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In this paper, the effect of coupled thermal dilation and stress on interstitial

fluid transport in tumour tissues is evaluated. The tumour is modelled as a

spherical deformable poroelastic medium embedded with interstitial fluid,

while the transvascular fluid flow is modelled as a uniform distribution of

fluid sink and source points. A hyperbolic-decay radial function is used to

model the heat source generation along with a rapid decay of tumour blood

flow. Governing equations for displacement, fluid flow and temperature are

first scaled and then solved with a finite-element scheme. Results are compared

with analytical solutions from the literature, while results are presented for

different scaling parameters to analyse the various physical phenomena.

Results show that temperature affects pressure and velocity fields through

the deformable medium. Finally, simulations are performed by assuming

that the heat source is periodic, in order to assess the extent to which this con-

dition affects the velocity field. It is reported that in some cases, especially for

periodic heating, the combination of thermoelastic and poroelastic deformation

led to no monotonic pressure distribution, which can be interesting for appli-

cations such as macromolecule drug delivery, in which the advective

contribution is very important owing to the low diffusivity.
1. Introduction
Interstitial fluid flow plays a fundamental role in drugs transport, especially for

high molecular weight drugs; therefore a deep understanding of its underpin-

ning mechanisms could be instrumental in describing and improving drug

delivery to tumour masses. Furthermore, since the diffusivity of macromol-

ecules is low, it is important to enhance the advective contribution for mass

transfer. It has been shown that the interstitial fluid pressure drops drastically

at the boundaries of a solid tumour [1,2], that a rapid microvascular pressure

rise might enhance convection owing to the increase in transmural pressure gra-

dients [3–5], and that interrupting blood flow slowly makes the pressure and

the velocity equal to zero in the whole tumour [5].

Because of the mutual interactions between flow field and deformations, a

tumour can be modelled as a deformable porous material [5], i.e. as a poroelastic

medium [6,7]. This approach has been used and validated for tumours such as

mammary adenocarcinoma [2] or human colon adenocarcinoma [5]. When

squeezed, the interstitial fluid tends to go out of the tissue because of the

deformations; on the other hand, the interstitial fluid pressure influences the

solid-phase deformation. The tumour tissue equilibrium is perturbed if external

parameter modulations are performed; for example, an increase in vascular

pressure or a rapid decay in tumour blood flow (TBF) [5].

It is widely known that temperature can influence solid deformations. The

thermal stress effects on microwave liver ablation have been numerically investi-

gated by Keangin et al. [8], who showed that considering thermal deformations

increases the reliability of the model. The effects of thermal expansion on low-

density lipoprotein (LDL) deposition in arteries, together with Dufour and

Soret effects, have been analysed by Chung & Vafai [9]. These authors concluded

that temperature enhancement can increase the LDL concentration through the
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Table 1. Symbols used in the present work.

symbols

cp ¼ heat capacity, J kg21 K21

C0 ¼ arbitrary constant

e ¼ electric field, V m21

E, e ¼ strain tensor and volumetric strain

h ¼ heat transfer coefficient,

W m22 K21

I ¼ identity matrix

k ¼ thermal conductivity, W m21 K21

K ¼ hydraulic conductivity,

m2 Pa21 s21

Lp ¼ hydraulic permeability,

m Pa21 s21

pv, p ¼ vascular and hydraulic pressure,

Pa

Q ¼ heat generation, W m23

r, r ¼ radial coordinate vector and

scalar, m

R ¼ radius, m

S/V ¼ specific surface area, m21

S ¼ stress tensor, Pa

t ¼ time, s

T ¼ temperature, K

u, u ¼ displacement tensor, vector and

scalar, m

v, v ¼ velocity vector and scalar,

m s2121

V ¼ volume, m3

Greek letters

a ¼ thermal expansion coefficient,

K21

adiff ¼ thermal diffusivity, m2 s21

f ¼ porosity

w ¼ voltage, V

l, m ¼ Lamé parameters, Pa

V ¼ Starling source term, s2121

r ¼ density, kg m23

s ¼ normal stress, Pa

t ¼ time constant, s

z ¼ generic variable

v ¼ dimensionless pulsation

subscripts

c ¼ capillaries

eff ¼ effective

f ¼ fluid phase

gen ¼ generation

(Continued.)

Table 1. (Continued.)

subscripts (continued)

heat ¼ heating

hyp ¼ hyperthermia

i ¼ interstitial

met ¼ metabolic

rel ¼ relative

REV ¼ representative elementary volume

rif ¼ reference

s ¼ solid phase

t ¼ thermal

v ¼ vascular

dimensionless numbers

b ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLp=KÞðS=VÞ

p
¼ interstitial to transcapillary

resistance

g ¼ Fo/t* ¼ adiff/

K(2m þ l)

¼ thermal to poroelastic time

number

DT* ¼ DT/Trif ¼ temperature

Fo ¼ adifft/R2 ¼ heating time (Fourier number)

Gl ¼ (3l þ 2m)aTrif/

(2m þ l)

¼ thermal to mechanical stresses

(Gay – Lussac number)

Nu ¼ hR/keff ¼ convection to conduction

(Nusselt number)

p* ¼ p/(2m þ l) ¼ pressure

pv* ¼ pv/(2m þ l) ¼ vascular pressure

Perel ¼ Rvrel/adiff ¼ heat convection number (Péclet

number)

Pomet ¼ Qmet R2/Trif keff ¼ metabolic heat generation

(Pomerantsev number)

Pohyp(r*) ¼ Qhyp(r*) R2/Trif

keff

¼ hyperthermia heat generation

(Pomerantsev number)

r* ¼ r/R ¼ radius

t* ¼ t/[R2/K(2m þ l)] ¼ poroelastic time

u* ¼ u/R ¼ displacement

v* ¼ vR/[K(2m þ l)] ¼ velocity
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tunica intima owing to both the Soret effect (see Iasiello et al.
[10,11]) and thermal dilation of the arterial wall. Fluid–

structure interactions under hyperthermia in pulsatile

blood conditions have been analysed by AlAmiri [12] and by

AlAmiri et al. [13].

