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It has been suggested that neck muscle strength and anticipatory cocontraction

can decrease head motions during head impacts. Here, we quantify the relative

angular impulse contributions of neck soft tissue to head stabilization using an

OpenSim musculoskeletal model with Hill-type muscles and rate-dependent

ligaments. We simulated sagittal extension and lateral flexion mild experimen-

tal head impacts performed on 10 subjects with relaxed or cocontracted

muscles, and median American football head impacts. We estimated angular

impulses from active muscle, passive muscle and ligaments during head

impact acceleration and deceleration phases. During the acceleration phase,

active musculature produced resistive angular impulses that were 30% of the

impact angular impulse in experimental impacts with cocontracted muscles.

This was reduced below 20% in football impacts. During the deceleration

phase, active musculature stabilized the head with 50% of the impact angular

impulse in experimental impacts with cocontracted muscles. However, passive

ligaments provided greater stabilizing angular impulses in football impacts.

The redistribution of stabilizing angular impulses results from ligament and

muscle dependence on lengthening rate, where ligaments stiffen substantially

compared to active muscle at high lengthening rates. Thus, ligaments provide

relatively greater deceleration impulses in these impacts, which limit the

effectiveness of muscle strengthening or anticipated activations.
1. Introduction and background
Anecdotally, muscle strength and muscle cocontraction in anticipation of an

impact are thought to reduce head motions during a head impact, which in turn

is thought to reduce risk of brain injury. Clinicians, athletic trainers and coaches

have thus been recommending neck muscle strength training and field awareness

exercises for contact sports athletes to protect themselves on the field [1].

Research studies have been less conclusive about the correlation between

muscle strength or anticipatory muscle cocontraction with a reduction in head

motion. Laboratory studies applying low-severity external loads to human subjects

have demonstrated that anticipated muscle cocontraction significantly reduces

head motion following impacts [2]. However, impact forces in these studies are

of the order of maximal neck muscle isometric force production, and it is unclear

how effective neck muscles are at resisting more severe impact forces.

One prospective field study found a correlation between neck muscle strength

and reduced brain injury incidence in high school athletes [3]. This represented

the first field evidence that a correlation exists between muscle strength and

reduction of brain injury, which the authors postulated was due to a reduction

in head motion following impacts. However, the study neglected to account for

factors such as athlete mass which have also been implicated in head impact kin-

ematics [4]. Other prospective field studies have also failed to identify similar

correlations between neck muscle strength or anticipatory preparation and

brain injury risk or head kinematic severities [5,6].

Researchers have also investigated the effect of neck strengthening regimens

on head motion, which are more useful for suggesting preventative measures
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for individuals [7,8]. These studies have found that while

strengthening regimens can increase neck strength, there was

little evidence that such techniques reduced head motions.

However, many of these studies were limited by relatively

small subject populations, and a large prospective study relat-

ing neck strengthening exercises and reduction of head motion

following an impact is a current gap in the literature.

The studies discussed thus far have focused on drawing

correlations between neck muscle strength or anticipated

cocontraction with decreases in head motion following an

impact. To determine an anatomical mechanism by which

neck muscle strength or anticipated cocontraction might

reduce head motions following an impact, a more controlled

or model-based approach is required.

Recently, several researchers have sought to uncover this

mechanism by simulating head impacts while varying neck

muscle strength or activity [9–12]. However, researchers

have reached varying conclusions due to differences in

study design, such as choice of model (finite-element, anthro-

pomorphic test dummy surrogate, rigid linkage model) or

choice of impact conditions (severity, direction, impact sur-

face). Furthermore, these studies have focused primarily on

the effect of active muscles, and typically neglect the role of

other soft tissue in stabilizing the head.

Thus, the role of neck muscles in head impacts remains an

active area of research. In this study, we approach this problem

by quantifying the moment and angular impulse contributions

of active musculature, passive muscle structure, ligaments and

external loads to study their relative roles during head impacts

using musculoskeletal head and neck models developed in

OpenSim. We simulated experimental head motions performed

in 10 subjects during mild head impacts and extrapolated to

median American football head impacts. The moment produc-

tion of individual elements is dictated by their constitutive

material models, which shed light on the underlying

biomechanical mechanisms of head stabilization during impacts.
2. Results
To determine the relative contributions of muscle activity, pas-

sive muscle structures and passive ligaments during head

stabilization, we modified a previously developed OpenSim

head and neck musculoskeletal model [13,14]. We performed

forward dynamics simulations of previously published mild

experimental head impacts in 10 subjects [4]. In the exper-

iments, loads were applied to induce head motion in two

directions (sagittal plane extension and coronal plane lateral

flexion towards the non-dominant side) and with two muscle

activity conditions. For the first muscle activity condition,

we instructed subjects to minimally activate neck muscles

while maintaining an upright posture (gravity balance),

which we consider a relaxed condition. For the second

muscle activity condition, we instructed subjects to maximally

activate muscles while maintaining an upright posture, which

we consider a cocontracted muscle condition.

