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Parasitic diseases, such as sleeping sickness, Chagas disease and malaria,

remain a major cause of morbidity and mortality worldwide, but particu-

larly in tropical, developing countries. Controlling these diseases requires

a better understanding of host–parasite interactions, including a deep

appreciation of parasite distribution in the host. The preferred accumulation

of parasites in some tissues of the host has been known for many years, but

recent technical advances have allowed a more systematic analysis and

quantifications of such tissue tropisms. The functional consequences of

tissue tropism remain poorly studied, although it has been associated with

important aspects of disease, including transmission enhancement, treat-

ment failure, relapse and clinical outcome. Here, we discuss current

knowledge of tissue tropism in Trypanosoma infections in mammals, describe

potential mechanisms of tissue entry, comparatively discuss relevant find-

ings from other parasitology fields where tissue tropism has been

extensively investigated, and reflect on new questions raised by recent dis-

coveries and their potential impact on clinical treatment and disease

control strategies.
1. Introduction
Tropism is the ability of an organism to specifically interact with another cell or

orient itself towards a given stimulus. One of the most famous examples is

phototropism in which plants orient part of their organism towards the Sun

[1]. Parasites also show tropism, which can happen to different degrees and

at different levels: host, tissue, cell and, for intracellular pathogens, subcellular

compartment. For example, at the host level, Trypanosoma brucei gambiense and

Trypanosoma brucei rhodesiense can infect humans, while Trypanosoma congolense
and Trypanosoma vivax cannot. Within a host, tissue tropism can change during

the course of infection. For example, acute Toxoplasma gondii infections are

associated with gut cell invasion and pathology, whereas chronic disease is

characterized by brain invasion and neurological impairment.

In most cases, the reasons underlying tissue choice by a pathogen remain

poorly understood, but are probably multifactorial. Nonetheless, tissue tropism

can have a direct impact on the parasite life cycle. For instance, it may promote

its persistence in the host and amplify transmission potential. The same tissue

can also allow parasites to follow two possible fates, as exemplified by Plasmo-
dium vivax, which can either replicate from one to tens of thousands of parasites

in a single hepatocyte during the liver stage of infection or it can enter a quies-

cent state and remain undetected for several months/years (reviewed in [2]).

These biological decisions have enormous repercussions for disease progression

at the individual level, and for disease epidemiology at a community level.

In this review, we focus on tissue tropism of pathogenic Trypanosoma
species, namely salivarian (African) trypanosomes and the stercorarian (Amer-

ican) trypanosomes, and will draw comparisons with other parasites, where

relevant. These organisms are clinically in humans and animals [3]. Chagas dis-

ease (T. cruzi) currently affects 5–18 million people in the Americas, directly

causing 10 000 deaths annually [4]. The prevalence of sleeping sickness
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Figure 1. Life cycle of trypanosomes. (a) African trypanosomes (T. brucei, T. congolense and T. vivax): a tsetse takes a bloodmeal on an infected mammal and
becomes a vector of African trypanosomiasis. Procyclic forms establish in the midgut by clonal expansion. The parasites travel to the proventriculus, salivary glands
and/or proboscis, where they become epimastigotes and then infective metacyclics. In the following bloodmeal, the fly injects some of these parasites into the
mammalian host, through its saliva. Parasites in the tissues (dermis, hypodermis) enter the bloodstream as metacyclic trypomastigotes and differentiate to blood-
stream forms. Tissues affected by each parasite species are also depicted in the figure. T. vivax bloodstream forms can also be mechanically transmitted by non-tsetse
vectors to new mammalian hosts, without biological differentiation. (b) Trypanosoma cruzi: a triatomine bug feeds on an infected mammalian host and becomes a
vector of Chagas disease. Trypomastigotes establish in the midgut, where they differentiate into epimastigotes and multiply. Epimastigotes travel to the hindgut and
differentiate into infective metacyclic trypomastigotes. In the following bloodmeal, the triatomine releases the infective metacyclic trypomastigotes in its faeces in
the skin near the bite site. Trypomastigotes enter the mammalian host via mucosal membranes and invade cells, where they differentiate into intracellular amas-
tigotes. These intracellular forms continue to multiply until they differentiate back into trypomastigotes, which burst out of the cell and are released into the
bloodstream, reaching a variety of tissues. This figure was modified from Servier Medical Art, licensed under a Creative Commons Attribution 3.0 Generic License.
https://smart.servier.com.
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(T. brucei gambiense and T. brucei rhodesiense) is declining fast

to less than 20 000 cases owing to continued surveillance and

control strategies, but 65 million people remain at risk in 36

countries of sub-Saharan Africa [5]. Nagana (T. brucei
brucei, T. congolense, T. vivax), surra (T. evansi) and dourine

(T. equiperdum) are a major and growing threat for livestock

welfare and production in Africa, Asia and Latin America

[5,6].

In this review, we will revisit forgotten literature describ-

ing where these protozoan parasites preferentially locate and

how this localization relates to disease pathogenesis, and we

will integrate this knowledge with more recent studies tack-

ling the mechanisms and selective advantages of tissue

tropism. We will provide an overview of (i) how tissue trop-

ism features in the life cycles of trypanosomes; (ii) the various

tissue reservoirs of each species; (iii) the known and potential

mechanisms of tissue tropism; (iv) its advantages for the

parasite; and (v) how tropism influences organ-specific path-

ology. In §7, we reflect on future perspectives for Trypanosoma
tissue tropism research and on the potential impact that

research in this area can have for clinical treatment and

transmission control strategy design.
2. Tissue tropism in parasite life cycles
African trypanosomes (T. brucei spp., T. congolense, T. vivax)

alternate between the tsetse vector and a wide range of mam-

malian hosts. When the insect vector feeds on an infected

host, trypanosomes are ingested in the blood and colonize

the midgut as procyclic forms (figure 1a). Procyclic parasites
migrate anteriorly towards the salivary glands (T. brucei) or

the proboscis (T. congolense), where they differentiate into epi-

mastigotes and metacyclic forms. T. vivax does not have a

procyclic stage, colonizing only the mouthparts of the fly.

Metacyclic forms are infective to mammals and get trans-

mitted in the tsetse saliva during a bloodmeal. Once in the

mammalian host, trypanosomes replicate extracellularly in

the bloodstream and may invade tissues or sequester to

their microcirculation. They have been reported in the vascu-

lature and/or tissues of the skin, adipose tissue, gonads,

kidney, adrenal gland, brain, spleen, liver, skeletal muscle,

lung and heart, as well as in the lymph, cerebrospinal fluid

(CSF), and aqueous humour of the eye, which is the liquid

responsible, among other functions, for maintaining the intra-

ocular pressure and providing nutrition to the ocular tissues

that lack blood supply (figure 1a).

Trypanosoma cruzi alternates between the triatomine bug

and the mammalian host (figure 1b). When a triatomine bug

feeds on an infected host, trypomastigotes differentiate into

epimastigotes in the midgut, where they multiply. Sub-

sequently, they migrate to the hindgut, differentiating into

infective metacyclic trypomastigotes. At the next bloodmeal,

the triatomine bug releases trypomastigotes in its faeces in

the skin near the bite site, facilitating trypanosome entry into

the mucosal membranes. At the entry site, trypomastigotes

invade cells, where they differentiate into intracellular amasti-

gotes. Still in the cell, amastigotes multiply and differentiate

again into trypomastigotes. These are released into the blood-

stream, reaching a variety of tissues, including the heart, the

colon, the spleen, the liver, the bladder, the placenta, the

brain and the adipose tissue (figure 1b), where they can



Table 1. Summary of tissue involvement in Trypanosoma infections.
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aTabanids are mechanical vectors of T. vivax; the parasite cannot differentiate in these insects, but they contribute to transmission in Africa and South America.
bExtravascular does not exclude intravascular.
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infect many cell types. Inside these cells, trypomastigotes

differentiate again into intracellular amastigotes and restart

the cycle. Once in the bloodstream, trypomastigotes can be

transmitted to a new triatomine bug during a bloodmeal.