The temperature effect on solid deformations is also valid

for porous materials with the so-called thermoporoelasticity

theory [14], where thermal expansion effects are considered

in the constitutive equations. However, the interest of the

scientific community in the thermal expansion effects on

fluid transport in tissues is very recent and only a few

contributions are currently present in the literature.

In this work, a thermoporoelasticity model coupling

thermal expansion and poroelasticity for fluid transport in a

tumour tissue is presented. The scope is to assess whether
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Figure 1. A sketch of the spherical tumour model averaging process. (Online version in colour.)
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programmed hyperthermia can also positively affect the fluid

velocity field to induce an enhancement of the advective con-

tribution for large molecule delivery. Volume-averaged

scaled governing equations are derived for a spherical geo-

metry. The flow field is described by the deformable

porous medium Darcy law, if the tissue is purely elastic. A

radial-decay heat generation function is used to simulate

heat generation from the core of the tissue. Energy and dis-

placement equations are coupled by assuming that the

thermal expansion is isotropic and equal for both the solid

and fluid phases and under the assumption of local thermal

equilibrium (LTE) between the solid and fluid phases of the

porous medium. The transient condition for the fluid flow

is given by a rapid interruption of the TBF. A sensitivity

analysis of the variables is presented to understand the

effect of the various physical processes, and a case in which

the heat source is assumed to be periodic is presented.

Finally, implications for therapy are discussed.
2. Mathematical model
Tumour tissue is made up of interstitial or extracellular matrix,

a cellular component and vascular space [15]. The tumour is

here assumed to be a spherical deformable porous medium

consisting of two phases: the solid phase is the extracellular

space and cells, while the fluid phase is the interstitial fluid.

Tumour growth effects are neglected since the time scales of

these fluid transport and solid deformation phenomena

herein investigated are relatively short. It is assumed that the

tissue is a fluid-saturated homogeneous poroelastic medium.

For the solid phase, it is assumed that, over several intercapil-

lary distances, the domain is homogeneous and capillaries are

described as sink–source points. A sketch of the geometrical

model is presented in figure 1, together with the porous

medium averaging process that will be described later. The

physics of the problem, described by thermoporoelastic

theory, is similar to the problem of a fluid that moves through

an internally heated sponge: thermally induced deformations

lead to a new flow distribution. Under normal conditions, the

fluid goes from the vascular region to the interstitial space.

When there is a pressure change, or a matrix deformation,

the solid and fluid phases tend to rearrange: the fluid can go
back to the capillary network or out from the poroelastic

medium. The time scales in which these effects occur

depend on the matrix and fluid properties.

Governing equations will now be derived based on porous

medium theory. A summary of all the symbols that will be

introduced in the following is given in table 1. A representative

elementary volume (REV) of the porous medium is defined as

the volumetric average of the generic variable z

hzi ¼ 1

V

ð
V
zdV, ð2:1Þ

where z is a generic variable, V is the representative elementary

volume and hi is referred to as the volumetric average [16]. In

figure 1, a sketch of the porous averaged domain is presented.

From here onwards, the last symbol will be dropped for the

sake of simplicity.

Assuming that both phases have the same specific

volume [5], the mass equation is presented as

@f

@t
¼ �r � (fv)þV(r, t) ¼ r � (1� f)

@u

@t

� �
, ð2:2Þ

wheref is porosity, t is time, v is fluid velocityand u is the spatial

position of the solid matrix referred to a certain reference system.

In equation (2.2), both the interstitial fluid velocity and solid

matrix displacement velocityare related to the porosity variation

with respect to the time. The source term in equation (2.2) is

known as the Starling (transcapillary) term. This refers to the

fluid flow across the vascular wall. Assuming that lymphatic

drainage is negligible [17], this term is equal to

V(r, t) ¼ Lp
S
V

( pv � p), ð2:3Þ

where Lp is the hydraulic permeability, S/V is the specific sur-

face area, pv is the vascular pressure and p is the interstitial

fluid pressure. The momentum equation for the fluid phase is

written by referring to Darcy’s law for a deformable porous

medium, i.e. the velocity is referred to as the relative velocity

between the two phases,

f v� @u

@t

� �
¼ �Krp, ð2:4Þ

where K is the hydraulic conductivity.
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The momentum equation for the tissue is derived in the

following. For a steady-state solid without inertial forces, it

is possible to write [18–20]

r � S ¼ 0, ð2:5Þ

where S is the stress tensor.

Under the assumption of an elastic material under ther-

moporoelastic stresses, it is possible to write

S ¼ l(e� 3aDT)Iþ 2m(E� aDTI)� pI, ð2:6Þ

where l and m are Lamé parameters, e is the volumetric

strain, a is the linear thermal dilation coefficient, DT is the

temperature difference with respect to a reference tempera-

ture, I is the identity matrix and E is the strain tensor. From

equation (2.6), various contributions are split

S ¼ Selast þ Sporous þ Stherm

¼ leIþ 2mE|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
elast

� pI|{z}
porous

� (3lþ 2m)aDTI|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
therm

, ð2:7Þ

where the porous term derives from the solid and fluid

pressure hydrostatic stresses (the velocity field can be

assumed to be conservative [17])

Sporous ¼ Sporous,f þ Sporous,s ¼ � fpI|{z}
fluid

� (1� f)pI|fflfflfflfflfflffl{zfflfflfflfflfflffl}
solid

¼ �pI: ð2:8aÞ

Thermal stresses are derived in the same way as the porous terms.

