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Abstract

Trauma remains a leading cause of death worldwide, and most early preventable deaths in both the 

civilian and military settings are due to uncontrolled hemorrhage, despite paradigm advances in 

modern trauma care. Combined tissue injury and shock result in hemostatic failure, which has 

been identified as a multi-dimensional molecular, physiologic, and clinical disorder termed 

trauma-induced coagulopathy (TIC). Understanding the biology of TIC is of utmost importance as 

it is often responsible for uncontrolled bleeding, organ failure, thromboembolic complications, and 

death. Investigations have exposed that TIC is characterized by multiple phenotypes of impaired 

hemostasis due to altered biology in clot formation and breakdown. These coagulopathies are 

attributable to tissue injury and shock and encompass underlying endothelial, immune, and 

inflammatory perturbations. Despite the recognition and identification multiple mechanisms and 

mediators of TIC and the development of targeted treatments, the mortality rates and associated 

morbidities due to hemorrhage after injury remain high. The purpose of this review is to examine 

the past and present understanding of the multiple distinct but highly integrated pathways 

implicated in TIC to highlight the current knowledge gaps and future needs in this evolving field, 

aimed at reducing morbidity and mortality after injury.
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Introduction

Trauma remains a leading cause of death worldwide(1), and it is expected that rates of death 

due to injury will continue to rise as populations age (2). In the 1970s, Trunkey described a 

trimodal distribution of trauma deaths (3), with immediate deaths thought to be non-

preventable and due to hemorrhage. However, since that time there have been paradigm 

changes in our understanding of death due to hemorrhage including the recognition of 

trauma-induced coagulopathy (TIC), as well as advances in resuscitation techniques 

designed to mitigate the effects of TIC (4). It is now clear that one-quarter to one-third of 

hemorrhaging trauma patients suffer from TIC, a multi-phenotypic disease state that 

encompasses disorders of coagulation and inflammation characterized by impairments in 

clot formation, breakdown, and overall vascular homeostasis. TIC is associated with 

increased early transfusion requirements, the development of organ failure, and mortality (5, 

6). Death from hemorrhage is not the sole consequence of TIC. Due to the innate crosstalk 

between coagulation and inflammation, there are widespread adverse downstream 

inflammatory and immune consequences associated with early trauma coagulopathies, 

including organ dysfunction and thromboembolic complications(6).

Despite these focused investigations into the mechanisms and mediators of TIC and 

improvements in care related to identification and treatment, hemorrhage related mortality 

continues to be the most common cause of preventable deaths after injury (7). Therefore, 

targeted scientific focus on advancing our understanding of TIC across molecular and 

clinical realms remains of utmost importance to rescue a large percentage of injured patients 

from death due to early hemorrhage and late organ failure. Although substantial advances 

have been made, the links between the injury induced impairments of each of the various 

mechanisms that contribute to the failure of clot formation, lysis, and vascular homeostasis 

remain open science. In addition, the field is desperate for clear causal and intervenable 

pathways between coagulation, inflammation, and immune dysfunction. However, 

mechanistic studies related to TIC are fraught with the limitations of analyzing blood and 

vascular homeostasis in ex-vivo environments that often lack endothelium, flow, and local 

tissue injury milieu while extrapolating microvascular environments into macro 

measurements. The overall purpose of this review is to understand the past and present in 

order to highlight the needed future directions of this evolving field.

History

Injury induced disordered clotting that is associated with bleeding and death is not a modern 

concept. Historic battlefield descriptions of this date back to the eighteenth century. During 

the Korean and Vietnam Wars, patients in hemorrhagic shock were identified to have 

prolonged prothrombin and partial thromboplastin times early after injury and prior to 

interventions, hemodilution, or hypothermia, ultimately requiring more blood and having 

higher mortality(8). What followed was evolution of purported mechanisms of this 

coagulopathy including an initial focus on consumptive states and dilutional effects of 

resuscitation with fluids and bloods products.
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These observations of coagulopathy during major wars stimulated significant military and 

civilian trauma research, and further critical concepts emerged including the recognition of 

the clear transition from a clinically hypocoagulable to hypercoagulable state and the central 

role that hypoperfusion due to shock played. Multiple groups simultaneously identified that 

hemorrhage and resuscitation induced depletion of coagulation factors and dilutional 

coagulopathy led to an irreversible physiologic collapse(9). These concepts were formally 

coalesced into the ‘Bloody Vicious Cycle’ by Kashuk and colleagues in the early 1980s(10). 

