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Dissecting the competition between genes for shared expressional resources is

of fundamental importance for understanding the interplay between cellular

components. Owing to the relationship between gene expression and cellular

fitness, genomes are shaped by evolution to improve resource allocation.

Whereas experimental approaches to investigate intracellular competition

require technical resources and human expertise, computational models and

in silico simulations allow vast numbers of experiments to be carried out

and controlled easily, and with significantly reduced costs. Thus, modelling

competition has a pivotal role in understanding the effects of competition on

the biophysics of the cell. In this article, we review various computational

models proposed to describe the different types of competition during gene

expression. We also present relevant synthetic biology experiments and their

biotechnological implications, and discuss the open questions in the field.
1. Introduction
Gene expression is a central biological process by which information encoded

in the genetic material (DNA and RNA) is used by various intracellular factors

to produce proteins and other gene products such as ribosomal RNA [1]. This

multistage process includes various steps and substeps such as transcription,

RNA processing and splicing, translation, mRNA degradation and protein

degradation. These steps involve the action of multiple cellular factors includ-

ing, among others, transcription factors (TFs), RNA polymerase (RNAP)

enzymes, spliceosomes, translation factors and ribosomes [1].

Naturally, as cellular resources are finite, each of these expression factors is

available only in a limited amount (see table 1 for a few estimations). This implies

that cellular components must compete for shared resources. The idea of compe-

tition for common resources has already been raised decades ago, when protein

synthesis in Escherichia coli turned out to be limited by the number of free

ribosomes [14]. However, competition for shared resources is a common bio-

physical aspect related to all stages of gene expression. The competing

components change dynamically along the progression of gene expression,

from DNA binding sites competing for TFs at the stage of transcription to

mRNA molecules competing for ribosomes, or codons competing for tRNAs, at

the stage of translation (figure 1).

The interplay between the multiple elements participating in gene expression

imposes substantial challenges for controlling experimental approaches due to

effects arising from coupling of the individual elements. Computational

models, however, can be easily controlled, allowing the prediction of the

unique effect of each individual element on the process. Moreover, since compe-

tition aspects are critical for the understanding of cellular biophysics and genome

evolution, it is impossible to study these topics without directly modelling com-

petition. Nevertheless, due to the complexity of gene expression and the

numerous intracellular factors required for the process, modelling competition

remains challenging.
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Table 1. Estimated numbers of some intracellular gene expression factors.

S. cerevisiae number of protein coding genes 6.2 � 104 [2]

number of ribosomes 2 � 105 [3]

number of mRNAs 6 � 104 [2]

number of proteins per mRNA 5.6 � 103 [4]

number of tRNAs 3 � 106 [5,6]

the average number of tRNAs per ribosome 12.2 [5]

the average number of codons per mRNA 420 [7]

human number of protein coding genes 2 � 104 [8]

number of miRNA genes 8 � 102 – 103 [9]a

TF copy number in a mammalian cell 4 � 103 – 1.5 � 108 [10]a

number of RNA polymerases-II 8 � 104 [11]

E. coli number of protein coding genes 4.3 � 103 [12]

number of RNA polymerases 4.6 � 103 – 104 [13]a

aPapers that contain a range of estimations.
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Figure 1. Illustration of various types of competition during eukaryotic gene expression. Competition in the nucleus (to the left): multiple promoters along the DNA
compete for TFs; TFs bounded to promoters compete for RNAPs and splicing sites along pre-mRNAs compete for spliceosomes. Competition in the cytoplasm (to the
right): mRNAs compete for ribosomes, tRNAs compete for free amino acids, charged tRNAs compete for codons at the ribosomal A-site, binding sites along the
mRNA compete for RNA binding proteins (RBP) and miRNA binding sites compete for miRNAs. A dashed arrow links the binding site to the resource it demands.
(Online version in colour.)
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Several important reviews related to computational and

mathematical modelling of gene expression have been pre-

viously published (e.g. [15–19]). However, these reviews were

usually focused on modelling the dynamics of single molecules,

whereas further complex aspects of competition at different

stages of gene expression have only received little attention.

Nevertheless, the rapid development of relevant experimental

approaches has elucidated important concepts of competition,

leading to an increased number of mathematical/computational

models for competition in the recent years.

In this review, we thus aim to describe and discuss

the competition aspects related to gene expression and its

modelling. Specifically, we will review recent models for

competition at different stages of gene expression, relevant
experimental procedures for studying the effect of competi-

tion on the biophysics of the cell and the important practical

implications of considering competitional aspects in the

design of synthetic biology solutions. Finally, we will discuss

the current gaps between the existing computational/math-

ematical models and the relevant biological/biophysical data

and phenomena.
2. Unifying principles in competition models
Various approaches have been suggested to model competition

for shared resources, including the usage of computational

simulations, mathematical equations and statistics. Despite
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non-negligible differences in the specific parameters defined by

each model and the assumptions made by it (more details in

the next sections), all competition models rely fundamentally

on unifying concepts. The most pivotal principle of such

models is the ratio between the number of competing entities

(‘binding sites’) and the corresponding number of available

resources (‘binders’). The simplest type of competition is pre-

sented when each type of binding site is competing for only

one type of binder, and each type of binder can bind only to

one type of binding site. In practice, however, intracellular

competition is further complicated and whereas different bind-

ing sites can compete for the same binder, a binder can bind

to various types of binding sites with different affinities. More-

over, as gene expression stages are stochastic processes, binders

are randomly distributed in the cell. Therefore, the arrival time

of a binder at its binding site is roughly affected by two main

factors: the intracellular concentration of the binder and the

number of competing binding sites. Thus, the components of

an intracellular competition model usually comprise the

number of binding sites, the concentration of the binders and

the binding affinities.

Another common factor in these models is the transport

mechanism by which intracellular binders arrive at their

targets. Although it is often assumed that diffusion is, in prin-

ciple, the means whereby molecules are transported through

the cell, the actual intracellular flow does not genuinely reflect

a simple passive diffusion in a homogeneous medium.

Additionally, the fact that in certain cases, cells need to invest

energy to actively transport molecules to their targets, further

complicates the ability to model intracellular competition.