So, it is assumed that the solid and fluid phases dilate equallysince

both are made up of something that essentially is water (as¼ af )

Stherm ¼ Stherm,f þ Stherm,s

¼ �f(3lþ 2m)aDTI|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
fluid

� (1� f)(3lþ 2m)aDTI|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
solid

¼ �(3lþ 2m)aDTI: ð2:8bÞ

Further, in thermoporoelasticity theory, the thermal stres-

ses are a function of only solid phase thermal dilation [14].

From infinitesimal strain theory, it is possible to write

e ¼ tr(E) ¼ r � u ð2:9Þ
and

E ¼ 1

2
(ruþruT): ð2:10Þ

Stress tensor divergence is derived as

r � S ¼ r � [leIþ 2mE� pI� (3lþ 2m)aDTI] ¼ 0: ð2:11Þ

By combining equations (2.9)–(2.11), it is possible to derive

the momentum equation in the displacement formulation

mr2uþ(lþ m)r(r � u)�rp� (3lþ 2m)ar(DT) ¼ 0,

ð2:12Þ

where u, p and T are the unknown variables. The divergence

of this equation is coupled with the equation obtained by

combining equations (2.2) and (2.4),

(2mþ l)r2e ¼ r2pþ (3lþ 2m)ar2(DT),

r � �Krpþ @u

@t

� �
¼ V(r, t):

8><
>: ð2:13Þ

Finally, it is possible to derive the expression

@e
@t
� K(2mþ l)r2eþ K(3lþ 2m)ar2(DT) ¼ V(r, t): ð2:14Þ
The source term on the right-hand side has the pressure as a

variable, thus it is necessary to decouple this term from the rest

of the equation [5]. In order to do so, equation (2.11) is written

for a spherical one-dimensional reference system

(2mþ l)
de
dr
¼ dp

dr
þ (3lþ 2m)a

dDT
dr

: ð2:15Þ

The generic solution of this ODE is

e ¼ pþ (3lþ 2m)aDT
(2mþ l)

þ C0, ð2:16Þ

where the constant C0 has to be obtained. By assuming that e
( p ¼ 0) ¼ (3l þ 2m)aDT/(2m þ l) on the external surface of

the sphere (the validity of this boundary condition will be

exhaustively described later), the final value is C0 ¼ 0.

Equation (2.16) with respect to p becomes

p ¼ (2mþ l)e� (3lþ 2m)aDT: ð2:17Þ

Equation (2.14) can be written under a one-dimensional

spherical coordinate and combined with equation (2.17)

@e
@t
�K(2mþ l)

1

r2

@

@r
r2 @e
@r

� �
þ K(3lþ 2m)a

1

r2

@

@r
r2 @DT

@r

� �

þ Lp
S
V

[(2mþ l)e� (3lþ 2m)aDT] ¼ Lp
S
V

pv:

ð2:18Þ

This can be rearranged in order to obtain

@e
@t
�K(2mþ l)

1

r2

@

@r
r2 @e
@r

� �
þ Lp

S
V

(2mþ l)e

¼ Lp
S
V

[ pv þ (3lþ 2m)aDT]

� K(3lþ 2m)a
1

r2

@

@r
r2 @DT

@r

� �
, ð2:19Þ

where the relationship between the volumetric strain e and dis-

placement u fora one-dimensional spherical coordinate system is

e ¼ @u
@r
þ 2

u
r
: ð2:20Þ
2.1. Energy equation
Equation (2.19) is a PDE in which the temperature appears in

terms of the temperature difference DT. This means that the

temperature field has to be solved simultaneously, since it

is a transient-convection-diffusion problem that depends on

the flow velocity. In spherical coordinates, we have

(rcp)eff

@T
@t
þ v� @u

@t

� �
@T
@r

� �
¼ 1

r2

@

@r
keffr2 @T

@r

� �
þQmet(1� f)

þQhyp(r)� (rcp)effV(r,t)ðT � TvÞ:(2:21)

In this equation, the second and third terms on the right-hand

side are, respectively, heat generation due to metabolism and

hyperthermia, if applied. Note that, in a porous medium, the

metabolic heat rate depends on the relative density, which is

equal to (1 2 f) [21]. The metabolic heat rate depends on the

part of the human body considered. Values are between 227

and 102 202 [22]. The term referred to hyperthermia often

depends on the radial coordinate. For example, if reference is

made to thermal ablation, microwave or radiofrequencies gen-

erate heat by means of the electric field generated by an

antenna. The heat generation term decreases with the radius.
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In the following, a law to qualitatively describe the heat gener-

ation decay along the radius is presented.

Let us consider that an antenna is placed inside the sphere,

at r ¼ 0. This antenna generates heat from a distance that is a

differential higher than the axis. If the waves are in the radio-

frequency range, one can assume that the propagation is

totally resistive, without any source term. In this case, the

Laplace equation has to be solved to determine the voltage

field. In spherical coordinates, the voltage equation is

@

@r
r2 @w

@r

� �
¼ 0: ð2:22Þ

After solving the voltage equation, it is possible to derive the

heat generation due to hyperthermia. It is possible to conclude

that it has an inverse relationship with the fourth power of the

radius, i.e.

Qhyp(r)/ jej2 / @w

@r

� �2

/
@ð1=rÞ
@r

� �2

/
1

r4
: ð2:23Þ

Details on how to describe this function are presented in

the next section.