Following this, it was increasingly recognized that post-injury hemorrhage exacerbated by 

the ‘lethal triad’ of hypothermia, acidosis, and coagulopathy was a vicious cycle that led to 

more coagulopathy and ultimately high mortality rates(11). This increasing recognition led 

to changes in clinical practice in the 1980s with formalization of damage control surgical 

and resuscitative techniques to halt the cycle of acidosis, hypothermia, and 

coagulopathy(12). In the early 2000s, Brohi, Cohen, and colleagues formally described the 

entity of acute traumatic coagulopathy in human and animal models, that reflected an 

endogenous biology independent of resuscitation, required combined tissue injury and 

shock, and had significant associations with poor outcomes and mortality(6, 13–16). 

Although modern study of trauma patients has identified no significant difference in the 

presentation core temperature or amount of prehospital crystalloid given to patients that 

developed TIC requiring transfusion(17), there remains evidence that resuscitation and 

hypothermia continue to contribute to TIC(18), but are not necessary prerequisites. However, 

patients who develop TIC are profoundly more acidemic, supporting the pivotal importance 

of a shock state in the setting of tissue injury (17).

Finally, critical in the evolution of our understanding of TIC beyond consumption of 

coagulation factors, was the progress made in defining coagulation outside of the classic 

enzymatic coagulation cascade. In 2001, Hoffman and Monroe proposed the ‘cell-based 

model of hemostasis’ based on overlapping events of initiation (extrinsic pathway on tissue 

factor bearing cells), amplification (positive feedback of thrombin on platelets), and 

propagation of clotting (intrinsic pathway on activated platelets) that were regulated by cell 

surfaces rather than enzymatic protein and protease reactions alone(19). This model of 

hemostasis magnified research focused on multiple pathways contributing to TIC, rather 

than solely on a dilutional failure of the enzymatic processes of clot formation, and a large 

body of investigation has contributed to the current multi-dimensional understanding of the 

biologic contributors of TIC, to be addressed specifically below and summarized in Table 1.

However, despite years of basic and translational investigations of TIC, in 2013, Gando and 

the Standardization Committee on Disseminated Intravascular Coagulation (DIC) of the 

International Society on Thrombosis and Haemostasis reported that what was termed TIC 

was similar to consumptive states like DIC(20). However, best evidence at this time suggests 

that although TIC encompasses the criteria of DIC, it remains distinct from and not 

sufficiently characterized by the broad less-precise major (low platelet count, prolonged 

prothrombin time, increased soluble fibrin or fibrin-degradation products) and specific (low 

antithrombin, low protein C, and increased thrombin-antithrombin complexes) DIC criteria 

outlined by the Standardization Committee on DIC of the International Society on 

Thrombosis and Haemostasis (21) (Table 2). The definition of TIC has been in evolution for 

decades, shifting from the perception of a resuscitation induced dilutional coagulopathy, to a 
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multifactorial and multi-mechanistic event. TIC is distinct and more complex than the DIC 

(Table 2), covering a wide range of impaired clot formation and lysis, in combination with 

failure of vascular homeostasis and immunoactivation resulting in multiple clinical 

phenotypic states that can cause pathologic bleeding, clotting, organ failure, and death.

Mechanisms and Mediators

Table 1 depicts the estimated average quantitative values (mean or median) for each listed 

coagulation parameter in trauma patients with TIC in the early and later periods after injury 

and without TIC, supported by existing literature, as cited (16, 17, 21–31).

Tissue Injury and Shock

Impaired coagulation after injury was long thought to be solely due to iatrogenic causes(9). 

For decades, trauma resuscitation practices guided by the luminaries of shock research were 

based on restoring flow and oxygen carrying capacity with large volumes of packed red 

blood cells (oxygen) and crystalloid (flow). The creep of resuscitation toward larger and 

larger volumes of cold anemic resuscitation resulted in an iatrogenic coagulopathy 

characterized by impaired thrombin production and platelet function due to hypothermia, 

acidosis, and dilutional coagulopathy(9–11). Although these iatrogenic effects are still 

contributors to coagulopathy and can coexistent with TIC, they are termed iatrogenic 

coagulopathy (IC), are separate in biology from TIC, and are fortunately more infrequent 

with modern hemostatic and goal-directed resuscitation techniques. An enlarging body of 

work has now demonstrated that to induce the mechanistic and clinical phenotypes of TIC, 

tissue injury (thought to activate the clotting cascade, produce thrombin, and stimulate 

resultant anticoagulant pathways) must be combined with tissue hypoperfusion (thought to 

release damage-associated molecular patterns [DAMPS], activate the contact pathway, 

induce thrombomodulin and endothelial protein C receptor [EPCR] expression at the 

endothelial surface to activate protein C). It has become clear that shock is essential to 

development of the phenotypes of TIC via multiple mediators described below.