Subject-specific models were generated for these simu-

lations scaled to subject height, mass and isometric strength

in sagittal plane flexion and coronal plane lateral flexion. In

each simulation, the motion was restricted to the primary

motion plane (sagittal plane or coronal plane). From the simu-

lations, we determined the relative moments and angular

impulses responsible for head stabilization. We also simulated
median severity of American football head impacts with

cocontracted muscles in the 10 subject-specific models using

extrapolated force profiles to observe differences in relative

moment and angular impulse contributions.

2.1. Experimental angular impulse and moment
contributions

To demonstrate contributions to stabilization during mild exper-

imental head impacts, we first show relative angular impulse

contributions of the external force, gravity, all muscles (active

component), all muscles (passive component) and all ligaments

during acceleration and deceleration phases (figure 1). Contri-

butions were normalized by the total angular impulse provided

by the external load and aggregated over all 10 subjects for each

condition. Angular impulses were obtained by integrating

moments over periods of acceleration and deceleration.

In all conditions, the acceleration phase was dominated by

the angular impulse provided by the external load. When

muscles were relaxed, there were no substantial resistive angu-

lar impulses provided by any soft tissue structures during

the acceleration phase. However, when the muscles were

cocontracted, the active muscles provided resistive angular

impulses that were 30% of the total impact angular impulse.

During the deceleration phase, soft tissue structures were

responsible for providing angular impulses that stabilized the

head. When subjects relaxed neck muscles, angular impulse

was dominated by the ligaments and passive muscle in both

sagittal extension and coronal lateral flexion. When muscles

were cocontracted, angular impulse contributions were

dominated by the active muscle.

We next show a breakdown of moments generated over

time by external load, gravity, muscle groups (active com-

ponent), muscle groups (passive component) and ligament

groups (figure 2). These were produced for a single subject

with relaxed neck musculature in sagittal extension and coro-

nal lateral flexion to pinpoint the structures most responsible

for head stabilization and to demonstrate the time evolution

of moment generation.

In sagittal extension, both active and passive components

of the hyoid muscles and sternocleidomastoid (SCM) muscles

had large negative moment contributions resisting impact

motion. Annulus fibrosus (AF) fibres produced significantly

greater negative moments among the ligaments. While both

AF fibres and active SCM muscles produced similar negative

moments, there were some muscles, such as the splenius

capitis, providing positive moments that reduced the overall

contribution from the active muscles. These positive moments

were due to the initial activation that was necessary to maintain

an upright posture (gravity balance) and was held through the

duration of the impact.

In coronal lateral flexion, the SCM produced the greatest

negative moment of the muscles (active and passive com-

ponents), with substantial contributions from the passive

component of the trapezius and scalene muscles as well. Of

the ligaments, the joint capsules provided the greatest nega-

tive moments, with minor contributions from the AF fibres

and the ligamentum flavum.