Finally, the fourth term of equation (2.21) is the term due

to the Starling equation (see equation (2.3)). In particular, the

flow exchange through the vascular wall carries energy if

there is a temperature difference between the fluid (intersti-

tial) and solid (others) phases. Since a rapid TBF decay is

investigated in this work, the Starling term V(r, t) goes to

zero for t . 0, thus the energy term related to it is neglected

in the present study.
2.2. Dimensionless form
2.2.1. Strain equation
The dimensionless form of the governing equations will now

be derived. Let us define the following dimensionless vari-

ables: r* ¼ r/R, t* ¼ t/[R2/K(2m þ l)], pv* ¼ pv/(2m þ l)
and b ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLp=KÞðS=VÞ

p
. The last dimensionless number is

the ratio between the filtration resistance and transcapillary

flow exchange [5]. Equation (2.19) becomes

@e
@t�
� 1

r�2
@

@r�
r�2

@e
@r�

� �
þ b2e ¼ b2pv� þ b2 (3lþ 2m)

(2mþ l)
aDT

� (3lþ 2m)

(2mþ l)
a

1

r�2
@

@r�
r�2

@DT
@r�

� �
:

ð2:24Þ

In order to scale the thermal part of equation (2.24), a dimen-

sionless temperature DT* ¼ DT/Trif and the thermoelastic

Gay–Lussac (Gl) number [23] are now introduced. The

latter represents the ratio between the thermal and mechan-

ical deformation, and for zero-thermal deformation (a ¼ 0)

such deformations are independent [23]

Gl ¼ (3lþ 2m)

(2mþ l)
aTrif: ð2:25Þ

After this, it is possible to obtain the final version of the

scaled thermoporoelastic equation

@e
@t�
� 1

r�2
@

@r�
r�2

@e
@r�

� �
þ b2e

¼ b2p�v þ b2GlDT� � 1

r�2
@

@r�
r�2

@(GlDT�)
@r�

� �
: ð2:26Þ
It should be noted that the term in square brackets is equal to

GlDT� ¼ (3lþ 2m)

(2mþ l)
aDT, ð2:27Þ

which is the ratio between the thermal and elastic com-

ponents of the stress tensor presented in equation (2.7). This

can give information on how the thermal stresses relate to

the mechanical ones. However, since the temperature differ-

ence DT varies with time and space, the two numbers are

analysed separately in order to split the solid matrix proper-

ties from the thermodynamic conditions of the system. Now

the problem is reduced to the variables e ¼ f(t*, r*, b, pv*,

GlDT*). The equation can also be expressed as

@e
@t�
� 1

r�2
@

@r�
r�2

@e
@r�

� �
¼ b2( p�v þGlDT� � e)

� 1

r�2
@

@r�
r�2

@(GlDT�)
@r�

� �
, ð2:28Þ

where the first term in round brackets on the right-hand side

of the equation refers to the Starling term; see equations (2.3)

and (2.17).

2.2.2. Pressure equation
The dimensionless pressure is defined as p* ¼ p/(2m þ l).

With this, and by employing the dimensionless temperature

DT* and the thermoelastic Gay–Lussac number, it is possible

to obtain the following form for dimensionless pressure:

p� ¼ e�GlDT�, ð2:29Þ

which for DT* or Gl ¼ 0 (a ¼ 0) reduces to the isothermal case.

2.2.3. Velocity equation
First, we scale equation (2.2). In spherical coordinates, we

have

f v� @u
@t

� �
¼ �K

@p
@r
: ð2:30Þ

A dimensionless displacement is defined as u* ¼ u/R, which

gives us information about how much we are moving

from the domain dimensions; the dimensionless velocity is

v* ¼ vR/[K(2m þ l)]

f v� � @u�

@t�

� �
¼ � @p�

@r�
, ð2:31Þ

which is the scaled form of the Darcy equation, from which it is

possible to derive v*. It is important to underline that the

dimensionless velocity v* is averaged over a volume that con-

siders only the fluid phase of the porous domain. In order to

obtain the whole porous domain-averaged dimensionless vel-

ocity (seepage velocity), v* should have been multiplied by

the porosity f. The dependence of the porosity on the fluid

pressure and thermal expansion is considered in the present

work, thus it is possible to write that porosity is related to the

volumetric strain e by means of f ¼ (f0 þ e)/(1 þ e), with

f0 ¼ 0.20 [17]. The hydraulic conductivity K also depends on

the direction and on the pressure (equivalently, on the volu-

metric strain e) [24], since the deformation makes the fluid

pass more or less easily through the pores. Chooi et al. [24]

derived a method to obtain poroelastic properties by taking

into account pressure and directionality effects. From their

results, it seems that for very low pressures, which are typical

of capillaries and therefore of the pressure investigated in this
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work, the dependence of poroelastic properties on both

pressure and direction vanishes; for this reason, the isotropic

assumption can be used in this work. With reference to the

volumetric strain dependence, by employing the correlation

from Lai & Mow [25], the ratio between hydraulic conductivity

and hydraulic conductivity with zero deformations is exp(2e),

where the number 2 has been used in Støverud et al. [26]. It can

be shown that the maximum value of exp(2e) found in the pre-

sent work is less than about 3%, thus it is reasonable to neglect

hydraulic conductivity variations with strain.

Now we scale equation (2.20), which is the relationship

between displacement and strain for a sphere. By employing

the dimensionless variables u* and v*, we obtain the final form

@u�

@r�
¼ e� 2

u�

r�
: ð2:32Þ

2.2.4. Energy equation
Starting from equation (2.21), we regroup the term 1 2 f in

the metabolic heat term, and a relative velocity is defined

as vrel ¼ v 2 @u/@t,

(rcp)eff

@T
@t
þ (rcp)effvrel

@T
@r
¼ 1

r2

@

@r
keffr2 @T

@r

� �
þQmet

þQhyp(r): ð2:33Þ

The following dimensionless groups are defined as Fo ¼

adifft/R2, Perel ¼ Rvrel/adiff, and also using r*

@T
@Fo
þ Perel

@T
@r�
¼ 1

r�2
@

@r�
r�2

@T
@r�

� �
þQmetR2

keff

þ
Qhyp(r�)R2

keff
: ð2:34Þ

We recall the definition of dimensionless temperature

DT* ¼ DT/Trif, and the dimensionless heat source terms

are defined as Pomet ¼ QmetR
2/Trifkeff and Pohyp(r*) ¼

Qhyp(r*)R2/Trifkeff (known also as Pomerantsev numbers);

thus the following expression is obtained:

@DT�

@Fo
þ Perel

@DT�

@r�
¼ 1

r�2
@

@r�
r�2

@DT�

@r�

� �
þ Pomet

þ Pohyp(r�): ð2:35Þ

It has been written previously that the hyperthermia heat

source inversely varies with the fourth power of the radius.