We can see that tissue tropism is a crucial part of parasite

development, but it is not just an intermittent feature of the

life cycle. In fact, it actually associates with key clinical

phenotypes. In trypanosome infections, parasite invasion of

the central nervous system (CNS) defines the encephalitic,

secondary stage of the disease, characterized by sleep dis-

turbances and psychiatric, motor and sensory malfunctions

that ultimately result in cerebral oedema, coma, systemic

organ failure and death. Cachexia may be linked to adipose

tissue colonization and the parasite lipid metabolism.

T. vivax infections sporadically progress to a haemorrhagic

syndrome [7], a fulminating, invariably fatal disease, charac-

terized by extremely high blood parasitaemia, systemic

haemorrhagic lesions and parasite extravasation to virtually

all organs. In T. cruzi infections, parasite invasion of

cardiomyocytes is the cause of Chagasic cardiomyopathy, a

chronic disease that affects one-third of infected patients

and results in heart failure, ventricular arrhythmias and

cardiovascular and pulmonary pathology [8].
3. Tissue reservoirs of parasites
In this section, we will discuss tissue colonization by trypano-

somes. Table 1 highlights the most important aspects of
Trypanosoma tissue tropism that can be extrapolated from

the current body of knowledge.

3.1. Trypanosoma brucei
Trypanosoma brucei is by far the best characterized African try-

panosome. The vast body of animal studies and the shortage

of autopsy reports of human patients have given us a more

detailed knowledge on the localization of parasites in the tis-

sues of experimental animals than in humans. Yet, all

infected mammals share the same pattern of disease pro-

gression based on clinical features. The first sign of

infection is typically at the tsetse bite site, where a chancre

appears as a result of a local immune response against the

injected parasites [9,10]. Yet, the injected saliva and para-

site-derived factors modulate the skin microenvironment to

allow for parasite multiplication and development (reviewed

in [11]). The skin was recently described as a significant reser-

voir during the infection time course [12,13]. The importance

of this reservoir rests on its anatomical relevance for trans-

mission amplification, potentially explaining the persistence

of active foci despite all eradication efforts [14]. Parasites

were found in the dermis, the adipose tissue of the hypoder-

mis and the fascia beneath the panniculus carnosus muscle of

infected mice [12]. Interestingly, dermal viable parasites

tightly interact with the adipocytes in the connective tissue,

suggesting that the parasites might be metabolically benefit-

ing from these interactions [13]. The current view is that

there is a subpopulation of parasites colonizing the skin,
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while others migrate to and from the lymphatic and blood

systems. From the blood, parasites can disseminate to several

organs.

Parasite entry to the brain marks the beginning of clinical

stage 2 of the disease, characterized by neurological signs,

including personality changes, sleep disturbances, paralysis

and progressive dementia. The first reports of this phenom-

enon showed the presence of parasites in the CSF [15]

because the parasites had crossed the blood–CSF barrier

[16]. Further crossing of the blood–brain barrier (BBB) has

been supported by imaging studies of human brains where

several lesions suggest the presence of parasites within the

brain parenchyma. The cortical regions, cerebellum and

brain stem are the most severely affected areas [10], showing

evidence for meningoencephalitis [10,17], gliosis [18], haem-

orrhages [19] and subcortical perivascular demyelination

[20]. In infected animals, the lesion pattern presents some

variations. For instance, donkeys infected with T. brucei and

cattle infected with T. rhodesiense showed lesions similar to

those in humans [21,22], while dogs infected with T. brucei
presented more severe lesions in the choroid plexus and pitu-

itary gland [23] and rats infected with T. gambiense failed to

show demyelination [17,24]. All of these might contribute to

the neuropsychiatric disorders typical of this stage of the disease

[25].

Trypanosoma brucei has for a long time been considered a

tissue parasite, so its presence in several other organs comes

as no surprise. Histopathology reports suggest that T. brucei
can be found in most major organs, often associated with

lesions (reviewed in [26] and [27]). The skin and CNS, dis-

cussed above, and the heart, testes and adipose tissue are

the best characterized reservoirs to date [23,28–31].

The presence of trypanosomes in the heart has been

associated with a clinical diagnosis of pancarditis in both

humans [32,33] and experimental animals [33,34]. Myocar-

ditis and epicarditis in hearts of dogs experimentally

infected with T. brucei has also been reported [23]. The pro-

cess of heart invasion by parasites is still controversial.

Invasion through the mural endocardium has been proposed,

but invasion through the vascular endothelium cannot be dis-

carded. Once parasites reach the heart, they target all cardiac

layers, but preferentially the epicardium and endocardium,

culminating in massive disruption of these structures. This

colonization process is accompanied by a marked inflamma-

tory response driven by macrophages, plasma cells and

lymphocytes, with rare giant or foam cells [35]. As the disease

progresses, degeneration of the heart muscle fibres may be

observed. Parasites also colonize the heart valves and the

coronary vessels. However, in these structures, no evidence

for major inflammation was observed [33]. Altogether, these

alterations could be the origin of ventricular dysfunction

and heart failure, especially upon drug treatment [36,37].

The colonization of the reproductive organs by trypano-

somes is well documented in experimentally infected mice

[29,38,39]. Male deer mice infected with T. brucei showed

marked changes in their testes, namely reduced weight,

diameter and thickness of the seminiferous tubules as well

as epididymitis. Histopathological analysis revealed severe

degeneration of seminiferous tubules with reduced numbers

of spermatozoa, spermatids (usually becoming giant cells)

and spermatocytes, hypertrophy of the Sertoli cells and

shrinking of myoid cells. Trypanosome accumulation was

observed solely in the intertubular space, within and outside
the blood vessels, and lymphatic system, with no parasites

observed beyond the basal laminae of the seminiferous

tubules. Parasite presence is accompanied by orchitis and is

characterized by recruitment of lymphocytes, plasma cells

and macrophages [38]. More recently, Carvalho et al. [39] cor-

roborated and characterized the diagnosis of epididymitis in

experimentally infected mice. In this study, the authors

observed parasites in the blood vessels and in the stroma of

the epididymis, with no invasion of the epididymal ducts.

In the chronic stage of the disease, most of the parasites of

the stromal compartment showed changes consistent with

cell death. An active immune response was also mounted

with numerous macrophages and moderate numbers of

T-lymphocytes observed in the stromal compartment. In

some cases, multifocal rupture of the epididymal ducts was

also visible. These alterations led to the release of spermato-

zoa into the stroma and formation of sperm granulomas.

They could potentially allow for parasite entry into the

ducts and consequent sexual transmission of the disease.

Altogether, orchitis and epididymitis may explain the cases

of infertility observed in infected animals [40,41].

Finally, our group has identified the adipose tissue as a

new reservoir in experimental infections of T. brucei brucei
[31]. T. brucei invades the fat tissue early in infection and per-

sists throughout the chronic phase, where total numbers

account for roughly 10-fold more parasites than the blood.