2.2. Extrapolated median football impact
Finally, we show results from the median severity American

football head impacts simulated using an extrapolated force
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Figure 1. Angular impulse contributions during simulated mild head impacts. Impacts were divided into an acceleration and deceleration phase based on the planar angular
acceleration time history ( positive acceleration is the sagittal extension of lateral flexion towards the non-dominant side). We included a short 30 ms of zero force pre-load to
allow the model to reach a balanced steady state ( pre-motion). In some conditions, head stabilization was achieved before the end of the 300 ms impact simulation, resulting in
a post-motion period with low angular accelerations (jaj , 10 rad s22). Impulse contributions during acceleration and deceleration phases were computed for external load,
gravity, all muscles (active component), all muscles ( passive component) and all ligaments for each condition and aggregated over all subjects. Angular impulse contributions
were also normalized by total angular impulse produced by the external force. When neck muscles were relaxed, ligaments and passive muscles had the largest angular
impulse contribution in deceleration for (a) sagittal extension and (c) coronal lateral flexion, respectively. When neck muscles were cocontracted, the active muscle had
the largest angular impulse contribution in deceleration for both (b) sagittal extension and (d ) coronal lateral flexion. In all cases, external load provided the angular impulse
that accelerated the head, with active muscles providing over 30% resistive angular impulse during cocontracted muscle cases. (Online version in colour.)
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Figure 2. Moments produced by model forces demonstrate important structures for stabilization. Moments over the impact period from force elements in the
simulation are presented ( positive moments are moments in sagittal extension or lateral flexion to the non-dominant side). We show samples from a sagittal
extension and coronal lateral flexion simulation with relaxed neck muscle activations. (a) Moments from external load, gravity, aggregated active muscle, passive
muscle and ligaments are shown first to demonstrate how moments from each group change with time. Moments from (b) active muscle component and (c) passive
muscle component show that the SCM produces large negative moments resisting impact motion in both directions. Moments from (d ) ligaments show that AF
fibres and capsular ligaments dominate in sagittal extension and coronal lateral flexion, respectively. (Online version in colour.)
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Figure 3. Extrapolated American football median impact shows a change in stabilization contributions. (a) We applied a simulated American football impact force in
sagittal extension and coronal lateral flexion to our strongest subject with cocontracted neck muscle activations. (b) Simulation kinematics were within 20% of the median
American football impact kinematics. Angular impulse contributions in (c) sagittal extension and (d ) coronal lateral flexion show that the active muscle has less relative
contribution than in the experimental trials. In sagittal extension, the ligaments provide the most angular impulse in deceleration. (Online version in colour.)
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profile aggregated over the 10 subjects (figure 3). The force pro-

file was generated to produce median American football

kinematics over the 10 subject-specific models with cocon-

tracted muscle activations. Median kinematics were taken

from a previous exposure study of American football athletes

wearing instrumented mouthguards over several games

[15,16]. Simulated kinematics were within 20% of the median

values in both sagittal extension and coronal lateral flexion.
Angular impulse analysis (similar to figure 1) shows a

decrease in resistive active muscle angular impulse contri-

bution during the acceleration phase in both sagittal plane

extension and coronal plane lateral flexion directions. While

active muscles produced a resistive angular impulse that

was 30% of the total impact angular impulse in mild exper-

imental loads, this is reduced to below 20% in median

American football head impacts.
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During the deceleration phase, there is a relative decrease in

active muscle angular impulse contribution despite using

cocontracted muscle activations. In sagittal extension, active

muscles in fact provide a positive angular impulse, whereas

the ligaments now provide the largest resistive angular

impulse contribution. The positive angular impulse is likely

due to the SCM providing an extension moment at large exten-

sion angles as reported previously [13]. In coronal lateral

flexion, both the passive ligaments and passive muscle struc-

tures provide larger resistive angular impulse contributions

than the active muscles.

3. Discussion
In this study, we estimate the relative angular impulse contri-

bution of active muscle, passive muscle and passive ligament

structures to head stabilization during experimental mild

head impacts and extrapolated median American football

head impacts using a musculoskeletal OpenSim model.

While many previous studies have focused on the ability of

neck musculature to resist head impacts and stabilize motion,

we sought to quantify the contributions of the various cervical

spine tissue structures (including the active and passive

components of muscles).

We have demonstrated that in experimental mild head

impacts, cocontraction of neck muscles resulted in large stabiliz-

ation moments from the active component of the muscles, in

particular, the SCM muscle. While there was a significant

increase in active muscle impulse contribution, we onlyobserved

a significant decrease in simulated head kinematics during lat-

eral flexion impacts. This differs somewhat from previous

experiments where there is an overall decrease in kinematics

with muscle cocontraction [2], though we note that in our exper-

imental trials, the load impulse during cocontracted muscles

cases is significantly higher than in relaxed muscle cases despite

having the same input energy (equivalent mass dropped from

equivalent height) [4]. When we extrapolate to median severity

American football impacts, active muscle contributions decrease

relative to other elements (ligaments and passive muscles). In

sagittal extension, one of the more common impact scenarios

in American football [15], the passive ligaments provide the

most angular impulse stabilizing the head.