The function that qualitatively describes this behaviour will

now be derived for the dimensionless form. By assuming

that the maximum heat power is where the heat source is

located, this value (Pohyp, which is the dimensionless form

of Qhyp) has to be multiplied by a fourth-power hyperbolic

function, f(r*), that has to guarantee f (r* ¼ 0) ¼ 1 and f (r* ¼

1) ¼ 0. In other words, it has to have the following behaviour:

f(r) ¼ 1

(r� r0)4
þ f0: ð2:36Þ

The function has been computed by using the nonlinear

equation system tool of Matlab, obtaining values of

20.9845 and 20.0645 for r0 and f0, respectively.

It is possible to regroup the heat generation terms as

Pogen(r*) ¼ Pomet þ Pohyp(r*), which is also known as the

Pomerantsev number in its scaled form

@DT�

@Fo
þ Perel

@DT�

@r�
¼ 1

r�2
@

@r�
r�2

@DT�

@r�

� �
þ Pogen(r�): ð2:37Þ
It is important to observe that when hyperthermia occurs one

can assume that Pohyp(r*)� Pomet, since they have between 1

and 3 orders of magnitude difference, thus it is reasonable to

assume for some cases that Pogen(r*) � Pohyp(r*).

The scaled form of the energy equation is derived, with

DT* ¼ f (Fo, Perel, r*, Pogen(r*)). It is possible to relate scaled

times Fo and t* by equalling both with the time t (an exhaustive

analysis of time scales is reported later in a dedicated section)

Fo

t�
¼ adifft=R2

tKð2mþ lÞ=R2
¼ adiff

K(2mþ l)
¼ g, ð2:38Þ

where adiff is the thermal diffusivity and g is a characteristic

time constant. This means that the thermal and mechanical

problems are related by means of a constant. By manipulating

equation (2.35), it is possible to obtain the following form of the

energy equation:

@DT�

@t�
1

g

� �
þ Perel

@DT�

@r�
¼ 1

r�2
@

@r�
r�2

@DT�

@r�

� �

þ Pogen(r�), ð2:39Þ

with which it is possible to conclude that, when the tem-

perature needs to be coupled to the poroelastic problem,

DT* ¼ f (t*, g, Perel, r*, Pogen(r*)).
2.3. Boundary conditions
Two boundary conditions for each equation (strain, equation

(2.26), and energy, equation (2.39)) are needed, together with

an initial condition. A TBF rapid decay is simulated in the

present study by assuming that ( pv* 2 p*) ¼ 0 for t* . 0,

which is equivalent to saying that ( pv* þ GlDT* 2 e) ¼ 0. At

the same time, heat generation is assumed to occur for t* .

0, thus Pohyp(r*) . 0 for t* . 0. It is worthwhile noticing

that in the present work also the different heating times,

called theat*, are analysed (theat* � 1).

For r* ¼ 0 there is axial symmetry, thus @e/@r* ¼ 0 and

@DT*/@r ¼ 0. On the border of the domain, it is assumed

that the periphery is sufficiently far away that the heat does

not reach it, thus DT* ¼ 0 for r* ¼ 1.

The dimensionless temperature boundary condition is equiv-

alent to assuming that the periphery of the tumour is far from the

heat source in order to neglect heat propagation on the boundary,

or that the periphery heat exchange with the external environ-

ment is good enough to make the temperature uniform on the

boundary for the whole transient process. For the first assump-

tion, one should recall that the heat source decay along the

radius is to the fourth power (equation (2.36)), thus it does not

reach the periphery; on the other hand, we can try to perform a

rough estimation by assuming that there is heat exchange with

the exterior by means of a Robin boundary condition

� keff
@Tjr¼R

@r
� (rcp)eff v� @u

@t

� �
Tjr¼R

¼ h(Tjr¼R � Trif), ð2:40Þ

in which the exterior temperature is assumed to be equal to the

reference temperature and h is the heat transfer coefficient. The

boundary condition dimensionless form is

� @DT�

@r�
¼ NuDT� þ Perel(DT� � 1), ð2:41Þ

where Nu¼ hR/keff. For example, if one assumes that h¼
200 W m22 K21 [27] and the tumour radius is 0.01 m, the
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boundary temperature variation is of the order of about DT*¼

0.01, which makes temperature variation on the boundary negli-

gible for the heat source function employed in the present work

(equation (2.36)).

For the volumetric strain, it is assumed that the tumour is

insulated from the surrounding tissue [5,17]. Based on this

assumption, for r* ¼ 1, both the pressure and the solid

normal stresses have to be zero since there are no contact

forces, thus it is possible to write

p� ¼ 0,
s ¼ 0,
DT� ¼ 0

8<
:

������
r�¼1:

ð2:42Þ

From equation (2.7), combined with equations (2.9) and

(2.10), we can derive normal stress s under the assumption

of a one-dimensional spherical system

s ¼ 2m
@u
@r
þ le� (3lþ 2m)aDT ¼ 0: ð2:43Þ

By recalling the definitions of the dimensionless par-

ameters, it is possible to scale equation (2.43),

2m

2mþ l

@u�

@r�
þ l

2mþ l
e� GlDT� ¼ 0: ð2:44Þ

By combining equation (2.32) with (2.44), one derives

4m

2mþ l

u�

r�
þ e� GlDT� ¼ 0: ð2:45Þ

If reference is made to r* ¼ 1, the following is obtained:

e ¼ 4m

(2mþ l)
u� þ GlDT�: ð2:46Þ

Under the assumption of small deformations, u* approaches

zero (see [5,17]); further, if m is smaller than l [28,29], one can

conclude that the first term on the right-hand side of equation

(2.46) approaches 0 for r* ¼ 1. This means that, for an isother-

mal tumour, e ¼ 0. From the physical point of view, this

assumption becomes reliable if the Poisson coefficient is

close to 0.50, which is referred to as a virtually incompressible

material (using data from Netti et al. [5], values are about

0.48–0.49). After this, it is possible to write that, for r* ¼ 1,

e ¼ GlDT� ¼ 0, ð2:47Þ

which is zero in this case, since it is assumed that there is no

temperature variation on the boundary.