It is likely that T. brucei gambiense also colonizes the adipose

tissue. Indeed, the luciferase signal of real-time ex vivo biolu-

minescence imaging of stomach, kidneys, heart, liver and

intestines of infected BALB/c mice was reported to be lost

upon visceral fat dissection [28]. We did not find any reports

about the detection of parasites in adipose tissue depots in

humans, but it is likely that this tissue was neglected in the

few autopsies made of patients with sleeping sickness. Inter-

estingly, cachexia is a hallmark of trypanosomiasis (see

below), so it is tempting to hypothesize that fat tropism

and cachexia are linked. Yet, this awaits further investigation.

Importantly, we showed that parasites residing in the fat

are functionally different from those in the blood. Transcrip-

tomic analysis of adipose-tissue forms showed that parasites

probably sense their environment and respond by upregulat-

ing expression of several metabolism-related genes. We

confirmed that parasites in the fat are capable of catabolizing

abundant fatty acids such as myristate, while their blood-

stream counterparts cannot [31]. The fact that parasites in

fat and blood are different was completely unexpected and

raises the question of the population variability in the

whole body and throughout time. Parasite heterogeneity

across tissues raises important concerns for drug treatment

and tells us that there is still a dark side of the parasite’s

life cycle that needs further investigation.

3.2. Trypanosoma congolense
The current knowledge is that T. congolense stays mainly in

the circulating blood and rarely invades tissues. In early

studies, T. congolense has been described as fully intravascular

[42–44]. Yet, Fiennes [45] reported T. congolense parasites to

be evenly distributed in the tissues of lymph nodes, adrenal

cortex and in the anterior pituitary glands. Lesions in the

adrenal glands have subsequently been described as cortex

enlargement and cytoplasmic atrophy [46]. Additionally,

Luckins & Gray [47] have presented light and electron
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micrographs showing T. congolense persisting and proliferat-

ing in the connective tissue underlying the site of the tsetse

bite. They showed a growing parasite population for up to

19 days post inoculation, with parasites distributing longitud-

inally through the bundles of collagen, coupled with

infiltration of mononuclear cells in the dermis [47]. This

was further corroborated by Emery & Moloo [48], who also

observed parasites swimming through the collagen fibres

and fluid (oedema) for at least 15 days post bite.

Trypanosoma congolense infections in calves cause enlarge-

ment of the major organs, particularly liver, spleen, kidneys,

heart and lungs, with significant changes in weight from

seven weeks post infection [49]. The choroid plexus of the

brain is often enlarged, and, as infection progresses, so are

the lymph nodes (although this expansion is accompanied

by a reduced cellular density) [46]. Additionally, there is

thickening of the lobular septa and alveolar walls, pulmonary

vasodilation, an up to five times increase in pericardial fluid,

atrophy of the thymic cortex [46] and general decrease in visc-

eral fat [49]. The spleen is enlarged, often associated with

parasite colonization [50]. The enlargement of the heart

derives from an increase in density and size of myocardial

nuclei, and some fibre atrophy. Unlike lesions caused by

T. vivax, necrotic foci have been reported only sporadically

in T. congolense infections [46,50].

Importantly, T. congolense parasites sequester to the

microcirculation of the heart at times of absent blood parasi-

taemia, often in clusters [50,51]. Parasites have also been

reported in the microcirculation of the brain and skeletal

muscle [51]. Cerebral lesions and/or sequestered parasites

have been shown not only in cattle, but also in lions, gazelles

and hartebeests [52]. Despite the lack of evidence for free

T. congolense parasites in the bone marrow, they have been

reported in the arterioles of the bone marrow in cattle [53],

which may link to the marked changes in haemopoiesis

observed during both cattle and rodent infections [49,53,54].

There is generalized micro-vasodilation, most prominent in

the liver and mesentery, as well as lymphocytic infiltration

and accumulation at the corticomedullary junction of the

kidney, liver sinusoids and sinusoids of the pituitary gland

[46]. Despite the abundance of lesions, parasites have never

been observed extravascularly in lymph nodes, kidney, liver

or lung.

3.3. Trypanosoma vivax
Trypanosoma vivax infections are widely known to cause

extensive lesions in virtually all organs and tissues of most live-

stock species. Inflammatory and degenerative lesions have

been described in the heart, spleen, eye, brain, liver, kidney,

lymph nodes [55–62] and reproductive organs [63–66].

Despite some early disagreement on whether T. vivax
could colonize tissues [26,67], parasites have clearly been

observed in ruptured blood vessels [68], in the extravascular

spaces between myocardial fibres, swimming through extra-

vascular fluid (oedema) [58,69], in the aqueous humour of

the eye, in the CNS [57], in the dermis [48], circulating in

the lymphatic vasculature following tsetse inoculation [70]

and in other major organs [60]. More recently, parasites

have been shown by polymerase chain reaction (PCR) in

the reproductive system of both male and female experimen-

tally infected goats [64,66]. It is worth noting that T. vivax
infections may have a milder impact on the skin than T.
congolense, an observation supported by lower parasite load

in the dermis (5–10 T. vivax mm22 compared with 150–250

T. congolense mm22), and reduced vascular congestion and

oedema at the chancre [48].

Pathological changes in the heart include generalized

inflammation, with severe mononuclear cell infiltration,

including lymphocytes, plasma cells and macrophages, as

well as myofibre fragmentation and degeneration, or atrophy

myofibres [58,69]. In rodents, multifocal lesions in the heart

were seen to be associated with high trypanosome density in

the ventricular cavities [60]. In the reproductive tract of

goats, lesions include only mild inflammation, testes degener-

ation, multifocal epididymitis and epithelium hyperplasia in

the male [64], and ovarian atrophy and follicle degeneration

in the female [66]. The spleen and liver of outbred mice

show diffuse lesions at 20 days post infection, characterized

by necrotic and haemorrhagic foci in the red pulp of the

spleen, as well as around the portal tracts, the centrilobular

veins and extending into the parenchyma of the liver. These

lesions often associate with extravasated erythrocytes and try-

panosomes [60]. By contrast, extravascular trypanosomes

have never been observed in the kidney, despite evidence of

extensive multifocal tissue damage and immune cell infiltra-

tion of the glomeruli [60]. Similarly to T. brucei infections,

there is damage to the brain, particularly in the cerebellum

and meninges. In rodents, multifocal lesions centred in small

and medium-sized veins are characterized by vascular and

perivascular oedema, accumulation of dysmorphic cells, cell

debris and trypanosomes [60], while in goats trypanosomes

seem to also circulate in the CSF, in the meninges and in the

choroid plexuses of the brain [57].

3.4. Other African trypanosomes: T. equiperdum,
T. evansi, T. suis, T. godfreyi, T. simiae

The T. brucei subspecies group also includes the sexually

transmitted parasite Trypanosoma equiperdum, the cause of

dourine in horses, and the mechanically transmitted parasite

Trypanosoma evansi, the causative agent of surra affecting

mostly camels and horses. T. equiperdum is a tissue parasite,

invading the mucosa of the genitalia in the first phase, and

then progressing to the subcutaneous tissue and internal

reproductive organs. At a later phase, the disease becomes

systemic, with invasion of multiple tissues, especially the per-

ipheral nervous system and CNS [71]. In general, T. evansi
parasites are naturally present in the blood but also localize

extravascularly in tissues including the CNS, the aqueous

humour, heart, lung, liver, kidney and spleen [72–76].

Three less prevalent trypanosomes have been described in

pigs, Trypanosoma suis [77], Trypanosoma godfreyi [78] and

Trypanosoma simiae [79], of which the last is the most patho-

genic. To the best of our knowledge, no description of

tissue tropism for these species exists in the literature.