Activation and Depletion of Protein C

One of the primary and first described mechanisms of TIC is activation of protein C 

system(13, 14, 16, 32, 33). Protein C is a serine protease with dual anticoagulant functions: 

induction of proteolytic cleavage of factors Va and VIIIa as well as a derepression of 

fibrinolysis through inhibition of plasminogen activator inhibitor-1 (PAI-1) (resulting in 

increased tissue plasminogen activator [t-PA] activity)(13, 14, 32). Since the initial 

description that severe injury combined with shock resulted in increased levels of activated 

protein C (aPC), concomitant reductions in coagulation factor V (FV) and factor VIII 

(FVIII), and increased fibrinolysis, a series of human studies and mechanistic animal and in-

vitro cell culture models have confirmed these findings(13–16, 32). The activation of this 

pathway starts with tissue injury driven thrombin production that combines with 

thrombomodulin, the EPCR. The non-activated zymogen form of protein C on the 

endothelial surface is then activated and results in cleavage of FVa and FVIIIa and 

derepression of fibrinolysis. Multiple studies have corroborated that approximately 25–33% 
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of severely injured patients have elevated aPC, which is associated with increased blood 

transfusion and mortality, and in patients who survive, higher rates of infection and single 

and multiple organ failure(13, 14, 16, 32).

Interestingly, aPC also has cytoprotective functions including stabilization of endothelial and 

epithelial junctions, anti-apoptosis, and cleavage of extracellular histones. The enhanced 

activation of the protein C system may therefore represent an evolutionary maladaptive 

response. As humans may not be evolved to survive the massive injury created by being 

shot, stabbed, and run over by automobiles, it is hypothesized that the human physiologic 

response to these events is likely activating a large amount of protein C in an attempt to 

activate inflammomodulatory pathways to survive after severe trauma. The unfortunate 

sequela of this ‘too much of a good thing’ response is a systemic and local anticoagulation 

resulting in increased bleeding with incumbent enhanced mortality and morbidity. For those 

who survive their initial injury there is a rapid transition to a state of protein C depletion, 

characterized by hypercoagulability and impaired cytoprotectivity. Based on study of 

circulating aPC levels in trauma patients (16), the cytoprotective level can be assumed to be 

somewhere in the range of 1.05–6.00 ng/mL, as these levels correspond with preservation of 

Factor Va, VIIIa, and t-PA, as well as lower D-dimer levels. Conversely, the maladaptive 

level can be assumed to be in the >6.00ng/mL range as this level was shown to be associated 

with markedly decreased Factor Va and VIIIa, as well as increased t-PA and D-dimer levels 

(16).

The transition from hypo to hypercoagulability occurs very rapidly. Somewhere between 6 

and 24 hours after injury the majority of patients are undergoing this transition, with 90% or 

more being normal or hypercoagulable in global hemostatic measures by 24 hours after 

injury, regardless of TIC (34). In addition, the coagulation factor activity in patients with and 

without TIC begin to rebound for most factors by 12 hours with significantly higher than 

baseline activity by 72 hours (17). The depletion of the non-active zymogen form of protein 

C is associated with both a transition to a thrombotic phenotype, and importantly a loss of 

cytoprotective signaling and resultant organ failure and infectious complications(16). With 

newly engineered activated forms of protein C which have augmented cytoprotective 

function with little or no anticoagulant protease activity, as well as antibodies or aptamers 

against the anticoagulant function of protein C, one can imagine in the near future a 

resuscitation where we might inhibit the anticoagulant function and concurrently augment 

the cytoprotective function of protein C immediately after trauma. Further precision 

medicine modulation of the relative amount of inhibition and augmentation could be 

performed as the patient moves through their post-injury coagulation and inflammation 

phases.