In summary, the dimensionless boundary conditions and

time constraints are reported in the following:

@e=@r� ¼ 0,
@DT�=@r� ¼ 0

����
r�¼0,

e ¼ 0,
DT� ¼ 0

����
r�¼1,

p�v � p� ¼ 0,
Pohyp(r�) . 0

����
t�.0:

8>>>>>>>><
>>>>>>>>:

ð2:48Þ

With reference to the hyperthermia condition on Pohyp(r*),

which is switched on after the beginning of the transient pro-

cess, the authors underline that this situation roughly

represents the case of thermal ablation, in which heat is used

to destroy cancer cells. However, in this paper, more emphasis

is placed on the effects of hyperthermia on deformations and

consequently on flow and pressure fields, which might be

useful for macromolecule drug delivery.
2.3.1. Initial conditions
The initial conditions are obtained by solving the governing

equations under steady-state conditions, by assuming that

there is no heat generation due to hyperthermia. From the

preliminary results, it has been shown that metabolic heat

generation with a typical order of magnitude of heat-induced

hyperthermia can be neglected for t* ¼ 0 (deviations on

dimensionless temperatures are less than about 4–5% for

the worst case) since heat transfer is dominated by hyperther-

mia for t* . 0, thus steady-state heat transfer can be

neglected. This means that the entire sphere is at a tempera-

ture DT* ¼ 0 for t* ¼ 0, and the heat equation could not be

solved for t* ¼ 0.

2.4. Numerical modelling
Scaled governing equations ((2.26), (2.29), (2.31), (2.32),

(2.39)) are solved with a finite-element scheme by employing

the PDE tool of COMSOL Multiphysics. A high-order (quin-

tic) Lagrangian polynominal has been employed in the finite-

element scheme. A free variable time stepping between 1025

and 0.1 has been used. For each time step, the tolerance has

been set equal to 1024. A grid of about 300 elements made

up with a symmetric distribution that is concentrated along

the boundary with a geometrical series has been used.

2.5. Validation
Comparisons with analytical results are presented in figure 2

for velocity, pressure, deformation and temperature fields.

For the first three fields, the solution from Netti et al. [5] is

employed. It is important to note that these analytical results

had been experimentally validated. For the temperature

fields, comparisons are carried out with a purely conductive

sphere with heat generation from Carlslaw & Jaeger [30]. This

validation is good for very low Péclet numbers that make the

problem purely diffusive (see Iasiello et al. [10,11]). A discus-

sion on the Péclet numbers reached is reported in the

time-scale analysis later. Validation for temperature fields

has been developed by assuming that the heat source is uni-

form through the domain.
3. Results and discussion
The scope of this paper is to perform a sensitivity analysis of

hyperthermia effects on a typical transient percolation pro-

cess in a tumour. As an example of a transient process, we

analysed how the fluid reaches an equilibrium condition

after a perturbation. To do so, the effects of thermal dilation

compared with the mechanical ones, and the effects of

hyperthermia, are analysed for different Pohyp(r*), assumed

to be equal to the whole Pogen(r*) with good approximation,

and for different heating times; on the other hand, the effects

of filtration are analysed for different b. The ranges in which

these variables vary are referred to the typical order of mag-

nitudes of these applications. Typical values are summarized

in table 2, together with the source.

Before performing the sensitivity analysis, temperature

profiles are presented in figure 3, for g ¼ 40 and different

hyperthermia conditions, respectively, Pohyp(r* ¼ 0) equal to

2, 5 (with theat* ¼ 1), and Pohyp(r* ¼ 0) equal to 3 with

theat* ¼ 0.005 and 0.05. Temperatures are higher for higher

heat loads, at equal heating times. With respect to the
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Figure 2. Comparisons between the numerical solution and analytical solutions from the literature.

Table 2. Typical values of variables involved in the human tissue thermoporoelastic problem.

parameter value reference scaled number expression value

f 0.20 [31] b R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Lp=K )(S=V )

p
41.74

R 0.01 (m) [5] g adiff/K(2m þ l) 48.09

Lp 2.70 � 10211 (m Pa21 s21) [32] Gl (Trif ¼ 378C) (3l þ 2m)aTrif/(2m þ l) 0.058

S/V 20 000 (m21) [33]

K 3.10 � 10214 (m2 Pa21 s21) [34]

adiff 1.42 � 1027 (m2 s21) [35]

m 2026.5 (Pa) [36]

l 91 192 (Pa) [36]

a 6.376 � 1025 (K)21 [9,37]
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dimensionless radial coordinate, it is shown that temperature

has a maximum on the axis due to symmetry conditions, and

it decreases along the radius. The decrease is not as marked

as for uniform heat generation, as shown in the validation sec-

tion, since it is assumed that heat generation is inversely

proportional to the fourth power of the dimensionless radius.

Further, from the results, it is shown that the slow decay of

temperature demonstrates the robustness of the temperature

boundary condition on the periphery, which is a consequence

of the heat generation radial-decay assumption.