3.5. Trypanosoma cruzi
Trypanosoma cruzi metacyclic trypomastigotes invade a

variety of cells and differentiate intracellularly into amasti-

gotes. Cell invasion is mediated by parasite-induced

signalling pathways that generally result in the formation of

a membrane-bound vacuole that merges with a recruited

lysosome, preceding parasite escape into the cytosol
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Paragonimus, Giardia, Cryptosporidium

Plasmodium, Trypanosoma, Leishmania, Schistosoma, Babesia,
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Plasmodium, Trypanosoma cruzi, Schistosoma, Toxoplasma, Entamoeba,
Ascaris, Ancylostoma, Necator, Strongyloides, Paragonimus, Giardia,
Cryptosporidium

Plasmodium, Trypanosoma (exc. T. cruzi), Schistosoma, Theileria, Babesia,
Echinococcus

Plasmodium, Trypanosoma (exc. T. cruzi), Onchocerca, Leishmania,
Wuchereria, Brugia, Theileria, Necator, Paragonimus

Plasmodium, Trypanosoma, Onchocerca, Leishmania, Wuchereria, Brugia,
Schistosoma, Theileria, Babesia, Necator, Strongyloides

Plasmodium, Trypanosoma (exc. T. cruzi), Leishmania, Schistosoma,
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Plasmodium, Trypanosoma, Wuchereria, Brugia

Plasmodium, Trypanosoma, Leishmania, Schistosoma, Theileria,
Toxoplasma, Ancylostoma, Necator
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(reviewed in [80]). As amastigotes differentiate into trypo-

mastigotes, they burst out of the host cell into the

bloodstream. However, if the host cell is heavily infected, it

may burst prematurely, releasing amastigotes that can also

be taken up by neighbouring cells. T. cruzi parasites prefer

macrophages because cell invasion is facilitated by phagocy-

tosis [81]. However, they can, and often do, invade somatic

cells in a wide range of tissues, including the lungs, heart,

oesophagus, smooth muscle underlying the digestive tract,

kidney, adrenal glands, pancreas, spleen, liver, skeletal

muscle, bone marrow and adipose tissue [81]. Yet, severe

pathology occurs mostly in the heart and digestive system,

the latter being associated with a severe impairment of the

enteric nervous system [82]. In fact, parasite preference for

the gastrointestinal tract has been recently corroborated by

whole-animal in vivo imaging using bioluminescent T. cruzi
reporter cell lines [83,84].

Overall, T. cruzi tissue distribution is quite complex

because different parasite strains show different tropisms

[81] that can also vary depending on whether it is a single

or mixed infection [85]. For example, in BALB/c and DBA/

2 mice, isolated Col1.7G2 and JG strains both colonize cardi-

omyocytes, but in a mixed infection only the JG strain
invades this organ [85]. Heart tropism seems to be influenced

by a peptide motif conserved in all gp85/trans-sialidases,

which interacts with the vascular endothelium with higher

avidity for the heart vasculature than for other organs [86].

Similar to T. brucei, T. cruzi parasites also have a preference

for the adipose tissue, invading adipocytes both in vitro and

in vivo [87,88]. Internalized parasites can modulate adipokine

release, resulting in a unique metabolic profile [87].

Overall, trypanosomes have been associated with the

majority of organs and tissues, reiterating the importance of

tissue tropism in understanding disease pathology, pro-

gression and outcome. On the other hand, it shows a great

diversity in the way the different species of trypanosomes

interact with tissues. From the available literature, it is appar-

ent that T. brucei is a tissue parasite, frequently invading the

parenchyma of multiple organs, whereas T. congolense seems

to be an intravascular parasite, with perhaps some evidence

for vascular sequestration. On the other hand, there is no con-

sensus regarding T. vivax tissue invasion, especially when

deciding whether it actually colonizes the extracellular

matrix of tissue or whether its presence there is due to extra-

vasation from haemorrhagic foci of disease. In the case of

T. cruzi, it seems widely accepted that there is a clear
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Figure 2. Potential mechanisms of tissue tropism in African trypanosome and Plasmodium spp. (a) Sequestration. Trypanosomes can adhere to the endothelial cells
through membrane receptors, potentially sequestering to particular tissues. Sequestration is also done by RBCs infected with Plasmodium spp. (b) Vascular per-
meability. Trypanosomes secrete molecules, including phospholipase A (PLA), that cause lysis of the RBCs, resulting in the release of free fatty acids (FFAs) and other
cell contents to the bloodstream. These molecules increase vascular permeability, which may facilitate migration of parasites through the vascular endothelium into
the underlying tissues. (c) Extravasation. Attachment of trypanosomes to RBCs and/or endothelial cells can cause cell damage, promoting endothelial tissue rupture
and necrosis, followed by extravasation of blood cells and parasites. (d ) Transcellular migration. Plasmodium sporozoites can invade tissues by crossing the endo-
thelial cell layer, in a process called transcellular migration. (e) Transcytosis. Trypanosome invasion of the cerebral parenchyma may occur by transcytosis, in a process
where endothelial cells uptake parasites and, inside a vacuole, they are transported and released in the abluminal side of the vessel, into the brain parenchyma. This
figure was modified from Servier Medical Art, licensed under a Creative Commons Attribution 3.0 Generic License. https://smart.servier.com.
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preference for the heart and digestive systems, and a large

involvement of the autonomous nervous system, which

directly relates to the pathology and symptomatic disease.

In table 2, we summarize the involvement of selected

tissues in a range of parasitic diseases, including trypano-

somes. Interestingly, this highlights that Trypanosoma is the

only genus reported to preferentially invade the heart,

whereas organs such as the liver and the lungs are affected

by a wide range of parasites. The reasons behind trypano-

some colonization of the heart, both intracellularly (T. cruzi)
and extracellularly (African trypanosomes), whereas other

parasites do not, remain largely unknown. A possible expla-

nation might be the strength of the interaction with the

endothelial cell wall that is required compared with that of

other tissues owing to the higher blood pressure in the

heart. In fact, cytoadherence of red blood cells (RBCs)

infected with Plasmodium spp. is dependent not only on the

type of receptors expressed by both the infected RBCs and

the host endothelial cell but also on the sheer force and

blood flow (reviewed in [90–92]).
4. Mechanisms of tissue tropism
Tropism is achieved by sophisticated cellular and molecular

mechanisms that depend on the parasite and the affected

organ, which occasionally is host specific. For instance,

parasites in circulation may sequester inside vessels of

specific tissues or invade the extravascular compartment

of those tissues. To enter the stroma and parenchyma of tis-

sues, parasites must pass through the vascular wall, whose

main cellular component is the endothelial cell layer. Cross-

ing of this barrier can be achieved by direct or indirect

interaction between the parasite and the cells, and can

entail from minor changes in vascular permeability to

severe damage. Below we discuss five cellular mechanisms

of tissue tropism: sequestration, alteration of vascular per-

meability, extravasation, transcellular migration and

transcytosis (figure 2).
4.1. Sequestration
Sequestration consists of a host–pathogen interaction in

which the pathogen adheres to the endothelial cells lining

the vessels (figure 2a). The pathogen may use this system

regardless of being extra- or intracellular. In fact, this is the

mechanism employed by several Plasmodium spp. and is a

likely scenario in T. congolense infections. Indeed, T. congolense
parasites adhere to the cytoplasmic membrane of endothelial

cells in rats, rabbits, mice and cattle [93,94], and this triggers

the activation of antibody–complement cascades that in turn

cause damage to the endothelial cell layer [95]. In Trypano-
soma infections, endothelial cell adhesion is mediated by the

flagellum, and the occasional appearance of lectin-rich, filo-

podia-like, flagellar protrusions may also help cross-linking

between the flagellum and the sialic acid residues of the

endothelial cell surface membrane [96]. In Plasmodium
falciparum, for which the mechanisms of sequestration are

best characterized, sequestration to the vasculature of specific

organs is mediated by the surface antigen P. falciparum eryth-

rocyte membrane protein 1 (PfEMP1) (reviewed in [91]). This

antigen has multiple domains (e.g. DBL5, CIDR1a,

VAR2CSA, DC4, DC7/13), each of which displays affinity

to different host receptors (e.g. PECAM-1, CD36, CSA,

ICAM-1 and EPCR) present on the surface of vascular endo-

thelial cells (figure 3a) (reviewed in [97,98]). Other

Plasmodium species infecting humans [99–101] and other

mammalian species use some of these receptors for cytoadhe-

sion or sequestration, albeit with different duration and

affinity from that characteristic of P. falciparum [102–105].