This indicates that the relative distribution of loads in the

cervical spine among muscles and passive structures is

dependent on impact direction and severity. In coronal lateral

flexion, it has been previously reported that muscle moment

arms for neck lateral flexors are larger than for neck sagittal

flexors [13]. The SCM, which contributed the most muscle

moments and angular impulses in our study, had a nearly

five times larger moment arm in coronal lateral flexion

than sagittal flexion [13]. Thus, the muscle angular impulse

contributions remain relatively large in lateral flexion.

For severity dependence, we focus on the constitutive

models for the muscle (Hill-type) and ligaments (figure 4).

At higher severities, the lengthening rates of both the muscles

and ligaments increase substantially. Previous studies of whi-

plash simulations report that ligaments can experience over

1000 mm s21 lengthening rates [17–19]. While the velocity

relationship for Hill-type active muscle plateaus at a relatively

low lengthening rate (one optimal fibre length per second),

which we achieved during our mild experimental head

impacts, it has been suggested that the ligaments have a log-

stiffening behaviour with respect to lengthening rate [19–21].
Thus, with increased impact severity, the active muscles did

not produce substantially greater moments than the mild

experimental head impacts. However, due to the strong liga-

ment dependence on lengthening rate, the ligament moments

scaled with impact severity.

While we were able to simulate experimental mild head

impacts using an OpenSim model and analyse muscle and liga-

ment contributions to stability, this study has a number of

limitations. First, our findings are dependent on our chosen

constitutive muscle and ligament models, and the properties

for each muscle and ligament. However, we note that the Hill-

type muscle model is a standard model used in countless

musculoskeletal modelling platforms to model all aspects of

the human body [20,22,23]. The ligament model, particularly

the force–length relationship, is also well established in the lit-

erature and used in many finite-element models [20,21]. We

note, however, that muscles typically are not evaluated at extre-

mely high lengthening rates, and while force–velocity scaling

plateaus in the current Hill-type muscle model implementation,

the scaling may continue to increase at extremely high rates.

The OpenSim model also only includes structures repre-

senting the skeletal structure, ligaments and muscles.

However, the cervical spine contains other structures (such

as the trachea) that could also contribute to angular impulses

during impact. We included only muscles and ligaments as

they are the most ubiquitous in the cervical spine, but other

structures should be properly modelled and analysed further.

We note, however, that muscles represent the only active struc-

ture in the cervical spine, so the addition of additional tissue

structures will only add to impulses from passive components

that are not affected by muscle strengthening or pre-activation.

More broadly, we must also discuss the implications

of using the OpenSim musculoskeletal framework for simulat-

ing head impacts compared to previously presented models.

Unlike some prior work [9–12] which relied on complex

finite-element models, OpenSim is a rigid multibody simu-

lation platform. The limitation of such modelling frameworks

is that they do not necessarily accurately represent geometric

dependencies. Indeed, muscles and ligaments in the OpenSim

model are represented as linear elements with the exception of

the SCM muscles which wrap around the omohyoid muscle.

However, such simplifications allow OpenSim to run

with orders of magnitude less computational power and

give accurate estimates of gross relationships. OpenSim, in

particular, has been used extensively to assess moment and

force production in locomotion as the rigid multibody rep-

resentation accurately captures gross measurements such as

intersegmental forces or muscle–tendon forces [22,24,25].

Similarly here, we believe that an OpenSim model accurately

captures the gross elements that contribute to head and neck

stabilization, but a finite-element simulation will be required

to capture fine details such as localized strains and stresses

within muscles and ligaments.