Additional aspects that should be considered by these

models include the geometry of the binder and the binding

site, the various thermodynamic factors related to the binding

interaction and complex events such as recycling resources.

Taken together, modelling competition of cellular processes

in general, and gene expression in particular, is a challenging

task. In the next sections, we provide specific examples related

to the general principles mentioned above.
3. Different modelling aspects of competition for
shared resources between eukaryotic and
prokaryotic cells

Intrinsic differences between prokaryotic and eukaryotic

cells constitute fundamentally different strategies of tran-

scriptional and translational regulation by resource sharing

in the two kingdoms. Although gene expression is similar

in all domains of life, its regulation in eukaryotes is more

complex than in prokaryotes [1]. For example: (i) in prokar-

yotes, transcription and translation occur simultaneously in

the cytoplasm, (ii) prokaryotic cells are smaller, and their

DNA is usually much shorter, (iii) all prokaryotes are unicel-

lular (i.e. there is no tissue-specific regulation of gene

expression), and (iv) some regulatory aspects, such as spli-

cing, alternative splicing and regulation by small RNA

genes such as miRNAs, are very common in eukaryotes,

but relatively rare in prokaryotes.

Indeed, since prokaryotic genomes are usually easier to

manipulate, the first competition models were developed

for prokaryotes and were mainly focused on aspects such

as competition for shared transcriptional resources [20].
On the other hand, models related to the competition of

miRNA binding sites on shared miRNAs were tailored for

eukaryotes [21].

A meaningful difference between prokaryotic and

eukaryotic transcriptional models is related to TFs. First, the

compactification of DNA into chromosomes in eukaryotes

constitutes a complex consideration in competition models.

Specifically, since part of the DNA is organized into compact

nucleosomes with the assistance of histones, certain TF-binding

sites within nucleosomes are inaccessible to most of the TFs

(reviewed in [22]). In these cases, unwinding of the relevant

nucleosomes is required. Thus, competition models for tran-

scription in eukaryotes should consider the fact that TFs

compete for binding to their binding sites not only with other

TFs, but also with histones and other chromatin proteins.

Second, whereas TF-mediated gene regulation in eukaryotes

requires the coordinated interactions of multiple proteins,

in prokaryotes, only a single protein is usually required. In

addition, whereas in prokaryotes, TFs mainly bind to promo-

ters, in eukaryotes, TFs can bind to many additional binding

sites [1]. Finally, the larger size of the eukaryotic genome and

the fact that genes comprise only a small percentage of it [1]

should also be considered in eukaryotic transcription models.

Prokaryotic genomes in general and bacterial genomes in

particular are usually under a strong evolutionary pressure to

optimize their growth rate. Thus, it is believed that bacterial

gene expression depends, among others, on global parameters

that affect bacterial growth [23,24]. Specifically, the abundance

of ribosomes and RNAPs depends on the amount of nutrients

available in the growth medium, which can thus induce global

changes in gene expression [25]. Therefore, models for compe-

tition in bacterial cells are expected to assume optimal growth

conditions, or alternatively, take potential changes in the

medium into consideration.
4. Stage-specific competition types during gene
expression

4.1. Ribosomes and mRNAs
A finite reservoir of ribosomes in the cell has been suggested to

limit protein synthesis in bacteria [14]. However, the idea that

the limited pool of ribosomes leads to a competition between

mRNAs for free ribosomes and thereby, affects the rate of

mRNA translation stands also for eukaryotic organisms.

In S. cerevisiae, for example, a pool of 2 � 105 ribosomes [3]

is expected to be used for the translation of approximately

60 000 mRNAs [2] for which the average production rate is

5600 proteins per mRNA [4]. Accurate modelling of mRNA

translation should thus consider the competition between

all mRNAs in the cell for the pool of available ribosomes.

The basic components of such a model include the total

number of mRNAs and ribosomes and the initiation and

termination rates of each mRNA (figure 2). The initiation rate

of an mRNA is locally affected by features of the mRNA mol-

ecule such as the strength of the ribosomal binding site.

However, it can also be globally affected by the number of ribo-

somes in the free pool. Specifically, a higher number of free

ribosomes increases the probability that a ribosome will diffuse

into the mRNA, leading to a higher initiation rate. In addition,

the number of ribosomes in the free pool is inevitably affected

by the time ribosomes spend on each mRNA during translation
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Figure 2. A general schematic plot of the competition model of mRNA and ribosomes: the model includes all mRNAs in the cell such that each mRNA (in black) has
a specific initiation rate (in orange). Each codon on the mRNA has a specific elongation rate (in green). In addition, the model in the illustration includes all
ribosomes in the cell (in grey) which are divided into two groups: the free ribosomes and the occupied ribosomes (i.e. ribosomes that are actively translating
the mRNAs). Ribosomes move along the mRNA based on the TASEP rules (described in the main text) and the pool status is dynamically changed accordingly.
Specifically, ribosomes that complete the translation of an mRNA are added to the free pool of ribosomes (termination rates are in blue), and ribosomes that begin
translating an mRNA are subtracted from the free pool of ribosomes (initiation rates are in orange). (Online version in colour.)
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elongation. Particularly, slowly decoded mRNAs are associ-

ated with higher ribosome density and ribosome ‘traffic

jams’, thus reducing the number of free ribosomes in the pool.

Modelling competition between mRNAs for ribosomes

has been extensively studied in recent years. The first

models were mathematical [26,27], usually based on a set of

totally asymmetric simple exclusion processes (TASEP), or a

set of mean field approximations of TASEP (such as riboso-

mal flow models (RFM), see [28]). A standard TASEP is a

stochastic process describing the movement of particles

along a one-dimensional lattice. For modelling translation,

each mRNA of a certain length is modelled as a TASEP in

which the number of sites corresponds to the length of the

mRNA in codons, and the moving particles are the ribo-

somes. Due to the size of the ribosomal footprint, a particle

(ribosome) covers a few sites (codons). On the lattice (the

mRNA), the ribosome hops stochastically from its current

site to the next site, if the latter is empty. The rates by

which ribosomes enter and leave an mRNA are

the initiation and termination rates, respectively. These rates

are intimately related to the size of the free ribosomal pool.