Factor Depletion, Impaired Thrombin Generation, and Fibrinogen 

Deficiency

Factor depletion does indeed exist after trauma(17). In addition, studies have demonstrated 

that clotting factor deficiencies occur without significant fluid resuscitation, immediately 

after injury, and are associated with worse outcomes(35). While reproducible and in 
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correlation with severity of injury and degree of shock, the factor level nadirs do not often 

reach the historically reported 20–30% level where coagulation should be impaired(17). Of 

course, the critical values of factor depletion were derived from closed studies in non-

activated (non-injury) blood(36). Whether the reductions in factor levels do cause tissue 

specific impaired coagulation at the site of injury that requires levels higher than 20–30% in 

the setting of injury, and what circulating levels are ideal after significant injury for both 

tissue specific hemostasis and survival remains an open experimental and clinical question.

Clot formation requires thrombin generation on injured tissues. There are some suggestions 

that the measurement of thrombin generation is an optimal real-time assessment of 

coagulation capacity in the setting of injury because thrombin generation does not cease 

with fibrin deposition. However, both hypocoagulable and hypercoagulable thrombin 

generation profiles have been associated with trauma with variable associations to bleeding 

and thromboembolic outcomes(37, 38). Studies do suggest that there is sufficient thrombin 

generation in TIC(22, 38), yet both trauma patients with and without TIC show evidence of 

increased thrombin-antithrombin, and prothrombin fragments(39), and the biochemical 

milieu of injury and shock may increase thrombin generation due to decreased antithrombin 

activity(40).

Fibrinogen is the terminal substrate for clot formation and low quantity or quality of 

fibrinogen in TIC is associated with bleeding and death(41, 42). Animal models of TIC 

confirm low levels of fibrinogen(43). Fibrinogen replacement in the form of cryoprecipitate 

or newer fibrinogen concentrates is used in many protocols for treatment of TIC (44), and 

often to maintain levels of fibrinogen well above standard triggers for fibrinogen 

replacement despite weak supporting evidence for this(45). Whether this technique improves 

outcomes continues to be a moving target as goal-directed treatment of hypofibrinogenemia 

remains without clear evidence-based treatment cutoffs, but with ever-broadening therapies 

beyond blood components.

Altered Post-Injury Platelet Biology

Although the pivotal importance of platelets in the overlapping stages of clot formation is 

highlighted in Hoffman and Monroe’s ‘cell-based model of hemostasis’, understanding the 

effect of local versus diffuse injury and shock states on platelet biology remains unclear in 

TIC(41, 46–48). However, platelets contribute significantly to the strength of clot formation 

in systemic blood during the post-injury state. Kornblith and colleagues demonstrated that 

the platelet contribution to clot strength is higher than that of fibrinogen at all time points 

after injury, using functional assessment of whole blood in trauma patients(41). In addition, 

thrombocytopenia is a poor prognostic marker following injury and is independently 

associated with transfusion, progression of brain injury, and death after injury(47). However, 

even with normal platelet counts, nearly half of injured patients demonstrate impaired 

platelet aggregation in aggregometry assays immediately after injury(24, 46), which has 

been replicated in animal models of injury and hemorrhagic shock(49). Excessive platelet 

activation(24) with subsequent exhaustion is one of the proposed mechanisms. This injury 

induced alteration in platelet biology has been found to have independent associations to 

brain injury, severe injury, and shock, and all injury patterns consistent with significant 

Kornblith et al. Page 6

J Thromb Haemost. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



endothelial damage(24). Multiple studies have demonstrated increased morbidity and 

mortality in patients that have impairments in platelet aggregation after injury(24, 46).

Numerous unresolved aspects of post-injury platelet biology remain to be addressed. For 

one, due to the nature of ex-vivo aggregometry assays (lack of endothelium, lack of flow, 

exogenous agonist stimulation of platelets), it remains unclear where on the spectrum of 

adaptive to maladaptive responses to injury impaired post-injury platelet aggregation lies. It 

should not be ignored that the majority of investigations in this area have relied on point-of-

care platelet function assays that were intended to assess the effects of anti-platelet 

medication on platelet inhibition, and of concern is that viscoelastic assays do not always 

correlate well with point-of-care assessment of platelet function in trauma patients (50). In 

fact, using multiple electrode aggregometry, unpublished work by the authors of this review 

has identified that platelets may be endogenously activated by injury, diminishing their 

aggregation response to exogenous agonists. This raises concern that the identification of 

impaired platelet aggregation after injury may detect multiple phenotypes of post-injury 

platelet biology including a physiologic response (platelets activated by injury and unable to 

respond further to platelet activating agonists) and a maladaptive impairment in platelet 

aggregation. Therefore, future investigations need to use additional methods to assess the 

health and function of the post-injury platelets by incorporating endothelium and flow 

(microfluidics), assessment of structure (microscopy), mitochondrial health (mitochondrial 

respiration), and improved biomarkers of platelet and endothelial function(48, 51–53).