4.2. Vascular permeability
Parasite infection may induce changes in the permeability of

the vascular endothelium (figure 2b), allowing parasite diffu-

sion through the cell junctions. For example, African

trypanosomes secrete phospholipase A, which causes haemo-

lysis and platelet aggregation, leading to anaemia and

microthrombus formation [106]. Released fatty acids, and lino-

leic acid in particular during this process, further accentuate the
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Figure 3. Molecular mechanisms of tissue tropism. (a) Plasmodium sequestration. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is the main mediator of
parasite sequestration. Despite being always the same surface protein, the different expressed domains determine affinity to different tissues. PfEMP1 domains
include DBL-5, CIDR1a, VAR2CSA, DC4 and DC8/13, which bind to endothelial cell receptors PECAM-1, CD36, CSA, ICAM-1 and EPCR, respectively.
(b) Trypanosoma crossing of the BBB. Brain invasion can happen through opening of the tight junctions of the endothelial cells at the BBB. T. brucei, in particular,
secretes brucipain, which acts on G-protein-coupled receptors (GPCRs) that activate phospholipase C (PLC). PLC activation results in increased inositol triphosphate
(IP3) levels that cause an increase in cytosolic calcium (Ca2þ). Increased calcium levels activate phosphokinase C (PKC), which acts on myosin light chain kinases to
open the tight junctions, thus allowing parasite crossing. The release of interferon g (IFNg) by the parasite is also thought to induce astrocytes to release chemokine
ligand 10 (CXCL-10), which may facilitate parasite movement to the brain parenchyma. This figure was modified from Servier Medical Art, licensed under a Creative
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haemolytic effects of phospholipase A [107,108]. Importantly,

haemolysis-resulting compounds increase vascular per-

meability, which not only leads to oedema but may also

promote parasite migration to extravascular sites [47]

(figure 2a).

In fact, when T. brucei parasites invade the brain, they can

do so through the opening of tight junctions at the endo-

thelial cell layer of the BBB (figure 3b). Here, brucipain

activates G-protein-coupled receptors that activate phospho-

lipase C, leading to the release of inositol 3-phosphate,

which in turn results in the accumulation of cytosolic cal-

cium. The increase in calcium triggers the activation of

phosphokinase C, which acts on myosin light chain kinases

to open the tight junctions that link the endothelial cells at

the BBB [109]. Additionally, a role of interferon g in trypano-

some movement through the brain parenchyma has been

discussed (figure 3b). The interferon g released by the para-

site is thought to act on perivascular astrocytes, triggering

the release of chemokine C–X–X motif ligand 10 (CXCL-

10). This molecule facilitates movement of lymphocytes into

the brain parenchyma and may also facilitate trypanosome

colonization [110,111]. In T. congolense infections, it has

been shown that peritoneal vessels of infected animals are

two times more permeable than those of non-infected ani-

mals [95].
4.3. Extravasation
Extravasation happens when parasites leave the vessels

through breaches in a damaged endothelial layer. These

events are associated with the establishment of haemorrhagic

foci, as observed in T. vivax infections (figure 2c) [60]. In

experimentally infected sheep, approximately 40% of T.
vivax parasites have been shown to adhere to RBCs through

both the flagellum and the body [112]. This adhesion,

mediated by sialic acid receptors, and the secretion of biologi-

cally active trypanosome substances result in generalized
membrane damage and increased erythrophagocytosis

[113,114]. Furthermore, the formation of RBC–parasite–

leucocyte thrombi accentuates anaemia and compromises

metabolic exchanges at the vessel–tissue interface, thus

contributing to endothelial cell necrosis [112].
4.4. Transcellular migration
Transcellular migration (figure 2d) consists of the crossing

through a cell to reach another one. Whether Trypanosoma
species employ this mechanism during host invasion is unclear;

however, this is the mechanism employed by Plasmodium spp.

sporozoites during hepatocyte invasion. Sporozoites cross the

endothelial cell and transmigrate through various hepatocytes

before invading one. In the hepatocyte that sporozoites finally

invade, asexual replication by schizogony occurs within a para-

sitophorous vacuolar membrane [115]. The coordinated steps of

transmigration, invasion and parasitophorous vacuolar mem-

brane formation depend on specific interactions between the

host and parasite proteins (reviewed in [116]). If hepatocyte

invasion and development succeed, the liver stage of infection

culminates with Plasmodium egressing from the liver via

merosomes [117], release of merozoites and invasion of RBCs

already back in the capillaries [118], giving rise to the

symptomatic stages of infection (blood stage).
4.5. Transcytosis
The uptake of several macromolecules can happen through

the crossing of the endothelial cells via a vacuole, in a mech-

anism named transcytosis. This happens often at the BBB to

move molecules or pathogens between the cerebral micro-

capillaries and the brain parenchyma (figure 2e). For

example, it has been described as the mechanism of Cronobacter
sakazakii crossing of the BBB and the intestinal epithelium [119],

as well as Listeria monocytogenes crossing the intestinal goblet
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cells [120]. It has not been indisputably shown whether trypa-

nosome parasites can use this mechanism to invade the brain.

Besides these multi-player cellular mechanisms, specific

genes have been described to be crucial for tropism, such as

var genes in P. falciparum discussed above, d-amastins in

T. cruzi and Leishmania, and the A2 gene family and

Ld28.0340 in Leishmania donovani. The A2 gene family and

Ld28.0340 [121] have both been found to contribute to viscer-

alization of leishmaniasis, namely by increasing the ability of

parasites to survive in the spleen and liver of infected mice

[122–124]. A cell tropism example is that of d-amastins,

which are surface proteins specific to Trypanosomatids

with intracellular life cycle stages (i.e. T. cruzi and Leishmania)

and which are essential for parasite survival in the host cell

(i.e. macrophages). Indeed, RNAi knockdown of d-amastin

in Leishmania braziliensis causes defects in the membrane con-

tact between the parasitophorous vacuole of the host

macrophage and intracellular amastigotes [125].
90036
5. Advantages of tissue tropism for the
parasite

Once parasites overcome the challenge of entering and adjusting

to the tissue microenvironment, residing in these extravascular

spaces may provide a selective advantage. Here, we discuss a

few examples of how parasites may benefit from establishing

tissue reservoirs, namely in the context of progressing

to a chronic infection to reduce virulence and of enhancing

transmission, immune evasion and resistance to treatment.

5.1. Infection chronicity and reduced virulence
Residing in tissues may reduce disease burden if parasites

become latent or more slow growing, which would then pro-

long host survival and ultimately favour disease transmission

and life cycle completion [126].