The initiation rates monotonically increase with the number

of ribosomes in the pool [26,29,30], whereas the size of the

pool is positively affected by an increase in the termination

rates. Trivially, each terminating ribosome increases the

pool of free ribosomes by one.

Greulich et al. [27] describe two possible major phases for

the TASEP model of translation, based on two possible states

of translation. The first phase is a low-density phase which

describes a scenario in which initiation is the rate limiting

stage of translation, and the number of ribosomes on the

mRNAs is low. The second phase is a high-density phase

that describes a scenario in which the rate limiting stage of

translation is elongation (the flow rate from one site to another),

and the number of ribosomes on the mRNAs is high. Impor-

tantly, it was suggested that when a subset of TASEP

undergoes a phase transition from low (i.e. when the initiation

is rate limiting) to high density (i.e. when the elongation is rate
limiting), the currents along the entire set of TASEP become

independent of the total number of particles (ribosomes).

The effect of a finite pool of ribosomes has been further inves-

tigated by Raveh et al. [26] using a set of mean field TASEP

approximation (the RFM [28]) connected to a common pool of

ribosomes. Implementing this model revealed that increasing

the elongation rate of any codon along a specific mRNA yields

a local effect on the mRNA and a global effect on all other

mRNAs. Specifically, whereas the translation rate of the speci-

fic mRNA is always increased, the translation rates of all other

mRNA molecules can either increase or decrease. These results

suggest that the effect of codon decoding rates on protein

production is more complicated than previously thought.

In all the models above, it is not only the pool of ribosomes

that affects the rate of translation, but rather the ratio between

the number of ribosomes and the number of mRNAs. This

ratio has been specifically studied by Mather et al. [31] using

a stochastic computational/mathematical model for the com-

petition between mRNAs for ribosomes. Interestingly, the

correlations of their analytical solution of the stochastic

model with steady-state protein counts turned out to be

affected by this ratio. Specifically, the correlation was weakly

positive when the total transcript count only slightly exceeded

the ribosome count, whereas when the total transcript count

significantly exceeded the ribosome count, the correlation

was strongly negative. This may suggest that the former is a

more physiological relevant regime.

Later computational models have included parameters that

have been directly inferred from experimental data such as ribo-

some profiling [32]. The usage of actual measurements of

translation enables tailoring of models to the intracellular trans-

lation status. In [33], for example, the elongation and initiation

rates used for the RFM-based model that included all the

mRNAs and ribosomes in the cell were inferred based on

ribosome profiling data. The model has suggested that compe-

tition for finite resources may induce non-trivial correlations

between different gene expression steps. Specifically, oscil-

lations in the mRNA levels of either a single gene or a group
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Figure 3. Different aspects of the competition between codons for tRNAs. (a) One tRNA can recognize different codons with different affinities (top); similarly,
several tRNAs can recognize the same codon with different affinities (bottom). The different affinities are emphasized by different colours. (b) tRNAs can be passively
transported to the ribosomal A-site by diffusion or actively, by conformational changes of the ribosome induced by GTPase. (c) Successive usage of codons encoded
by the same cognate-tRNA can improve the efficiency of local tRNA diffusion, as the ribosome can benefit from the vicinity of the tRNA that has just been used to
translate the upstream codon. (Online version in colour.)
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of genes can induce significant periodic behaviour in transla-

tional parameters, such as oscillations in the ribosomal

densities and the translation rates of the mRNAs. In S. cerevisiae,
for example, oscillations in the mRNA levels of a set of

endogenous genes caused oscillations of up to 50% in the

steady-state translation rates of the rest of the genes [33]. The

reported estimation of the actual magnitude of the effect in a

physiological condition provides a possible mechanism for

the regulation and induction of intracellular oscillations.

However, models of translation dynamics have been

shown to not only be capable of inducing interesting behav-

iour such as oscillations, but also of capturing translation

rates without characterizing the decoding rates of individual

codons. Gorochowski et al. [34], for example, have developed

a minimal model of ribosome allocation dynamics that

was able to make precise predictions of transcript levels

and translation elongation times, from solely the rate of

protein production. Since this model is focused on translation

initiation and does not explicitly include ribosome dynamics

along the mRNA during elongation, it is expected to have a

faster running time compared to the TASEP-based models.

Using their model to investigate the effect of introducing a

synthetic burden of heterologous genes to the cell revealed

that the heterologous protein production rate did not linearly

increase with the initiation rate and the number of heter-

ologous mRNAs. This response arose from competition for

the shared ribosome pool and a trade-off in allocating the

ribosomes to the endogenous and heterologous mRNAs.
4.2. tRNAs and codons
The interplay between codons and tRNAs was shown early

on to control translation elongation kinetics [35]. In

S. cerevisiae, for example, the expected number of codons

and tRNAs can be estimated in the following way: there is

an average of approximately 420 codons per mRNA [7],

and the number of mRNAs is estimated to be 60 000 [2].

Thus, in this organism, we expect to see an order of 2.5 � 107

codons. In addition, since the number of tRNAs per ribosome

was estimated to be up to 12.2 [5] and the number of
ribosomes is of the order of 2 � 105, we expect to see an

order of 2.4 � 106 tRNA in S. cerevisiae cells.

Modelling the competition between codons for charged

tRNAs is challenging due to the following reasons: (i) there is

a large but finite pool of codons and tRNAs; (ii) there are up

to 61 types of codons and tRNAs; (iii) allowed by the redun-

dancy of the genetic code, one amino acid can be encoded by

several codons. Specifically, one type of tRNA can bind to sev-

eral codons with different affinities via wobble interactions in

the third nucleotide of the codon [36]. Similarly, one codon

can be recognized by several tRNAs with different affinities;

(iv) the ribosome GTPase (elongation factor G in bacteria and

elongation factor 2 in eukaryotes), which induces ribosome

translocation along the mRNA, also induces conformational

changes in the ribosome that facilitate the diffusion of tRNAs

through the ribosome [37]; (v) codon order can have an effect

on tRNA diffusion [38]. Specifically, successive codons,

which are encoded by the same cognate-tRNA species, can

improve the efficiency of local tRNA diffusion and thus, the

translation rate. These aspects are illustrated in figure 3.