Additionally, given platelet function extends beyond coagulation to bidirectional endothelial 

interaction and regulation(54), control of local fibrinolysis at injury sites(19, 55), and their 

role as core effector cells in local and systemic inflammation(56, 57), a focus on multiple 

areas of post-injury platelet biology should remain an active area of TIC science. Finally, an 

expanded understanding of post-injury platelet biology is critical to improving the care of 

post-injury hemorrhage. The standard-of-care in TIC is platelet transfusion as part of a 

balanced resuscitation ratio (regardless of platelet count)(7), but investigations have 

identified that not only does impaired post-injury platelet aggregation fail to predict the need 

for platelet transfusion(58), platelet transfusion does not reverse post-injury impairment in 

platelet aggregation(59) and does not improve outcomes for patients on anti-platelet 

medications who have brain injury(60). Multiple studies have demonstrated that platelet 

transfusions may increase morbidity and mortality after injury(59). The explanative 

mechanisms for this are unknown, but it is without a doubt that further studies of TIC related 

post-injury platelet biology, platelet transfusions, and alternative platelet therapies are 

required(61).

Dysregulated fibrinolysis

Local hypercoagulability promoting hemostasis at the site of injury is proposed to activate 

systemic fibrinolysis to “guard against thrombosis” in remote non-injured tissue(62). 

Elevated fibrinolysis measured by viscoelastic assays has repeatedly been demonstrated to 

be associated with a high mortality rate and massive transfusion in trauma, but found in less 

than 20% of the most severely injured trauma patients(32, 63). While excessive fibrinolysis 

has pathologic consequences, low fibrinolytic activity in animals has also been demonstrated 
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to cause microvascular occlusion to vital organs, irreversible recovery from hemorrhagic 

shock(64), and be reversible by administration of a profibrinolytic agent(65).

Moore and colleagues identified that low fibrinolytic activity measured by viscoelastic 

assays, termed fibrinolysis shutdown, has also been associated with increased mortality in 

severely injured patients(66). Low fibrinolytic activity (defined by a lysis at 30 minutes by 

thromboelastography [LY30] <0.9%) has been associated with increased mortality compared 

to moderate levels of fibrinolysis (LY30 0.9–2.9%) at multiple large volume trauma 

canters(66–68). Fibrinolysis shutdown early after injury may be protective in some 

patients(68). This coagulation change could counter balance platelet inhibition and 

prolonged prothrombin time that has been described in patients with evidence of prior 

fibrinolytic activation (67, 69). Historic and recent observations in trauma support that 

patients can present to the hospital with a spectrum of fibrinolytic activity in which patients 

at the pathologic extremes are at risk of increased mortality. This concept has argued for the 

selective use of antifibrinolytics, supported by a reduction in mortality by use in goal 

directed resuscitation(70). Specifically, concerns have risen that TXA may cause harm in 

certain trauma patients, in particular patients with moderate (physiologic) levels of 

fibrinolysis(71). Patients who receive TXA are also at risk of prolonged fibrinolysis 

inhibition. Fibrinolysis shutdown beyond 24 hours of injury is associated with increase in 

mortality and ventilator requirements(72, 73), and Myers, Neal and colleagues identified in a 

propensity matched retrospective review of a modern population of trauma patients that 

TXA may be an independent risk factor for the development of VTE after injury (74). In 

aggregate, evidence supports the need for improved understanding of complex biologic and 

clinical interactions and outcomes related to TXA administration in trauma patients.