Trypanosoma congolense cattle infections are typically

characterized by acute and chronic phases. The acute phase

consists of two to four parasitaemia peaks (up to 108 parasites

per millilitre of blood in experimental rodent models and 107

in livestock) that usually last 1–3 days, followed by a continu-

ous phase of fever of up to 30 days. After this period, body

temperature returns to normal and parasitaemia is only spor-

adically detectable in short peaks. Despite the apparent

recovery, it is during this chronic state that animals become

weaker, more emaciated and prostrated [45]. While parasite

peaks may be detected often in the blood, the total number

of parasites is not as high as in the early phases of the disease.

The characteristics of the T. congolense chronic stage are diffi-

cult to reconcile because while the host’s natural resistance

increases and the number of parasites reduces, overt pathol-

ogy is more evident, accompanied by clinical signs. The

causes of such progression are not clear. It could be a conse-

quence of the severe anaemia, although if anaemia were

induced by the parasite’s presence in the blood then it

would return to normal upon parasite clearance, which it

does not. It could be an immunological or anaphylactic reac-

tion to the high load of parasite contents resulting from

parasite clearance. However, again this would be more

marked during the acute rather than the chronic stage,

unless it was due to progressive sensitization to parasite anti-

gens [45]. It could also result from the direct intervention of
parasites outside the main blood vessels, i.e. in the tissues

[45]. In fact, it has been suggested that parasites in tissue

foci may actually be the cause of disease signs and pathology

[127]. In this case, the sporadic low parasitaemia peaks reflect

an overspill from tissue-resident parasite populations. This

theory is supported by two main observations: first, the fact

that both drug prophylaxis and suboptimal drug treatment

are efficient at preventing the acute phase of the disease but

are not curative and disease becomes chronic; and second,

that anti-trypanosome serum antibody levels remain high

throughout the chronic stage, despite the extremely low

parasite load in the blood [127].

When patients with chronic Chagas disease do not or have

not yet developed pathology, disease is considered to be in an

indeterminate stage, lasting 10 years to life. At this point, para-

sites circulate in the blood at microscopically undetectable

levels and can be transmitted to biting flies, vertically and

horizontally via blood transfusions and the oral–faecal route

(reviewed in [128]). Similar to African trypanosomes, it is

possible that T. cruzi parasites hidden inside host cells may

at times repopulate the blood, both enhancing transmission

potential and increasing disease progression.

Another interesting example of how tissue tropism can be

exploited by parasites other than trypanosomes to maximize

infection potential is the latency phenomenon employed by

some Plasmodium species. In humans, latency is largely

caused by P. vivax and Plasmodium ovale, and occurs in the

liver, in stages called hypnozoites. The relapses caused by

hypnozoites display a high periodicity, with the relapse inter-

vals being short and frequent in tropical regions, and more

temporally spread in temperate regions with obligate winters

[129,130]. Various hypotheses exist on the potential benefit of

the dormancy mechanism and corresponding relapses,

including their being advantageous during intra-host compe-

tition with other Plasmodium species and that they could

allow simultaneous feeding of different Plasmodium strains

to mosquito vectors, contributing to the high genetic diver-

sity even in areas of low seasonal transmission (reviewed

in [131]).

5.2. Enhanced transmission
Residing in the skin, for example, could allow parasites to

expand transmission sites and consequently expedite deliv-

ery to the next host [12,13]. T. brucei, T. congolense and T.
vivax parasites colonize the skin early in infection, shortly

after the bite by the tsetse. All three species have been

reported to proliferate in skin tissue, in both the dermis and

the hypodermis (including in the connective and adipose tis-

sues), continuing to do so after blood invasion. For T. brucei, it

was further shown that skin trypanosomes actively contrib-

ute to infection [12,13]. Currently, there is no reason to

assume T. congolense and T. vivax would behave differently.

If more parasites are accessible in the skin, the probability

of them being ingested by flies increases. Therefore, skin trop-

ism independent of bloodstream proliferation is

advantageous for the parasite, maximizing the transmission

potential of a single host.

Tropism to reproductive organs may contribute to

sexual transmission, as is the case with T. equiperdum and

T. brucei gambiense, where, although seemingly rare in vector-

borne trypanosomes, vertical and horizontal transmission has

been reported [30]. It is worth noting that infected animals
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were aparasitaemic by both PCR and loop-mediated isothermal

amplification (LAMP), despite detection of parasites in the repro-

ductive organs by bioluminescence imaging [30]. While the

reproductive system reservoirs are unlikely to be accessible by

the tsetse, they certainly enhance vertical and horizontal

transmission and may provide a source of parasites for blood

re-invasion. In fact, the potential for re-entering the circulation

(and thus becoming accessible to tsetse transmission) is

common to all tissues. As therapy for both animal African trypa-

nosomiasis and human African trypanosomiasis (HAT) is

directed towards either microscopy-positive or symptomatic

individuals, a proportion of infected, yet asymptomatic and

aparasitaemic, animals and humans may remain a source of

transmission. Indeed, recently, the impact of asymptomatic car-

riage of skin-dwelling, transmissible T. brucei gambiense in HAT

transmission was assessed and shown to be a reasonable obstacle

for sleeping sickness elimination [14].

5.3. Immune evasion
The peculiarities of the parasite-specific immune response

and the compositional differences of tissue-resident

immune cells mean that particular tissues might be less effi-

cient in clearing infection. Therefore, we could hypothesize

that some extravascular spaces might be a better environment

for parasite survival than the blood. In fact, the selection of

host cells for immune avoidance is observed throughout Plas-
modium infections. For example, in the liver, T-cell activation

promotes tolerance rather than inducing priming [132–134],

thus increasing the chances of parasite survival during pre-

erythrocytic stages of infection. Despite cytotoxic T cells

having the capacity to eliminate infected hepatocytes, this

mechanism alone is insufficient to ensure suppression of

infection for reasons that are as yet unclear, but that are

potentially linked to parasite exploitation of immune toler-

ance and fast parasite replication (reviewed in [135]).

Likewise, a large number of helminths colonize the eye,

regarded as a more protective environment against immune

responses [136], even though these parasitic infections do

eventually cause inflammation [137]. For example, microfilar-

iae of Onchocerca volvulus, the cause of river blindness in

37 million people [138], migrate to the eye from the

subcutaneous tissue.

In the case of African trypanosomes, parasite evasion to

extravascular spaces could simply be a strategy to avoid the

massive humoral responses in the bloodstream [139], allow-

ing for periodical blood repopulation. In bloodstream

infections, the host is well documented to mount a cellular

and humoral immune response against the variant surface

glycoproteins (VSGs) expressed by the parasites. VSGs are

highly immunogenic proteins that provoke an extensive anti-

body response by the host. This potent and systemic antibody

response is thought to be directed against the predominant

VSG expressed by bloodstream parasites. The existence of a

very small proportion of parasites expressing minor VSG var-

iants results in the characteristic ‘waves of parasitaemia’, and,

thus, the recurrent nature of the disease. However, trypano-

some populations from different niches in the same animal

may not express the same VSG. This is supported by very

weak anti-serum cross-reaction between populations of

different body compartments of both T. vivax and T. brucei
gambiense [57,140,141]. If parasites in different tissues

expressed different VSGs, the systemic antibody response
might not be effective. Thus, the potential VSG heterogeneity

in different body compartments could contribute to subopti-

mal antibody-based immunity and accelerate host immune

exhaustion. Furthermore, if these parasites were in sufficient

numbers (like they are in the adipose tissue of T. brucei-
infected rodents) and in non-immune-privileged sites, they

themselves might trigger a different antibody response,

which would compete in lymphoid organ resources, thus

potentially also precipitating immune exhaustion.