Currently, there are no models that consider all these

aspects; however, various works have aimed at dealing with

different aspects of tRNA–codons competition. A simple

measure was proposed by Pechmann & Frydman [39], based

on the ratio between the tRNA supply that can translate the

codon and the demand for this codon. Specifically, the relative

demand of a codon was estimated based on the relative fre-

quency of the codon among all the transcripts expressed at a

certain time point. The supply of a codon was estimated

based on a computational measure [40,41] that considers an

estimation of the intracellular tRNAs, and the interaction affi-

nities of all the different tRNAs with the codon. Although

this is an efficient measure, it ignores various aspects such as

points, (i), (iv) and (v) above.

Brackley et al. [42] developed and analysed a computational

simulative model of translation elongation which includes the

dynamics of the use of tRNAs and their recharging with amino

acids. Their approach describes a TASEP model in which ribo-

somes move from site to site with rates that are dependent on

the size of the pool of charged tRNAs (aa-tRNAs). Every

time a ribosome leaves a site of type x, an x type aa-tRNA is
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removed from the pool and an x type tRNA is added to the cor-

responding pool of bare/uncharged tRNAs. Bare x type tRNAs

are recharged with a rate Rx. Using this simulation, the authors

showed that increasing the initiation rate of translation can lead

to a depletion of some species of aa-tRNA, which can thereby

lead to slow codons and queueing. This can induce striking

‘competition’ effects when considering multiple species of

mRNAs that share the same pool of tRNA resources. This

model includes various important aspects of the competitions

of codons for tRNAs; however, the analysis has not been tai-

lored to fit experimental data and did not consider all the

transcripts presented in the cell. In addition, points (iii), (iv)

and (v) that were mentioned above were not addressed by

this model.

It is important to mention that although many of these

models consider all codons of a certain tRNA as relevant com-

petitors, in practice, only codons occupied by the A-site of the

ribosome are actually competing for tRNAs. In S. cerevisiae, for

example, it was roughly estimated that 85% of the ribosomes

are engaged in translation [2,43]. Thus, the demand for

tRNAs is expected to be 0.85 multiplied by 2 � 105, which

equals 170 000.

This distinction has been made, for example, by Fluitt

et al. [44], in their mathematical model for codon competition

on tRNAs. Based on their approach, translation elongation

was modelled as a stochastic process in which the transport

of aa-tRNAs throughout the cytoplasm was modelled as a

random walk that may lead to the ribosomal A-site.

Elongation rates were thus determined by the competition

between cognate, near-cognate and non-cognate aa-tRNAs

on the ribosomal A-site. Specifically, the model divided the

cytoplasm volume, into discrete occupation sites, each of a

length di which corresponds to the size of the aa-tRNA of

type i. The transition time required for a random walker to

move from one site to the other defined as ti was estimated

to be d2
i =6Di, where Di is the diffusion coefficient of the

random walker (as measured by Elowitz et al. [45]). The prob-

ability pi that a walker of type i arrives at an open A-site in

time interval ti was estimated by the ratio between the

number of walkers of this type and the total number of

sites. Finally, the average arrival time of a specific aa-tRNA

was set to be the ratio between ti and pi. Despite

the additional parameters this model includes, such as the

volume of the cytoplasm and the size of the sites, points

(iii), (iv) and (v) were not taken into consideration.
4.3. miRNAs and RNA binding sites
miRNAs are small non-coding RNAs that play a role in post-

transcriptional regulation via sequence-specific binding to

target RNAs. Specifically, their binding sites can include

mRNAs as well as non-coding RNAs [46–48]. The idea that

competition between binding sites to bind common miRNAs

can regulate the rate of protein synthesis of individual

genes has been substantiated by a wide variety of studies

(e.g. [48–50]). One of the main challenges in modelling such

competition is related to the huge amount of different miRNA

species. In the human genome, for example, there are

800–1000 different miRNAs [9], and one miRNA gene can be

presented in the cell in more than 50 000 copies [51]. Moreover,

the fact that 30–90% of the human genes can be regulated by

miRNAs [9,52] elucidates the importance of understanding

the competition effect of miRNAs on human health.
We believe that all aspects mentioned above for the case

of competition between codons for charged tRNAs should

apply also for the case of competition of miRNA binding

sites on miRNAs. Equivalently, the following aspects should

be considered: (i) there is a large but finite pool of miRNAs

and their binding sites; (ii) there are different types of

miRNAs and binding sites; (iii) each miRNA has the potential

to target a huge number of mRNAs, and one mRNA species

can be regulated by multiple miRNAs [53,54]. Moreover,

the miRNA–mRNA interaction can occur at different hybridiz-

ation affinities; (iv) ribosome movement, as well as the

movement of other RNA binding proteins, can mask the recog-

nition of miRNA motifs inside the coding regions; and (v) the

order and the distance between competing binding sites can

affect miRNA binding efficiency [55,56].

However, there are additional aspects related specifically to

miRNA competition modelling which are more challenging

than for the case of tRNAs and codons [57]. For example, the

total number of parameters used for predicting miRNA–

mRNA interactions is much larger and typically includes

dozens of sequence variables surrounding the miRNA–

mRNA interaction site [52]. In addition, it was shown that func-

tional target sites for one miRNA tend to be preferentially

conserved in a subset of species. Thus, the conservation of

the sequence is another meaningful parameter in modelling

competition between miRNA binding sites on miRNAs [58].

Moreover, the expression of individual miRNAs can vary dras-

tically; in mammalian cells, for instance, the abundance of

individual miRNAs can vary by orders of magnitude [59]; on

the other hand, it is currently believed that the changes in

tRNA levels across tissues and conditions are less drastic [60].

