumors (57). For example, overexpression of EGFR is
observed in 60% of the high-grade gliomas (glioblastoma) (58).
SEMA3D has been shown to inhibit glioblastoma growth. The
SEMA3D expression is reduced in glioblastoma as compared
with low-grade gliomas, suggesting that its loss is involved in
tumor progression (59). However, the signaling pathways
mediating these effects of SEMA3D in gliomas have not been
identified. Thus, future work in this direction is required for the
development of anti-tumor therapeutic strategies targeting the
semaphorin signaling pathway.

Figure 6. Inhibition of EGFR signaling in Sema3d mutants can partially
rescue the parathyroid hyperplasia phenotype. A, immunohistochemistry
for pEGFR on parathyroid sections from 6-month-old control and Sema3d�/�

mice. Scale bars, 200 �m. B, immunohistochemistry for pEGFR on parathyroid
sections from Sema3d�/� mice treated either with either vehicle (n � 5) or
erlotinib (n � 5). Scale bars, 200 �m. C, decreased parathyroid area in
Sema3d�/� mice treated with EGFR inhibitor, erlotinib (n � 12), compared
with vehicle (DMSO)-treated controls (n � 12). D, immunohistochemistry for
Ki-67 on parathyroid sections from Sema3d�/� mice treated either with vehi-
cle (n � 5) or erlotinib (n � 5). High-magnification images show nuclear Ki-67
staining. Scale bars, 50 �m. E, serum PTH levels in Sema3d�/� mice treated
either with vehicle (n � 12) or erlotinib (n � 12). T, thyroid; PT, parathyroid.
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Experimental procedures

Experimental animals

All mice were maintained on a mixed (C57BL/6 and Sv/129)
genetic background. Both male and female mice were used for
analysis. Sema3dGFPCre allele has been described previously (30,
60). Heterozygous mice (Sema3dGFPCre/�) were crossed
together to generate Sema3dGFPCre/GFPCre (Sema3d�/�) mice.
Sema3d�/� or Sema3dGFPCre/� mice were used as control. The
SingHealth institutional animal care and use committee approved
all animal protocols.

Histology and immunohistochemistry

After genotyping of the pups from Sema3d heterozygous
intercross, we randomly selected 12 control and 12 Sema3d�/�

mice from the cohort for histological analysis. Histology and
immunohistochemistry were performed as described previ-
ously (61–65). Briefly, the thyroid, parathyroids, and trachea
tissues were dissected en bloc in PBS and fixed in 4% parafor-
maldehyde overnight at 4 °C. The tissues were washed with
PBS, dehydrated in an ethanol series, and stored in 100% etha-
nol at 20 °C. To examine the parathyroid glands, serial paraffin
sections were cut to a thickness of 5–10 �m and processed for
either morphological hematoxylin/eosin staining or immuno-
histochemistry. For immunohistochemistry, the sections were
deparaffinized in xylenes, and slides were deparaffinized in
xylene, dehydrated in ethanol, and rehydrated in water. Anti-
gen retrieval using Bull’s eye decloaker (Biocare Medicals, cat-
alogue no. BULL1000 MX) or Tris-based solution (Vector Lab-
oratories, catalog no. H-3301) was performed according to the
manufacturer’s instructions. Endogenous peroxidase activity
was blocked with hydrogen peroxide (3%) treatment. Slides
were washed in PBS and blocked in blocking buffer (5% serum)
for 1–2 h at room temperature. Slides were incubated overnight
with primary antibody diluted in blocking buffer. The next day,
slides were washed, and a secondary antibody was applied for
2 h at room temperature. Primary antibodies used were anti-
GCM2 goat polyclonal (Santa Cruz Biotechnology, Inc., cata-
logue no. sc-79495), anti-Ki-67 rabbit monoclonal (Abcam, cat-
alogue no. ab16667), and anti-pEGFR-Y1045 rabbit polyclonal
(Cell signaling, catalogue no. 2237). Secondary antibodies used
were ImmPRESS� horseradish peroxidase anti-goat (Vector
Laboratories, catalogue no. MP-7405-50) or anti-rabbit (Vector
Laboratories, catalogue no. MP-7401-50). The sections were
washed, and staining was visualized using the DAB substrate kit
(Vector Laboratories, catalogue no. SK-4100).