Previous modelling work has also focused primarily on

studying inertial whiplash loading scenarios, which are relevant

to automotive impacts [23,26–30], and are thus not necessarily

applicable to direct head loads which are more representative

of contact sports scenarios. As a result, most previous models

are specifically validated in whiplash scenarios. Previous exper-

imental work has shown that muscle cocontraction can reduce

head kinematics in laboratory direct head loading scenarios

but has not used models to study the relative moments of the

contributing soft tissue structures [2].
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Figure 4. OpenSim head and neck impact model. The OpenSim musculoskeletal model is a 20 degree-of-freedom model that was based on the Mortensen 2018
model. (a) We added 80 individual cervical spine ligament sections representing 11 ligament groups to represent soft tissue stabilization force elements. The
constitutive material model for the ligaments was represented with a (b) force – length and (c) force – velocity curve, which were identified previously in the lit-
erature. The force – length relationship of ligaments has a characteristic shape corresponding to the straightening (toe region), stretching (linear region) and breaking
(yield region) of collagen fibres. Our constitutive model does not include a yield region, similar to how passive tendon is modelled. (d ) The model also contains 84
muscle subvolumes over 15 muscle groups, which were defined in the original Mortensen 2018 model. Muscles were represented using the Hill-type muscle model,
with a (e) force – length curve modelling myosin cross bridges in sarcomere functional units and a ( f ) force – velocity curve scaling force output depending on
muscle fibre velocities. Ligament and muscle peak lengthening velocities are marked in (c,e) during experimental mild external loads and extrapolated median
American football impacts. While the (e) muscle force – velocity scaling is similar in both load regimes, the (c) ligament force – velocity scaling is substantially
larger during median American football impacts, resulting in greater moments produced by ligaments in the high-severity regime. (Online version in colour.)
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While we demonstrate that muscle cocontraction can

indeed produce significant stabilizing moments in mild lab-

oratory head impacts, we caution that this does not

necessarily extend to more severe impacts seen in contact

sports that cannot be effectively evaluated in the laboratory.

Thus, the need for a model evaluated specifically for direct

head loading scenarios is necessary to extrapolate the effect

of muscle cocontraction to more severe head impacts.

For the OpenSim simulations, we chose to fix the torso to

ground (Material and methods). We did this because in the

experimental mild head impact study, we attempted to fix the

torso by seating subjects in a rigid back chair [4]. However, as

was reported in the previous study, there was some torso

motion, particularly in the coronal lateral flexion trials. We

note that linear accelerations had the largest errors between

OpenSim simulations and experimental head impacts (electronic

supplementary material, D), and it is possible this was because of

the torso motion. However, we note that our other analyses

focused on angular impulses and moments (angular metrics).

For coronal lateral flexion experiments, we had to constrain

the OpenSim model to planar rotations by locking out-of-plane

joints. It has been previously reported and it was observed in

the experimental dataset that there is significant coupling

between coronal lateral flexion and axial rotations [31]. While

these out-of-plane rotations were observed experimentally,

we previously reported that the in-plane motion dominated

the head motion response experimentally [4].

Other methods for computing intervertebral moments

were previously presented for a finite-element model in whi-

plash scenarios [32]. These methods involved computing

moments in a planar cross-section, and were thus sensitive to

the choice of cross-section and did not account for moments

from forces not captured within the cross-section (specifically

intervertebral discs as is noted in the study) [32].

In conclusion, we have quantified the relative contribution of

muscles and ligaments to head stabilization during impacts.

While there is no doubt the muscles play a role in stabilizing

the head, their relative contribution depends on impact severity

and direction and is not always greatest. Thus, claims that neck

muscle strengthening and anticipatory cocontraction reduce

head motions following impact must be made cautiously and

should be compared against other factors such as head and

neckorientation [4,33]. Cervical spine ligaments are well studied

in whiplash injuries and automotive crashes, and despite play-

ing a large role in head and neck stability, they have received

relatively little attention in head impact biomechanics.

Our OpenSim model and analysis represent a step towards

uncovering the nuanced roles of the cervical spine structures in

head impacts. However, further improvements can and should

be made. To facilitate collaborative efforts and dissemination of

our simulations and datasets, we have provided experimental

data, models and simulations on the public SimTK repository:

https://simtk.org/projects/kuo-head-neck.

4. Material and methods
4.1. OpenSim musculoskeletal model
The musculoskeletal model was developed in OpenSim and is

derived from a previous head and neck model used to quantify

moments of the neck muscles [13,14]. Details of the model are pro-

vided in electronic supplementary material, A and B. Our main

contribution was the addition of passive ligaments in the cervical

spine (this included the AF fibres of the intervertebral disc). We
included 80 individual sections representing 11 ligament groups

(described in electronic supplementary material, B). The constitu-

tive material model for the ligaments consisted of a force–length

(fL
lig) and force–velocity (fv

lig) relationship as a function of the

element length (llig) and element loading rate (vlig):