It is thus important to emphasize that due to the complex

nature of miRNA competition, developing a complete model

of miRNA competition is considered a notably challenging

task. Particularly, as some of the points mentioned above

have not yet been studied. Nevertheless, various initial

attempts to model miRNA competition have been suggested

in recent years.

A simple model of competition between target sites on

miRNAs considers only one type of miRNA with multiple

binding sites of the same strength. For example, Jens &

Rajewsky [21] proposed a model of the transcriptome of

white blood cells to study competition for the human

miRNA, miR-20a. Assuming M binding sites, each having a

binding strength Ki and a concentration ci; at equilibrium, all

sites of a given Ki have the same occupancy (Qi). According

to the binding equation, Q equals the number of free miRNAs

(F) divided by the sum of F and Ki. Thus,Q is expected to mono-

tonically increase with F until saturation. The total number of all

miRNAs (miR-20a, in the specific instance) can be represented

by the sum of F and the aggregate number of bound miRNAs

(the sum over ci . Qi). Based on these parameters, their simple

steady-state model of binding site occupancies comprised a

set of binding equations that can be solved numerically for

any combination of binding sites with the constraint that the

total number of regulator molecules (miRNAs or RBP) is not

changed by binding or unbinding.

Jens & Rajewsky [21] further described the competition

effect between all miRNA or RBP-binding sites using three

regimes, reflecting three possible changes in the number of

competing binding sites and their effect on the binding

site occupancies. Specifically, the three described regimes

are: (i) crosstalk, (ii) buffering and (iii) sponging (figure 4).
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in the concentration of a miRNA to sensitively regulate binding sites with different affinities. (d ) The ‘sponge’ effect describes the expression of RNAs with many
strong binding sites that can reduce site occupancies by sequestration of miRNAs. (Online version in colour.)
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The crosstalk scenario requires that both the total number of

competing binding sites and the number of binding sites per

transcript would be small enough for an individual mRNA to

influence the binding site occupancies. Furthermore, for cross-

talk to hold, the binding sites need to undergo specific

interactions with miRNAs/RBP and thus, to be sensitive to

changes in the concentration of free miRNAs/RBP. Mathemat-

ically, this is modelled by setting F to be close to the dissociation

constant, Kd. In practice, however, sequence specificity is

usually low and thus, the effect of a single mRNA becomes neg-

ligible. In the buffering scenario, the total number of potential

binding sites is significantly larger than the number of binding

sites per transcript. Buffering thus prevents saturation and

allows changes in the cellular concentration of a miRNA to

regulate binding sites with different affinities. In the model, buf-

fering leads to an increased occupancy threshold. Finally,

sponging describes the insertion of RNAs that adds a large

number of strong binding sites for a single type of miRNA,

allowing a maximum sequestration of this miRNA [48]. Specifi-

cally, in the sponging regime, the number of binding sites

contributed by a single mRNA becomes comparable to the

total number of binding sites in the transcriptome, substantially

reducing site occupancies. The term ‘sponges’ refers to the

unique RNA species that include many strong binding sites

and are presented in the cell in high-copy numbers that vastly

exceed the thresholds of physiological mRNAs.

In the model, sponging is represented by increasing

the parameter related to the concentration of strong binding

sites which reduces the concentration of free miRNAs.

Consequently, the binding site occupancies are also reduced.

Using a stochastic modelling of binding sites competition

for miRNA binding validated by single-cell experiments,
Bosia et al. have further investigated the crosstalk scenario,

showing that the optimal cross-regulation regime is compati-

ble with low numbers of mRNA molecules. Their model

relied on two types of target mRNAs that contain binding

sites for the same miRNA. The parameters of the model

included the transcription and degradation rates of the two

mRNAs, the effective binding rates of each binding site to

the miRNA, the expression levels and the degradation rates

of the proteins that can be produced by these mRNAs and

finally, the probability of miRNA recycling. Analysis of the

model and its experimental validation revealed that crosstalk

between binding sites is quantitatively relevant only when

the number of target mRNA molecules is relatively small

and the binding rates of the miRNA molecules to the

competing sites are similar [61].

It is important to mention that although many models are

focused on miRNA binding sites that are located on mRNAs,

additional binding sites located on non-coding RNAs such as

long non-coding RNA (lncRNAs) and pseudogenes can criti-

cally affect competitional aspects. For example, sponging by

lncRNAs can significantly reduce the number of miRNAs

that are available for bindingto their target mRNAs. Martirosyan

et al. [62] reviewed several mathematical and in silico models

employed in the recent years to shed light on this topic.

4.4. Transcription factors, RNA polymerases and DNA
binding sites

Modelling transcription usually relies on the interplay

between available TFs and RNAPs, and the number of com-

peting promoters and other non-specific binding sites along

the DNA. In E. coli cells, the typical number of RNAPs is
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between 4.6 � 103 and 104 [13], while the number of protein

coding genes is 4.3 � 103 [12]. In mammalian cells, it was

estimated that there are 8 � 104 RNAP-II [11] and approxi-

mately 2 � 104 protein coding genes [8]; the number of copies

of a certain TF can vary between 4 � 103 and 1.5 � 108 [63].

Moreover, there are various types of TFs that can act on the

same promoter. In addition, a gene that is found in the DNA

in multiple copies directly increases the demand for the corre-

sponding TF. Furthermore, most of the TFs have many target

genes (reviewed in [64]). Thus, eventually due to the complex

relation between RNAPs, TFs and promoters, modelling

competition during transcription remains challenging.

Mathematically, modelling competition of TFs and RNAPs

on their binding sites is expected to resemble other gene

expression competitions in certain aspects. Specifically, there

are several similarities between competition on resources

during transcription and translation; for example, between

genes competing for RNAPs and mRNAs competing for ribo-

somes. Similarly, competition of promoters on TFs can be

equivalent, in some manners, to the competition of codons

on tRNAs, or the competition of miRNA binding sites on

miRNAs. However, the specific parameters and other factors

involved in each competition are of course different.

In 2006, an equilibrium-based model has been proposed

to study transcriptional regulation in E. coli in vivo [20].