In the first part of the transient process, the temperature

increases very rapidly with respect to time. Thermal equili-

brium is reached at about t* ¼ 0.05, which means that the

time scales for heat transfer are lower than those for fluid per-

colation. With reference to the cases with different heating

times (figure 3c,d), this shows that the situation is qualitatively
like the cases with theat* ¼ 1 when theat* ¼ 0.05 (figure 3d). This

occurs because the steady-state condition is achieved. On the

other hand, temperature profiles are not monotonically

increased with dimensionless time t* when theat* ¼ 0.005

(figure 3c). This is because the heat generation source is

switched off before the end of the heat diffusion processes.
3.1. Effect of b
The dimensionless parameter b represents the ratio between

the transvascular and interstitial resistance, or equivalently

the ratio of interstitial and transvascular time constants.

When b increases, the transvascular resistance is higher,

thus the tumour tends to reach its new equilibrium configur-

ation through the interstitial space, the pressure becomes

higher and the fluid tends to go out of the domain. The effects
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of b on the pressure and velocity fields are presented in

figures 4 and 5. b values of 0.0001, 0.01, 1 and 100 are con-

sidered, with Gl ¼ 0.05 and Pohyp(r* ¼ 0) ¼ 3. With

reference to the effects of b on pressure analysed in

figure 4, it is shown that the values reached are generally

lower for low b since there is less flow percolation through

the interstitial part of the tumour. It is important to observe

that the pressure drops with time since the heat application

dominates over the elastic deformation, which is low since

b is low. This can cause negative values of the interstitial

pressure, which are reliable since the interstitial pressure

(relative) can be negative. When the thermal transient process

tends to reach the end, elastic effects start to dominate again,

and the pressure tends to go again to the zero value. When b

is high (b ¼ 100), the interstitial effects dominate, thus the

pressure always has higher values since the fluid tends to

go out of the porous domain.

Finally, for the velocity profiles (figure 5), velocity values

are generally very low for low bs, since there is no percola-

tion. Negative values can be attained in the early stages of

the transient process, since thermal expansion effects are

dominating. For these cases, flow stagnation might occur.

Velocity slowly goes back to higher values when a steady-

state condition is reached for the temperature. At higher bs,

velocities are significantly higher, with negative values in

the early stages of the heat load period.
3.2. Effect of heat generation
Heat load effects are herein presented by varying Pohyp(r*)

values. It should be noted that similar effects can be

achieved by varying the Gay–Lussac number, but this
heat load effect has been separated from thermoelastic the

Gay–Lussac number in order to appreciate separately

the matrix property effects and the heat load effects.

In figures 6–8, the effects of heat load on the volumetric

strain, pressure and velocity are presented. The investigated

values are Pohyp(r* ¼ 0) ¼ 2, 3, 4 and 5, with Gl ¼ 0.05 and

b ¼ 100.

The effect of heat generation on volumetric strain is pre-

sented in figure 6. It is shown that the thermal expansion

effect dominates over the elastic effect in the early stages of

the transient process, while the volumetric strain decreases

after a while since the temperature field is close to reaching

an equilibrium condition (figure 3 on temperature profiles).

For higher heat loads, volumetric strain increases since

there is more thermal expansion. Values reached at the end,

for t* ¼ 1, are higher for higher heat generation since there

are residual strains.

Pressure effects are presented in figure 7. It is shown

that, at higher thermal loads, pressure values become

generally slightly lower. As for the thermoelastic Gay–

Lussac number, it is shown that pressure reaches a

maximum value at some points of the domain for low t*
since thermal effects are dominating. Velocity profiles are

presented in figure 8. Again, velocities are essentially the

same, with negative values that are more pronounced for

higher thermal loads.
3.3. Effect of heating time
The results for various heating times are presented in figures 9

and 10. The four cases presented are for when theat* ¼ 0.005,

0.01, 0.05 and 1. These values, which are referred to the
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interstitial time scale, can be converted into the thermal scale;

in particular, they respectively correspond to g.theat* ¼ 0.2,

0.4, 2 and 40. This means that the heating time overcomes the

thermal scale of the problem (see the definition of the Fourier

number in equation (2.38)).

Dimensionless pressure profiles are presented in figure 9.

The situation is similar to the volumetric strain; in particular, it

has to be observed that the situation does not change a lot after

a certain value of theat*. This occurs because the heating time

becomes higher than the thermal scale time. Finally, similar

conclusions can be made for the dimensionless velocity pro-

files in figure 10. A comparison between the thermal and

elastic effects in terms of GlDT* is presented in figure 11, for

g ¼ 40 and different hyperthermia conditions, respectively,

Pohyp(r* ¼ 0) equal to 2, 5 (with theat* ¼ 1), and Pohyp(r* ¼ 0)

equal to 3 with theat* ¼ 0.005 and 0.05.

It is shown that values are decreasing over the radius,

reaching zero in the proximity of the boundary in all the

cases. In figure 11a,b, different heat loads are presented, show-

ing that the higher the heat load, the higher the GlDT* and the

importance of the thermal dilation effects. In figure 11c,d, the

effects of heating time theat* are presented. It is shown that

the thermal effects do not monotonically increase with time

for theat* ¼ 0.005 (figure 3c) because the time is shorter than

the thermal diffusion time. On the other hand, the situation

for theat* ¼ 0.05 is like the other cases with theat* ¼ 1 since the

thermal transient process is carried out.

Finally, the authors underline that the present analysis is

very useful in order to emphasize the advection contribution

of drug delivery, especially for macromolecules that have a

very low diffusion coefficient. For this reason, it is very
important to determine how to increase advective transport,

and heat transfer can be a solution since it affects the velocity

field, as previously shown.

A solution can be to model heat generation by employing

heat charging/discharging cycles. For this reason, a cosine

function is employed to simulate the aforementioned cycles.