Fligament ¼ fL
lig(llig)fv

lig(vlig): ð4:1Þ

The ligament force–length relationship has been extensively

described in the literature and consists of a toe region of relatively

low force production, a linear region where ligaments exhibit elas-

tic behaviour, and a yield region where the ligament begins to

mechanically fail [21,34–36]. We represent ligaments here with a

piece-wise linear function representing the toe and linear regions

and parametrized by a toe modulus (Etoe), a toe strain (etoe), a

linear modulus (Elin), ligament rest length (l0) and ligament

cross-sectional area (Alig, equations (4.2) and (4.3)):

elig ¼ llig � l0
l0

ð4:2Þ

and

fL
lig(llig) ¼

0 elig , 0
AligeligEtoe elig , etoe

Alig(Etoeetoe þ Elin(elig � etoe)) elig . etoe:

8<
: ð4:3Þ

The ligament force–velocity relationship is also particularly

well studied in cervical spine ligaments as these ligaments

experience high loading rates in injury scenarios [17–19]. It has

been suggested that beyond a representative quasi-static loading

rate (we chose 10 mm s21), ligament force linearly scales with a

slope (mrate) against the log loading rate (equation (4.4)) [19,20]:

fv
lig(vlig) ¼

1 vlig , 10 mm s�1

1þmratelog vlig

10 mm s�1

� �
vlig . 10 mm s�1:

(
ð4:4Þ

Parameters for each ligament at each intervertebral joint

were defined and validated from previous literature (electronic

supplementary material, B and C). Geometrical muscle and liga-

ment attachments and bony articulations were defined visually.

We additionally confirmed ligament lengths against previous

literature (electronic supplementary material, B).

Besides the newly added ligaments, the model consists of 84

muscle subvolumes representing 15 distinct muscle groups,

including hyoid muscles and multifidus muscles. These muscles

were modelled as Hill-type muscles in OpenSim (equations (4.5)

and (4.6), figure 4) and parametrized by optimal muscle force

(fM
o Þ, activation (a), the active and passive force–length relation-

ships (fL
musc and fPE

musc, respectively) as a function of muscle

length (lM) and the force–velocity relationship (fv) as a function

of muscle velocity (vM) [25]. Muscle force transmission to rigid

vertebral elements was parametrized by muscle fibre pennation

angle (a) and tendon force–length relationship (fL
tendon) as a func-

tion of tendon length (lT), and additionally constrained by

geometrical muscle–tendon length (lMT, equation (4.7)). Details

of the muscle model can be found in Mortensen [14].

Fmuscle ¼ fM
o (afL(lM)fv

musc(vM)þ fPE
musc(lM)), ð4:5Þ

Fmuscle cos (a)þ fM
o fL

tendon(lT) ¼ 0 ð4:6Þ
and lMT ¼ lM cos (a)þ lT: ð4:7Þ

Seven cervical vertebrae (C7–C1) and the skull were rep-

resented with rigid elements. Cervical vertebrae C7 through C2

articulated with respect to the inferior vertebrae with a three

degree-of-freedom rotational joint. The most inferior C7 cervical

vertebrae articulated with respect to the torso with a three

degree-of-freedom rotational joint. The torso was subsequently

fixed to the inertial frame, though could be adjusted to articulate

with full six degree-of-freedom motion. The C1–C2 (atlanto-

axial) and skull–C1 (atlanto-occipital) joints are anatomically

https://simtk.org/projects/kuo-head-neck
https://simtk.org/projects/kuo-head-neck
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distinct and allow for substantial rotation about the inferior–

superior axis and left–right axis, respectively [37]. Thus, we

modelled these joints with single rotational degree-of-freedom

joints about their respective rotational axes. In total, our model

had 20 degrees of freedom. Further details of the model are

presented in electronic supplementary material, A.

4.2. Simulating experimental head impacts
We collected a dataset of mild head impact loads in 10 human sub-

jects (5 males and 5 females) published in a separate study with

which to validate the model and quantify the relative moment con-

tributors [4]. Briefly, we applied mild impacts to the head on subjects

seated in a rigid back chair to restrict torso motion. Mild impacts

were applied in two directions to produce planar head sagittal

extension and head lateral flexion towards the non-dominant side

to exercise primarily the dominant side SCM muscle. Subject was

instructed to either minimally activate (relax) or maximally cocon-

tract neck muscles during impact. For each set of conditions

(direction and muscle activity), subjects performed up to six trials.