In bacteria, transcription initiation requires RNAP to form a

complex with transcription initiation factor s [65]. The

recruitment of the complex to promoters depends on the

binding affinity and is modulated by several repressors and

activators. In their mathematical model, Grigorova et al. [20]

aimed to quantify the partitioning of RNAPs, and complexes

of RNAPs and s factors, between promoters, non-specific

DNA binding sites and the free pool of RNAPs in the cyto-

plasm. The two major parameters of the model are the

dissociation constants for specific and non-specific binding

of RNAP. The model includes a fixed total concentration of

sigma factors that are split into the two following fractions:

(i) the house keeping sigma factors and (ii) alternative

sigma factors, designated s70 and sA, respectively. Both

types were assumed to have the same binding affinity for

free RNAPs. In addition, it was assumed that s70 promoters

can be occupied only by complexes of RNAPs and s70,

whereas sA promoters can be occupied only by complexes

of RNAPs and sA. The model examined how competition

between s70 and sA is affected by several factors, including:

the total number of s factors, promoter saturation by

RNAP attached to s70 (in the absence of sA) and the

amount of free RNAPs (either with or without a s factor).

Accordingly, it describes three potential equilibrium binding

states between: (i) free RNAPs and s factors, (ii) complexes of

RNAPs with s and promoters, and (iii) RNAPs and RNAPs

with s binding to non-specific DNA sites. The model

assumes strong specificity of the promoters such that com-

plexes of RNAP and s70 can bind only to s70 promoters

(similarly, sA promoters can be occupied only by RNAP

and sA); all promoters of the same type are assumed to

have equal binding affinity. Mathematically, the model

equations composed of a set of conservation equations

describing the constant and finite pools of RNAPs, s factors

and promoters, and a set of mass-action equations describing

the dissociation constants.

In 2014, the work of Grigorova et al. [20] was extended by

Mauri & Klumpp [66] in a theoretical model developed for
the competition of sigma factors for RNAPs. The model

aimed at studying the effect of competition between canoni-

cal and alternative sigma factors on the bacterial response

to changes in the environmental conditions. Whereas the

model of Grigorova et al. was focused on transcription

initiation, the model of Mauri & Klumpp [66] included an

explicit description of transcript elongation. In addition,

cases of promoters that can be recognized by two types of

sigma factors were also examined. The model revealed that

sigma factor competition provides a mechanism for a passive

upregulation of the stress-specific sigma-driven genes.

Specifically, the increased number of RNAPs in stress leads

to an increase in the number of alternative sigma factors

that bind the RNAP and direct it towards the appropriate

stress response genes. The model was validated by compari-

son with in vitro competition experiments [67,68], with which

a good agreement was found.

The interplay between TF copy number and the number of

its target binding sites in E. coli was further characterized by

Brewster et al. [69] using a thermodynamic model. The main

idea of the model was to enumerate the possible configurations

of RNAP and TF among the available specific and non-specific

binding sites, in order to infer the probability of finding RNAP

bound at a specific promoter. Using a simple repression architec-

ture [70,71] which consists of a promoter with a single repressor

binding site such that when repressor is bound no transcription

ensues, different scenarios of competition were examined. For

example, competition from multiple, identical genes with pro-

moters that are either placed on a high-copy number plasmid

or integrated in multiple chromosomal locations (figure 5a).

The model estimated the fold-change in gene expression based

on the ratio between the expression level in the presence of a

TF to the level in its absence, taking into account the number

of repressors present in the cell, the size of the non-specific bind-

ing sites (which was set to be the whole E. coli chromosome,

specifically, 5 � 106), the binding energy of a repressor to its

operator and finally, the copy number of the gene.

Another important and challenging aspect that needs to be

considered when modelling competition between binding sites

on TFs is the fact that DNA folding has a global effect on the

binding of TFs (reviewed in [72]). Specifically, chromosomes

are organized into chromosome territories such that genes

from different territories can co-localize in the nucleus together

with TFs [73], inducing local competition between TFs binding

sites in each territory. This presents an additional layer of com-

plexity to the target-search problem of TFs and thus, further

challenges the attempts to genuinely model their competition.

Although the competition between TFs for available

RNAPs has been extensively studied in bacteria, initial evi-

dence for target selection mechanisms in eukaryotic genomes

was provided by a quantification of the DNA binding affinities

for different TFs in Xenopus oocytes [74].
5. Experimental studies related to competition
for finite resources during gene expression

While various experiments that were mentioned above

(table 1) measured parameters related indirectly to compe-

tition, there are currently only a few studies that have

performed measurements related directly to the dynamics

induced by competition and their effect on organism fitness.

In this section, we will briefly review a few of them.
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Figure 5. Competition during transcription. (a) Competition aspects during bacterial transcription. Promoters (red multi symbol) and non-specific binding sites
(green dots) can be located either on the chromosomal DNA or on plasmids. These sites can be bound by a strong TF (blue ellipse), alternative TF with
lower affinity (orange ellipse), RNAP or a complex of TF with RNAP. (b) Flanking sequences around the promoters can differentially affect binding of TF with
identical DNA binding motifs through DNA shape. (Online version in colour.)
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Early in 1993, Vind et al. [14] showed that competition

between ribosomal binding sites (RBSs) on ribosomes limits

protein synthesis in E. coli. A construction of an operon contain-

ing a lacZ gene and a galK reporter gene, encoding for the

proteins b-galactosidase and galactokinase, respectively,

were used. The only difference between the constructs was a

mutation in the RBS that changes the binding efficiency to

the ribosome and thereby, the expected translation initiation

rates. Specifically, four types of RBSs were tested: RBS from

the wild-type original lacZ, two ‘improved’ RBSs from the

tufA gene and the rspA which are highly expressed in E. coli,
and a rspA mutant, selected as having increased expression