Links between antigenic surface proteins and tissue

tropism have been reported in other parasites. For example,

the P. falciparum PfEMP1 ligand, encoded by the antigenically

variable var genes, has domains with different avidities to the

endothelial cells of different tissues. For example, sequestra-

tion to the placenta is mediated by binding of the

VAR2CSA protein to chondroitin sulfate A (CSA) in the pla-

cental endothelium [142]. Accumulation in the placenta is

thought to be one of the ways the parasite uses to circumvent

host immunity, with up to 90% of parasite stages localizing to

the placental intervillous space, and not other organs [143].

Parasites that specifically bind to VAR2CSA fail to cause

pathology if injected into men or children, despite antibodies

against these variants being present in these hosts [144]. Sur-

face antigens of infected erythrocytes are immunologically

distinct from other variant surface antigens, and are the

main targets of immunoglobulin G mediating protective

immunity. Interestingly, the CSA specificity is such that per-

ipheral parasitaemia is often resolved within a few days of

delivery in women living in areas of intense P. falciparum
transmission [145]. Altogether, antibody recognition of pla-

cental infected erythrocytes is highly dependent on the

level of immunity, the time of pregnancy and the level of

malaria prevalence in different settings.

5.4. Treatment failure
Tissue tropism, particularly in the brain and the adipose

tissue, has long been recognized as a potential explanation

for drug failure and treatment relapse owing to their lower

permeability to drugs. The BBB prevents the entry of many

drugs, including diminazenes, into the brain, thus allowing

survival of parasites during chemotherapy. This mechanism

is well established for T. brucei infections [146–148]. White-

law et al. [57] showed relapses of two T. vivax infections in

goats six weeks after treatment with diminazene aceturate,

despite undetectable parasitaemia in the blood. However, it

is possible that parasites accumulating in tissues other than

the CNS may also be less accessible by drugs, particularly

in immune-privileged sites, such as the eyes, testicles, pla-

centa and, to some degree, the adipose tissue. In fact,

owing to its high lipid content and low perfusion, the adipose

tissue is known to be impermeable to drugs in general but

especially to those that are hydrophilic. These characteristics

could be responsible for the observed inefficiency in field

treatments and justify the observed relapses in African trypa-

nosomiasis-treated patients [149,150]. In fact, despite

treatment, T. cruzi parasites survive in the adipose tissue in

a cryptic state for a year in mice, and decades in humans,

before recrudescence [87,88]. Similarly, work on rodent

models of malaria have shown that, while drug treatment

with some antimalarials efficiently clears peripheral ongoing

erythrocyte-stage infections, it fails to clear parasites in

erythropoietic organs [151]. The implications of these
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observations for Plasmodium transmission, therapeutics and

cure assessment are significant. In humans, the interplay

between haematopoietic organs and parasite clearance upon

antimalarial drug treatment has been recognized as an

altogether key field (reviewed in [152]). Moreover, trans-

mission-stage survival in erythropoietic niches, even in

view of antimalarial drug treatment, has been reported in

several autopsy case studies in humans [153–156].

Treatment failure due to specific tissue tropism is an issue

in other parasitic diseases, such as toxoplasmosis. T. gondii
bradyzoites can remain hidden in cysts inside a variety of

brain cells, including neurons and astrocytes, and cause a

chronic disease, characterized by changes in neuronal archi-

tecture, neurochemistry and behaviour. These cysts are

refractory to drugs and the reason for lifelong persistence of

the parasite in the host. Interestingly, although it was pre-

viously thought to be a dormant state, bradyzoites inside

cysts have recently been shown to be replicative [157].

Whereas tissue tropism is probably not a result of selec-

tion by therapeutics, in multiple cases, the heterogeneous

distribution of drugs through different tissues confers an

additional advantage for parasites in particular niches.
6. Tissue tropism and organ-specific
pathology

In the arms race between the pathogen and the host, the host

tries to fight back the assaults of the parasite. The infection

poses a challenge for the host as parasite evasion hampers

disease control and forces the host to mount a chronic inflam-

matory response. Host alterations can be very extensive

during parasitic infections. The most widespread alteration

in trypanosome infections is parasite-driven, immune-

mediated tissue damage. In most tissues, a localized

immune response is triggered upon parasite presence,

which persists throughout the chronic phase (when present),

resulting in tissue damage. For example, Carvalho et al. [39]

showed immune cell infiltration and tissue damage in the

testes of T. brucei-infected mice as disease progresses.

A pathogenic inflammatory immune response is also present

in the liver, being positively mediated by macrophage

migration inhibitory factors, which are important regulators

of innate immunity [158]. Moreover, in African trypanoso-

miasis, when parasites reach the CNS, a strong

inflammatory response is triggered, resulting in organ-

specific pathology, with development of the previously men-

tioned severe neurological signs that can culminate in death.

Cerebral trypanosomiasis has been extensively reviewed by

others [111,159,160]; therefore, below, we discuss in more

detail other examples of immune-mediated tissue damage.

6.1. Trypanosoma vivax haemorrhagic syndrome
Sporadically, in East Africa, T. vivax infections may progress to

severe disease, called haemorrhagic syndrome. It is character-

ized by profound anaemia and haemorrhages of the

gastrointestinal and respiratory tracts, liver, spleen, kidneys,

heart and bladder, concomitant with widespread parasite

infiltration and sporadic ulceration. Unlike non-haemorrhagic

disease, lymph nodes are normal in size, but they show para-

site accumulation in vessels and haemorrhages throughout the

tissue. Skeletal muscle may display haematomas, consistent
with anaerobic tissue injury, but lacking gas accumulation

[7]. Further investigations of these severe, acute cases have

revealed increased levels of fibrinogen and fibrin degradation

products, diffuse intravascular coagulation, reduced numbers

of platelets [161] and the production of autoantibodies against

erythrocytes and platelets [162]. Moreover, histological ana-

lyses revealed fibrin clots in the ventricles of the brain and

blood clots in lymphatic vessels [163]. The causes of such an

extreme phenotype remain unknown. Although previously

regarded as likely candidates, autoantibody production only

peaks three to four weeks after infection, when haemorrhagic

lesions are already established and animals die shortly after

[164]. Similarly, the release of biologically active molecules

that could induce cell membrane degradation, including neur-

aminidase, phospholipases and free fatty acids, has been

considered as a potential cause of the lesions [164], but these

are also released during other trypanosome infections without

the extreme phenotype. Alternative explanations, albeit non-

exclusive, include the negative effects of decreased platelet

counts in vascular permeability and the clotting cascade

[164]; histone-mediated damage, as observed in sepsis

(reviewed in [165]); and the damage induced by

trypanosomes crossing the vascular endothelium to colonize

tissues and extravascular spaces [68].

6.2. Chagasic megasyndromes
During chronic disease, 20–30% of infected individuals

develop irreversible pathology of the heart (94.5%) or diges-

tive system (4.5%). Patients with the latter condition exhibit

digestive megasyndromes characterized by megaoesophagus

and megacolon [166], where lesions are caused simul-

taneously by the parasite and the host. Specifically,

digestive tract lesions are attributed to both parasite persist-

ence in the cells of these organs, resulting in cell burst and

associated inflammation, and an autoimmune reaction in

which the parasite modulates lymphocytes to reject

parasite-free cells and trigger host cell destruction [166].