Before applying mild impact loads, subjects performed iso-

metric contraction trials in sagittal flexion and coronal lateral

flexion while upright. This provided a measure of subject neck

strength, which was used to scale model muscle strengths in Open-

Sim. To estimate baseline OpenSim isometric strength, we added a

constraint to the skull and measured the constraint force when

sagittal flexion or coronal lateral flexion muscles were maximally

activated (69.3 and 28.6 N isometric force in sagittal flexion and

coronal lateral flexion, respectively). Subject mass and estimated

neck lengths from the video (defined as the distance from the mid-

point between the shoulders approximating the C7–T1

intervertebral joint to the atlanto-occipital joint) were also used

to scale the mass and height of the OpenSim model.

Mild impact loads were delivered through the head mass

centre via a wrestling headgear that was attached to a load plate

(2 kg) upon which an impact plate (3 kg) was dropped from a

height of 1 m. Loads were measured with an in-line tension

meter (TLL-500) measuring at 1500 Hz and triggered data collec-

tion when a 50 N threshold was exceeded. The tension meter

collected 80 ms pre-trigger and 720 ms post-trigger. We averaged

impact force time histories over the six trials for each subject and

each set of conditions. Average impact forces were used to apply

external loads in OpenSim simulations.

We measured dominant side SCM muscle activity using a

custom electromyograph. Muscle activity in isometric trials was

treated as the maximal activation. We previously reported an aver-

age relaxed and cocontracted SCM muscle activity was 22.7+
1.6% and 79.0+9.5% (mean+ s.e.) of isometric muscle activity

[4]. Because we only measured SCM muscle activity, we had to

estimate activity in the remaining neck muscles. Relaxed OpenSim

neck muscle activations were found by minimizing the sum of all

muscle activations while maintaining head and neck balance

under gravity and with the constraint that SCM activation was

20%. Similarly, cocontracted OpenSim neck muscle activations

were found by maximizing the sum of all muscle activations

while maintaining head and neck balance under gravity with the

constraint that SCM activation was 80%.

For each subject-scaled OpenSim model, we ran a forward

dynamics simulation using relaxed or cocontracted muscle acti-

vations and applying averaged external loads [38]. Four sets of

conditions (sagittal extension with relaxed neck muscles, sagittal

extension with cocontracted neck muscles, coronal lateral flexion

with relaxed neck muscles and coronal lateral flexion with cocon-

tracted neck muscles) were tested for each subject, generating 40

forward dynamics simulations. For each simulation, the torso

was fixed to the ground to represent the rigid back chair. In sagit-

tal extension, the symmetry of the head and neck maintained

planar motion. However, in coronal lateral flexion, we had to

restrict out-of-plane rotations to maintain planar motion.
Detailed analysis of the simulations against the experiments is

presented in electronic supplementary material, D.

4.3. Moment and angular impulse analysis
After validating simulations, we computed the moments applied

to the head from muscle activity, passive muscle, ligaments,

external load and gravity during the simulated experimental

mild impacts. As these were all linear forces, we needed to

define a moment arm for each linear force. Because the cervical

spine has many degrees of freedom and several muscles cross

multiple intervertebral joints, we defined the moment arm (ma)

as the ratio between the change in length of a linear force (dl)
and the change in rotation of the head (du, equation (4.8)) [13,39]:

ma ¼ dl
du
: ð4:8Þ

The moment applied by the linear force to the head is then

simply the force provided by the linear force scaled by the

moment arm. Moments were first computed for each linear

force element, compounded by muscle or ligament group (e.g.

hyoids), and finally aggregated by type (impact load, gravity,

active muscle, passive muscle and passive soft tissue).

To further define contributions to head stabilization, we inte-

grated the moments to obtain angular impulses. We noted that

for our controlled experimental impact, there was a distinct accel-

eration and deceleration phase wherein the head was set into

motion (acceleration) and returned to rest (deceleration). These

phases were defined using the simulated angular acceleration

traces, and moments were integrated into each phase to define

the angular impulse over each phase. Angular impulses were

normalized by the total external load angular impulse.

4.4. Extrapolated median football impact
Finally, we extrapolated this analysis to a more relevant Ameri-

can football head impact scenario. To simulate American

football head impacts, we generated an extrapolated force profile

that produced head kinematics similar to those previously

measured from the field [15,16]. We applied a 15 ms half-sine

force pulse with peak 2000 N to the head mass centre resulting

in sagittal extension and coronal lateral flexion for each of the

10 subject-specific OpenSim models (figure 3). In addition, we

used the cocontracted muscle activation profile and computed

relative moment and angular impulse contributions in the

acceleration and deceleration phases.
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