in vivo (figure 6a). Analysing protein synthesis rates using

two-dimensional gel electrophoresis revealed differences

between the different variants. Specifically, in the variant that

included the most expectedly efficient RBS, the rate of galacto-

kinase synthesis reached a maximum level after 3 min of

induction of the lacZ gene and then decreased by 40%. How-

ever, in the other variants, the rate of both b-galactosidase

and galactokinase continued to increase. Additionally, despite

a significant decrease in the rate of synthesis of the individual

galactokinase proteins, the rate of total protein synthesis

seemed to be unaffected. Together with the fact that the

full lacZ gene is much larger than the average protein in

E. coli, and can thus occupy more ribosomes, this suggests

that utilization of translation initiation factor was reduced

after the induction. Since the rate of total protein synthesis

was unaffected by induction and translation initiation factor

utilization was reduced after the induction, the reduction in

the synthesis rate of individual proteins could not be explained

by the limited availability of initiation factors or charged

tRNAs, but rather, by the reduction in the number of free ribo-

somal subunits which increased the competition among RBSs

for available ribosomes.
Competition between multiple specific and non-specific

DNA binding sites is commonly dissected experimentally

using simple repression regulatory architecture. Simple

repression occurs when a repressor is bound to a binding

site that is located upstream from the promoter of a reporter

gene (such as a fluorescent gene, [70,71]). The bound repres-

sor blocks the possibility of RNAP to bind the promoter and

thus, prevents the transcription of the gene [76,77]. This

approach has been used in E. coli to analyse the interplay

between TF copy number and the number of its target bind-

ing sites which were placed in multiple locations on

chromosomal DNA or plasmids [69], using the Lac repressor

[78]. Specifically, three types of competition were examined

(figure 6b), each represents a different distribution of the mul-

tiple locations of the TF-binding sites: first, competition from

multiple, identical genes in the simple repression architecture

when the promoters are placed only on a high-copy number

plasmid (and not on the chromosome); second, competition

from multiple, identical genes when the promoters are

integrated in multiple chromosomal locations (and not on

plasmids); and third, a single copy of the gene of interest

and its promoter is located on the chromosome, but multiple

plasmids which have binding sites for the repressor (but not

for the promoter) are presented. These architectures allowed

the identification of the source of transcription and thus,

measuring the fluorescence from the reporter gene can be

related to binding of TFs to the promoter. In the third case,

for example, an observed fluorescence must be due to bind-

ing to the single chromosomal copy of the promoter. When

all competing binding sites had the same strength, the

change in the gene expression was observed once the repres-

sor copy number exceeded the number of competitors.

However, when the competitors were weaker, the transition

was shifted towards lower repressor numbers.



la
c

pr
om

ot
er

RBS
lacZ

galK

bla

(a)

time 

sy
nt

he
si

s 
ra

te

construct plasmids with
varying RBS efficiency

transform plasmids into E. coli,
place in plates and induce lacZ

analyse protein
extracts by 2D gel
electrophoresis 

determine synthesis rate of
b-galactosidase and

galactokinase

strong RBS

weak RBS

(c)

1

2

3

GFP

integrate the capacity
monitor into the E. coli

genome

transform with plasmid
synthetic constructs

measure fluorescence
and optical density

determine capacity from
GFP production rate

(b)

Figure 6. (a) Illustration of the experiment performed by Vind et al. [14] to measure the effect of competition on free ribosomes. A series of plasmids containing
the lacZ – galK operon with different RBSs were constructed, each included a lac promoter, a specific RBS, the lacZ and galK genes and a gene for antibiotic
resistance (bla). After transformation into E. coli hosts and lacZ induction, proteins were extracted and analysed by two-dimensional gel electrophoresis. (b)
Three constructs for measuring competition on TFs as used by Brewster et al. [69]. Promoters are designated by red dots. (i) Competition from multiple promoters
located on high-copy number plasmids, (ii) competition from multiple promoters located on the chromosome and (iii) competition from multiple non-specific
binding sites on plasmids and a single chromosomal promoter. (c) Illustration of the experiment performed by Ceroni et al. [75] to measure the effect of synthetic
burden on competition for resources. A capacity monitor was constructed and integrated into a specified genomic location; synthetic plasmid constructs were trans-
formed into the cells and the capacity was calculated from the GFP production rate. (Online version in colour.)
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Ceroni et al. [75] proposed an experiment to study direct

competition effects induced by heterologous gene expression.

Instead of estimating the burden that heterologous expression

represents indirectly from changes in the growth rates, Ceroni

et al. suggested a fluorescence-based method for in vivo quanti-

fication of the load. A synthetic green fluorescent protein

(GFP) was inserted into the E. coli genome, functioning as a

monitor for the capacity of gene expression based on the

GFP production rate per cell. After integrating the capacity

monitor into the bacterial genome, synthetic constructs from

a high-copy plasmid were transformed into the cell and sub-

jected to induction, acting as the ‘burden’ on the cell. Finally,

the reduction in the GFP production rate was measured,

enabling estimation of the cellular capacity (figure 6c). Sub-

stantial reduction in the GFP fluorescence, compared to

uninduced cells, was observed rapidly before a change in

growth rate was detected. In addition, the expression of con-

structs on high-copy plasmids gave approximately fivefold

greater output compared to equivalents on medium-copy

plasmids. As GFP are known to lack regulation [79], it could

be concluded that changes in GFP expression due to global

expression changes indeed reflect changes in the availability

of resources, such as RNAPs or ribosomes.
6. The effect of competition for finite resources
during gene expression on synthetic biology

Competition models constitute an important aspect of

synthetic biology circuits. Commonly, genetic circuits are

designed to include genes that can control the expression of

other genes in the circuit. However, this approach is challenged
by the fact that expression of each gene can also be affected by

competition between different genes for various transcription/

translation factors. Recently, a model that examines the

resource competition effects on the behaviour of the circuit

was proposed by Qian et al. [80]. By explicitly accounting for

the limited concentrations of RNAPs and ribosomes and for

their competition by the different nodes in the circuit, their

model predicted non-regulatory interactions that could later

be rationally minimized. Furthermore, Shopera et al. [81]

demonstrated both computationally and experimentally that

competition for resources can induce indirect coupling

between unconnected genetic circuits. Their work suggested

using negative feedback loops to reduce resource-coupled

interference in such independent regulatory circuits. Negative

feedback loops prevent the accumulation of the product of the

circuit by inhibiting the gene that drives its production, thus,

they can prevent one circuit from continually consuming

expression resources. Another example for taking into account

competition effects in genetic circuit engineering is described

by Carbonell-Ballestero et al. [82]. In their study, they proposed

a mathematical model for predicting the reduction in the

expression of a given gene within a synthetic circuit when com-

petition for resources is presented. Each gene in the circuit

imposed a ‘genetic load’ to the cell which was estimated by

the strength of its promoter, the strength of its RBS and the effi-

ciency of its codon sequence. Considering an organism with M
endogenous genes and N synthetic genes, the model described

the expression level of a gene of interest (gi) as the ratio between

its genetic load and the sum of the genetic loads of the M
endogenous genes and the N foreign synthetic, including gi.