The heat generation term is multiplied by a cosine function

that varies between 0 and 1, and is equal to 0 for t* ¼ 0

f(t�) ¼ 1

2
þ 1

2
cos (vt�), ð3:1Þ

where v is the dimensionless pulsation. The dimensionless vel-

ocity and pressure profiles along the dimensionless radius, for

different heat generation Pohyp(r* ¼ 0) and pulsations, are

plotted in figure 12. For small values of v, it can be assumed

that the applied heat is stationary. In this paper, a value of

v ¼ 0.1 is assumed to provide a steady-state condition. With

reference to the pressure, it is shown that higher heat applied

generally means lower pressures. When different pulsations

are compared, it is shown that higher pulsations generally

refer to higher pressures, and the differences are more

marked for higher applied heat (Pohyp(r* ¼ 0) ¼ 5). Similar

conclusions can be drawn for velocity, since it is clear that

the higher the pulsation, the higher are the velocities. This is

very interesting since this solution can be useful in order to

enhance advection in macromolecule drug delivery.
3.4. Time-scale analysis
Understanding the time scale on which these phenomena

occur is very important to understanding how much time
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the tumour needs to reabsorb the excess fluid, or how much

time is needed to percolate everything. A comprehensive

analysis of time scales is presented in Netti et al. [5,17],

with a good agreement with experiments. They reported

that the predicted time scale is of the order of approximately

103 s with their thermophysical properties. In Netti et al. [17],

it has been reported that

ti /
R2

½K(2mþ l)	 , ð3:2Þ

tv /
V

½LpS(2mþ l)	 ð3:3Þ

and b/
ti

tv
: ð3:4Þ

The first time constant is the same as that derived herein

during the scaling process. It has been analytically derived

[5,17] that the two time constants are equal to

ti /
R2

½K(2mþ l)	 ð3:5Þ

and

tv /
V

½LpS(2mþ l)	 , ð3:6Þ

and that these are related by means of

t ¼ R2=½K(2mþ l)	
b2 þ p2

t! tv if ðb2=p2Þ � 1
t! ti if ðb2=p2Þ 
 1:

����
	

ð3:7Þ

In the present case of rapid TBF decay, as reported by Netti

et al. [5], the only mechanism to make the fluid reach a new

equilibrium condition is via the interstitium since, for t* .

0, there is no longer a Starling term. This means that the typi-

cal scale of the phenomena is governed by ti, whatever the b.

The target here is to compare the interstitial fluid time con-

stant with a constant for the heat processes. From the

scaling of the energy equation (equation (2.38)), it is possible

to show that

tt /
R2

adiff
: ð3:8Þ

Carlsaw & Jaeger [30] reported the analytical solution for

a sphere with internal heat generation. As depicted in the

validation section, for a very low Péclet number (such as in

our case), it is possible to compare the solution for the temp-

erature field derived herein with the one referred to a sphere

with internal generation and equal initial and surface temp-

erature. From their analytical solution, it is possible to

derive a time constant as follows:

tt ¼
R2

ðp2adiffÞ
: ð3:9Þ

Now, we try to correlate the time scales, as done in the energy

equation scaling section. By recalling equation (2.38),

it is possible to define the ratio between the percolation and

the temperature scale

ti

tt
¼ R2=½p2K(2mþ l)	

R2=ðp2adiffÞ
¼ adiff

K(2mþ l)
¼ g: ð3:10Þ

The term g correlates the energy equation with the thermo-

poroelastic strain equation. It represents the ratio between the

percolation velocity and the heat propagation velocity. When

it is �1, percolation time scales are much higher than the
times required to reach a steady-state temperature. As an

example, by employing values for thermal diffusivity taken

generally from Iasiello et al. [10] and values for hydraulic con-

ductivity and Lamé parameters taken generally from Netti et al.
[5] (all of these are summarized in table 2), it is shown that this

ratio is equal to about 40, thus it is reasonable to assume that

the order of magnitude is about approximately 101–102. This

means that thermal effects stop being important after a short

time, after which the phenomena are dominated by percola-

tion. This has also been found in the results, since, after a

certain time, the behaviour is purely dominated by percolation.

Finally, for the sake of validation, by employing data from

Iasiello et al. [10] and Netti et al. [5] and results from the present

work, it can be shown that the maximum Perel is approximately

1022–1021, with which it is possible to assume that the heat

transfer is mainly diffusive with an acceptable deviation.
4. Conclusion
A thermoporoelastic model for heat transfer and fluid flow

through a tumour tissue has been presented. Governing

equations were scaled and solved by means of a finite-element

scheme for a one-dimensional spherical coordinate system. As

an initial condition, it is assumed that there is an interruption of

the fluid source while a heating source is applied in the central

area of the tumour mass.

Results are compared with analytical solutions available in

the literature for displacement, velocity, pressure and tempera-

ture profiles, showing excellent agreement. Sensitivity analyses

for various scaling parameters have been presented. These par-

ameters are the Gay–Lussac number, which is the ratio

between thermal and mechanical stresses, the interstitial to

transcapillary resistance number, the Pomerantsev number,

the thermal to poroelastic time number and the scaled heating

time. Physical features have been discussed in terms of the

pressure and velocity fields through the tumour. It has been

shown that pressure does not monotonically decrease from

the centre to the periphery, but, in some cases, local over-

shooting can be achieved along the tumour radius. These

features are reviewed in terms of their potential effects on

macromolecular drug distribution within the tumour mass.

For instance, the effects of a periodic heat source on the flow

field have been discussed and the results indicate that by

cycling heat administration it is potentially possible to aug-

ment advection for macromolecule delivery. Currently, we

are investigating transient process strategies to improve drug

delivery efficacy. Finally, an analysis of the characteristic

times has been reported, showing that, generally, the character-

istic time for heating is lower than the percolation time but

higher than the transcapillary time.
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