Biochemical analyses

At the indicated age, control and Sema3d�/� mice were
anesthetized, and blood was collected by cardiac puncture for
plasma separation. Plasma PTH levels were measured using the
mouse intact PTH ELISA kits (Immutopics, Inc., catalogue no.
60-2300). Plasma calcium levels were measured using a calcium
detection kit (Abcam, catalogue no. ab102505).

sHPT cell culture

Human parathyroid tumor cell line sHPT-1 was established
by Björklund et al. (39), as previously described. sHPT-1 cells

were cultured and expanded in Dulbecco’s modified Eagle’s
medium (DMEM) (Gibco, catalogue no. 11965-092) containing
1% penicillin/streptomycin and 10% FBS. After reaching
70 – 80% confluence, cells were cultured and starved overnight
in DMEM supplemented with 1% penicillin/streptomycin and
1% FBS. They were subsequently treated with Sema3d condi-
tioned medium or recombinant Sema3d (Abnova, catalogue
no. H00223117-P01) in the desired concentrations at the indi-
cated time points with appropriate controls. For the prolifera-
tion assay, sHPT-1 cells were treated with or without recombi-
nant Sema3d at 10 nM for 48 h. In another experiment, sHPT-1
cells were stimulated with NSC 228155 (100 �M) or in combi-
nation with 10 nM recombinant Sema3d for 24 h. After treat-
ment, cells were fixed with 4% paraformaldehyde for 30 min at
room temperature and evaluated for cell proliferation by Ki-67
(eBioscience, catalogue no. 14-5698-82) immunofluorescence
staining. Briefly, cells were fixed and washed with PBS and incu-
bated for 2 h at room temperature with Ki-67 antibody diluted
at a concentration of 5 �g/ml in PBS containing 2% BSA. After
washing with PBS, cells were incubated for 30 min at room
temperature with goat anti-rat IgG, Alexa Fluor 586 (Invitro-
gen, catalogue no. A-11077). The cells were then washed again
and incubated with DAPI for nuclear staining visualized with
fluorescence microscopy (Olympus IX71S1F3).

EGFR activation assay

sHPT-1 cells were incubated with either DMSO as vehicle
or NSC 228155 compound (Calbiochem, catalogue no.
5.30536.0001CN) for 30 min at 25, 50, 100, 200, and 300 �M and
analyzed for EGFR members by Western blotting. In another
experiment, sHPT-1 cells were treated with either NSC 228155
(100 �M) or in combination with recombinant Sema3d (5, 10,
and 15 nM) for 30 min and analyzed for EGFR with Western blot
analysis.

Mice and erlotinib

12-week-old Sema3d�/� mice were randomly assigned to
two treatment groups: vehicle (DMSO) and erlotinib (10 mg/kg
body weight) (Selleckchem, catalogue no. S1023). Treatments
were administered every 2 days by intraperitoneal injection.
After 4 weeks of treatment, the mice were sacrificed, and serum
and parathyroid tissue were collected for histologic and molec-
ular analyses.

Preparation of Sema3d conditioned medium

HEK293T cells were cultured and expanded in DMEM
(Gibco, catalogue no. 11965-092) supplemented with 1% peni-
cillin/streptomycin and 10% FBS. HEK293T cells were trans-
fected with either Sema3d pAP-Tag4 or empty vector plasmid
using the FuGENE� 6 transfection reagent (Promega, catalogue
no. E2691) according to the manufacturer’s protocol. After
24 h, the conditioned medium was changed to DMEM (Gibco,
catalogue no. 11965-092) supplemented with 1% penicillin/
streptomycin and 0.5% FBS. The cells were then incubated for
72 h, and the conditioned medium was collected. The condi-
tioned medium was filtered using a 0.2-�m syringe filter and
centrifuged at 5000 rpm for 5 min. AP activity in the condi-
tioned medium was measured with a colorimetric assay as
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described previously (30). The conditioned medium was then
used for the experiments.