This ratio was multiplied by a constant corresponding to the

limited transcriptional and translational resources.
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7. Discussion and open questions
In this review, we have described some intracellularcompetition

phenomena related to gene expression, and the initial attempts

for their modelling and analysis. We show that competition for

shared finite resources is fundamental for many research topics,

including the biophysics of gene expression, genome evolution

and synthetic biology. However, the modelling approaches

described here are only initial steps towards an accurate under-

standing of cellular competition. Particularly, these models are

only partial, among others due to missing measurements of

the analysed parameters, various computational challenges,

the complexity of the analysed systems and the fact we lack

knowledge about the regulation of many important processes

related to gene expression. For example, the numbers reported

by experimental studies as the measured abundance of intra-

cellular molecules comprise only partial information and a

wider (possibly much wider) range is very likely to exist. In

addition, it is not clear how well certain experiments designed

for quantitatively estimating competition effects resemble real

physiological conditions. For instance, the introduction of

many copies of identical plasmids into a bacterial cell may con-

tribute to the understanding of competition mainly in synthetic

systems, but not in physiological conditions. Some additional

general challenges and directions are depicted below.

First, while there are attempts for developing whole cell

simulations (e.g. [83]), there is currently no comprehensive

model that includes all different the aspects of competition that

were described in this review. Although simpler simulations

can also be very useful for studying many cellular aspects, the

investigation of complex aspects of interactions between mul-

tiple components is only enabled by whole cell models. This

can be done, however, only if the parameters of the complex

models can be accurately estimated. As mentioned above, com-

petition affecting one aspect of gene expression may also have

indirect effects on other aspects of gene expression. For example,

competitionof promoters onRNAPs andTFs is expected to affect

mRNA levels; due to the finite number of ribosomes and tRNAs,

the changes in mRNA levels can thus also affect translation. Simi-

larly, competition of miRNA binding sites on miRNAs affects

mRNA levels which can thereby affect translation. It will be

important to develop computational/mathematical models

that combine competition in all gene expression steps such as

transcription, translation and mRNA degradation. Among

others, such models will enable the study of correlation between

different gene expression steps due to finite resources.

Second, the computational analysis of realistic models that

include all relevant aspects of gene expression often comes

with a substantial demand for computational resources. Since

complex interactions exist between many intracellular com-

ponents, it is entirely not trivial to use parallel computing to

accelerate such simulations. Thus, the current whole cell simu-

lations related to competition (e.g. [15,33,34,83]) include many

approximations, omitting central gene expression aspects.

Similarly, while mathematical analyses related to competition

(e.g. [26,27,31]) are important for studying fundamental

phenomena in the field, it is impossible to employ mathemat-

ical tools that will consider all the biological details related to

competition during gene expression. One possible direction

to overcome these limitations may include the development

of hardware tailored for such simulations.

Third, it will be important to study (from the biophysical

and evolutionary points of view) the ‘competition’ among
subpopulations of intracellular entities such as mRNAs and

ribosomes. For example, it was suggested that viral coding

regions undergo adaptation to the host codons [84] and specifi-

cally a condition-specific adaptation [85]; it will be interesting

to understand and model how competition between the host

codons and the viral codons on the host resources (such as

tRNA molecules) shapes the viral coding regions. In addition,

it was also suggested that in various conditions, the set of ribo-

somes is not homogeneous [86] and the cell includes various

subpopulations of ribosomes with different biophysical par-

ameters. Thus, computational and mathematical modelling of

the competition among mRNAs on different types of ribo-

somes is clearly an important research topic for the coming

years.

Fourth, it has been previously shown that the structure of

different molecules can contribute to accelerating target site

finding. For example, an unusual enrichment of TFs in

dimers and tetramers suggests that they have been shaped by

evolution to enable efficient intersegmental transfer [87]. Incor-

porating the effect of the three-dimensional structure of the

different factors required for gene expression can introduce

additional improvement to the current models. In addition to

basepair recognition which has usually been assumed to be a

major determinant of the binding specificity of molecules to

their targets, the local shape of the binding sites has also

been proven to have a regulatory effect. It was suggested,

among others, that nucleotides outside the binding site can

influence its three-dimensional structure. Consequently,

binding sites of identical sequences can achieve different speci-

ficities in vivo, due to different sequence contexts. While this

topic has gained much attention in the case of TF-binding

sites interactions modelling (e.g. [88–92]), similar structural

aspects are relevant to additional types of competition. For

example, the elongation speed of the ribosome is affected by

local secondary structures downstream from the codon

[93,94], and the efficiency of miRNA hybridization is affected

by the mRNA folding surrounding the binding site [95].

However, not only local structures should be considered

in modelling competition, but also the local density of the

binder molecules. Moreover, the local density of the binders

is expected to affect the expression of a gene more critically

than the global density. For example, it was suggested that

efficiently translated mRNAs are associated with higher

local density of both ribosomes [96] and tRNAs [38].

Although this idea has been mainly used in TASEP-based

models of mRNAs on ribosomes [97], local densities should

be an important parameter that should be included in any

competition model during gene expression.

Finally, the concentrations of gene expression factors are

not constant among different cellular conditions (see, for

example [98]). Thus, it will be interesting to perform a com-

parative study of competition models in different conditions

and tissues. Such an analysis can reveal novel layers of regu-

lation related to the biophysics and evolution of competition.

To the best of our knowledge, these types of studies have yet

to be performed.
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