It is worth noting that, even when parasites are relatively

absent from an organ, lesions via systemic responses may still

be extensive. A good example is the metabolic distress syn-

drome sometimes observed in P. falciparum infections [167].

Renal dysfunction during malaria-associated acute kidney

injury causes accumulation of acids normallyexcreted or metab-

olized by the kidneys. This metabolic acidosis associates with

increased vascular leakage in multiple organs including the

kidney, and renal failure. Considering the large immunological

impairment characteristic of trypanosomiasis, this might be rel-

evant in T. congolense and T. vivax infections if future studies of

tropism reveal that particular tissues are refractory to invasion

or sequestration, despite the existence of lesions.

There can be parasite-driven host alterations that are unre-

lated to the immune response, but associated with colonization

of a specific organ. Here, we will discuss two examples: the cir-

cadian disorder observed in T. brucei infections, and the

cachexia characteristic of all African trypanosome infections.

6.3. Host circadian disorder
When T. brucei parasites invade the brain, they cause a sleep

disorder rendering altered sleep/wake cycles.

The underlying causes of this disorder were shown for

the first time in infected mice, which showed not only
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alterations in their circadian sleep but also altered temperate

regulation and feeding patterns. Infection resulted in

advanced circadian rhythms exhibiting atypical activity

during the resting phase. This behavioural pattern was

shown to be due to a shortening in their circadian activity

period and induced specifically by the presence of T. brucei
that might interact directly or indirectly, via secreted mol-

ecules, with the host cells [168]. Upon parasite clearance,

the sleep/wake cycle returns to normal, which, coupled

with the observation that patients with terminal sleeping

sickness do not show neuro-degeneration [111,169], indicates

that it is the presence of T. brucei parasites and not the effect

on the neuronal tissue that causes the circadian disturbance

characteristic of sleeping sickness [168]. How this disorder

may benefit the parasite and/or host remains a mystery.

However, it is known that T. brucei parasites modulate their

gene expression according to the time of the day, which has

consequences in their resistance to external challenges. For

example, sensitivity to oxidative stress and to drugs (e.g. sur-

amin) is different throughout the day [170], which may be an

important factor when designing drug treatment plans.

6.4. Cachexia
African trypanosomiasis is a wasting disease, characterized

by signs of anorexia, emaciation, prostration and cachexia

affecting all symptomatic hosts [49,71,171–173]. Cachexia is

a metabolic syndrome associated with an underlying disease,

characterized by loss of fat and muscle. It is typically more

pronounced during the chronic phase of disease, but

weight loss occurs from early stages of infection. In exper-

imental mice models, loss of fat has been estimated at 43%

during infection [174]. It usually results from the presence

of pro-inflammatory immune mediators and the activation

of biochemical pathways that increase metabolism rate, lipo-

lysis and muscle breakdown. In fact, in horses naturally

infected with T. evansi, significantly increased plasma trigly-

cerides and cholesterol levels, particularly of low-density

lipoprotein, have been reported [175]. A similar pattern has

been observed in goats experimentally infected with

T. vivax; specifically, an increase in non-esterified fatty acids

circulating in the bloodstream 14 days post infection was

shown [176]. Together, these studies suggest increased lipoly-

sis during infection. Yet, it remains undetermined whether

this is only a consequence of the immune dysregulation

observed from early stages of infection, particularly due to

the VSG-induced, high levels of tumour necrosis factor a

[177], a result of appetite loss, or whether it also results

from the direct action of the parasite; for example, due to

the colonization and metabolic adjustment of T. brucei in

the adipose tissue [31]. Nonetheless, cachexia is a major

cause of morbidity among infected hosts, a large constraint

for African agricultural development and a major source of

economic loss in the animal husbandry industry in Africa

and South America, which may relate to the parasite’s ability

to thrive in lipid-rich environments.
7. Future perspectives for tissue tropism
research

As the literature on livestock trypanosomiasis is old, scant and

somewhat contradictory, it is clear that a systematic analysis of
Trypanosoma tissue distribution is long due. Recent discoveries

of T. brucei tropism to the skin and adipose tissue have revita-

lized the study of tissue tropism in parasitic diseases.

Tissue tropism impacts our knowledge of host–pathogen

interactions, thus raising a number of new questions.

— As we see T. brucei re-wiring its gene expression in par-

ticular body niches, such as the adipose tissue [31], we

wonder about its effect on parasite fitness, and whether

this applies to other organs as well. We should also inves-

tigate how other Trypanosoma species approach different

environments.

— Would trypanosome motility, reported as critical for the

establishment and maintenance of a bloodstream infec-

tion [178], impact extravascular tissue colonization in

the same way?

— Do trypanosomes in different tissues express different

VSG profiles like Plasmodium expresses different var
genes? If so, what are the immunological consequences

for the host?

— Does the parasite population in one host work as an

‘organism’, such that, for example, parasites in one

organ could induce changes in the host that benefit

parasites in another organ? It has been demonstrated

that many parasites sense their counterparts by

quorum-sensing mechanisms, indicating the presence

of mechanisms to sense and react to nearby popu-

lation density. For example, in the bloodstream,

T. brucei differentiation from replicative, slender

forms to transmissible, stumpy forms is mediated by

quorum sensing [179].

Answering these questions will improve our chances of

reducing the burden of parasitic diseases. Fortunately, we

have an array of methodologies that can help us answer

these questions and many more. The ‘omics technologies

provide an opportunity to generate large datasets that

advance our understanding of host and parasite biology,

and host–parasite interactions, from a wider perspective.

Additionally, parasite genetic manipulation combined

with microscopy techniques bring excellent prospects to

the study of infection dynamics inside the mammalian

host [180]. For example, in the past, intravital microscopy

was performed on T. brucei-infected mice to study lympho-

cyte response in the brain [181]. This technique, combined

with fluorescent-labelled parasites [182], may be useful to

study migration patterns and social behaviours. On a

more detailed level, complex tissue organoids and three-

dimensional cultures may help us understand the molecu-

lar interactions underlying tissue tropism. Genetic screens

can be combined with all the previous techniques to ident-

ify genes essential for establishment, invasion and/or

sequestration to tissues. In this area, we can make use of

multiple tools, including RNA interference (RNAi) target

sequencing (RIT-seq) for high-throughput phenotyping

[183] and CRISPR–Cas9 for multi-copy gene family target-

ing [184,185], the latter being particularly relevant for

Trypanosomatids, given the abundance of parasite-specific

gene family expansions observed in their genome

sequences [186,187].

Besides the biological aspects of tissue tropism, develop-

ment in this area may have a direct impact on disease

progression, clinical treatment and transmission.



royalsocietypublishing.org/journal/rsob
Open

13
— Who benefits from specific tissue tropisms? Is it the host,

the parasite or both? Understanding this benefit can bring

us closer to finding ways to target disease. We would

expect factors such as parasite transmission, parasite repli-

cation and reduced virulence (such that the host is kept

alive for a long time) to be affected by tropism, probably

by playing an important selective pressure during host–

parasite coevolution.

— What is the impact of tissue tropism in clinical treatment?

Are parasites in certain tissues inefficiently eliminated by

certain drugs? As we have shown in this review, this

subject has begun to be tackled in multiple parasite

research fields, including trypanosomes [28,88], Plasmo-
dium (reviewed in [152]) and Toxoplasma (reviewed in

[188]), but still needs further investigation.
As our efforts shift towards this field, we will start to truly

appreciate the impact of tissue reservoirs on treatment success,

transmission control strategies and vaccine development.

Hopefully, it will get us closer to trypanosomiasis elimination

and eradication.
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