Kinase activation assay

HEK293T cells were transfected with either plasmid express-
ing WT ErbB2, a WT EGFR, or a kinase-inactive EGFR (K721A)
using Lipofectamine transfection reagent (Thermo Fisher Sci-
entific, catalogue no. 11668019) according to the manufactu-
rer’s protocol. Following transient transfection, cells were incu-
bated for 48 h and starved for 4 h with serum-free DMEM
supplemented with 1% penicillin/streptomycin. Cells were then
treated with/without 200 ng/ml EGF (PeproTech, catalogue no.
AF-100-15) and with/without 10 nM recombinant Sema3d for
30 min. Cell lysates were collected for Western blot analysis.
Plasmids expressing WT EGFR and kinase-inactive EGFR
(K721A) were kindly provided by Sara Sigismund from Pier
Paolo Di Fiore’s laboratory (European Institute of Oncology,
Milan, Italy). The plasmid expressing ErbB2 was a gift from
Martin Offterdinger (Addgene plasmid 40268) (66).

RNA extraction and quantitative RT-PCR

Parathyroid glands were dissected from control and
Sema3d�/� mice. Because only �40% of the Sema3d�/� mice
had parathyroid hyperplasia, we decided to use hyperplastic
(enlarged) parathyroid tissue from Sema3d�/� mice. Total
RNA was isolated from glands using TRIzol (Life Technologies,
Inc., catalogue no. 15596-018). RNA was reverse-transcribed
using random hexamers and the SuperScript III First-Strand
Synthesis system (Life Technologies, catalogue no. 18080-051).
Gene expression was measured by quantitative RT-PCR (ABI
PRISM 7900 or ViiA7 Real-Time PCR System) using the Power
SYBR Green master mix (Life Technologies, catalogue no.
4368702). Both signals and relative gene expression were nor-
malized to corresponding glyceraldehyde-3-phosphate dehy-
drogenase controls. PCR conditions and primer set sequences
are available upon request.

Western blotting analyses

Western blots were performed as described previously (61,
67). Briefly, cells were washed twice with cold Dulbecco’s PBS
(Lonza, catalogue no. 17-512F) and lysed with radioimmune
precipitation assay buffer (Thermo Scientific, catalogue no.
89901) containing 1:100 diluted protease and phosphatase
inhibitor mixture (Sigma). The cell lysates were centrifuged at
13,000 rpm for 10 min at 4 °C, and the supernatant was col-
lected for immunoblot analyses. Total protein concentration
was determined with a Pierce BCA protein assay kit (Thermo
Scientific, catalogue no. 23225) following the manufacturer’s
instructions. Approximately 20 –30 �g of total protein samples
were separated by SDS-PAGE and transferred to nitrocellulose
membrane using the Trans-Blot Turbo system (Bio-Rad).
Membranes were then blocked with 2–5% BSA in TBS contain-
ing 0.1% Tween (TBST) and subsequently incubated with pri-
mary antibodies diluted in TBST containing 2–5% BSA over-
night at 4 °C. Blots were then washed in TBST and incubated
for 1.5 h at room temperature probed with the appropriate
horseradish peroxidase–linked secondary antibodies (Santa
Cruz Biotechnology). Immunoreactive bands were detected by

chemiluminescence (Hiss GmbH, catalogue no. 16026) using
the Gel Doc XR� System (Bio-Rad). All experiments were
repeated three times and quantified. Primary antibodies used
for immunoblot analyses were pAkt (Cell Signaling, catalogue
no. 4060S), Akt (Cell Signaling, catalogue no. 9272S), pErk1/2
(Cell Signaling, catalogue no. 9101S), Erk1/2 (Cell Signaling,
catalogue no. 9102S), pErbB2 (Cell Signaling, catalogue no.
2247), ErbB2 (Cell Signaling, catalogue no. 2242), cyclin D1
(Santa Cruz Biotechnology, catalogue no. sc-8396), pEGFR-
Y1045 (Cell Signaling, catalogue no. 2237), pEGFR-Y992 (Cell
Signaling, catalogue no. 2235), EGFR (Cell Signaling, catalogue
no. 4267), vinculin (Sigma, catalogue no. V9131), glyceralde-
hyde-3-phosphate dehydrogenase (Santa Cruz Biotechnology,
catalogue no. sc-20357), and �-actin (Santa Cruz Biotechnol-
ogy, catalogue no. sc-47778).

Statistical analyses

Statistical analyses were performed using two-tailed Student’s t
test. Data were expressed as mean 	 S.D. Differences were consid-
ered significant with p � 0.05. One-way analysis of variance
(ANOVA) was used to assess statistical differences between
groups. Significant ANOVA results were further analyzed by
Tukey’s multiple-comparison test (*, p � 0.05; **, p � 0.01; ***, p �
0.001; NS, not significant).
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