Inflammation and Immune Dysfunction: Endotheliopathy, Damage-

Associated Molecular Patterns (DAMPs), and Others

While the effects of trauma on the biochemistry of coagulation are the subject of much 

important work, concurrent progress has been made on elucidating the effects of injury and 

shock on inflammatory and immune dysfunction. Emerging literature describes a 

conglomeration of sterile inflammatory and immune responses that center around the 

endothelium, which are related but unique to biochemical coagulopathies of TIC (52, 75–

78). The injury response establishes a cascade of inflammatory and immune dysfunction 

resulting in single and multiple organ failure (acute kidney injury, Acute Respiratory 

Distress Syndrome, hepatic dysfunction) and a higher susceptibility to infection(79, 80). 

Much has been done in septic models, but it is more recently that bridging work has been 

done between coagulation and inflammation in trauma.

Endotheliopathy

Dr. Kozar and others have identified degradation of the endothelial glycocalyx after trauma. 

Further work has suggested that catecholamine surge is associated with glycocalyx 

degradation and associated auto-heparinization that can be identified on viscoelastic 

assays(81, 82) In addition, clinical studies have identified increased levels of Syndecan-1, a 

degradation product of the endothelial glycocalyx, to be associated with inflammation, 
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coagulopathy, and mortality(27). Important to this, plasma has been identified to be 

restorative to the endothelial glycocalyx(79, 83), but clinical studies of early plasma 

administration have had mixed results in protection from morbidity and mortality(84, 85). 

Other pathways may also contribute to the endotheliopathy of trauma. Multiple investigators 

have reported aPC’s cytoprotective functions including endothelial barrier protection, anti-

apoptosis, and cleavage of extracellular histones. Kutcher and colleagues identified that 

release of extracellular histones in the setting of injury and shock are associated with organ 

failure and death, and the compensatory activation of protein C and subsequent clearance of 

histones was found to be protective(86). This remains an active area of investigations, and 

there are hypothesis generating investigations that endothelial leak primes neutrophil 

reactive oxygen species release through the alternative pathway of complement(87), which 

could be mediated by coagulation products. Given that cultured endothelial cells exposed to 

plasma from coagulopathic trauma patients have increased permeability consistent with 

endothelial barrier dysfunction, suggesting circulating mediators in trauma patients can 

directly impair the endothelium, significant further work to characterize, diagnose, and treat 

the endotheliopathy of trauma is needed.

DAMPs and Others

The spectrum of DAMPs following injury remains a confusing mix of individual and 

combined mediators of biologic interest including: cytokines, soluble receptor for advanced 

glycation end-products [s-RAGE], high mobility group protein B1 [HMGB1], tissue 

inhibitor metalloproteinases-3 [TIMP-3], and numerous others(26, 30, 88, 89). These 

DAMPs have been measured and implicated in the sterile inflammation of trauma and the 

crosstalk between coagulation and inflammation(26, 30, 88, 89). Beyond this, many 

mechanisms abound; myosin may be implicated as a link between coagulation and 

inflammation biology and effects on TIC and fibrinolysis(90); metabolites are likely 

underappreciated in their contribution to TIC and post-injury hemorrhage(91); the relative 

production of alpha and meizo-thrombin is being investigated as a switch between 

coagulation and sterile inflammation after trauma(92). Indeed, whether each of these 

mediators has true mechanistic effect or is just a correlative measure of injured patients 

remains an important question which will be answered only by a combination of both 

reductionist fundamental mechanistic biology and multivariate big data approaches to 

clinical data. As highlighted by Dr. Timothy Billiar in PLOS Medicine in 2017 (93) and at 

his 2019 Western Trauma Association Founders Basic Science Lecture, both DAMP and 

pathogen-associated molecular pattern (PAMP) signaling are the scientific frontier of TIC 

and an expanded focus on trauma-induced immune activation in response to both sterile 

signal and microbial signal should guide the future of this field.

The Future

Improved assays

The evolution of identification and measurement of TIC has followed the evolution in 

mechanistic understanding. Originally TIC was identified by focusing on single, static, ex-

vivo assessments of enzymatic coagulation cascade by measuring prolonged conventional 
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coagulation assays(6, 94), however functional assessment of whole-blood clot formation and 

degradation in real time via viscoelastic assays for both the identification and the 

management of TIC has become standard-of-care (70, 95). With the knowledge gained of 

the cellular and biochemical milieu created by combined tissue injury and shock, concerns 

have emerged regarding the ability to use ex-vivo conventional coagulation and viscoelastic 

assays for TIC interpretation, identification of ‘normal ranges’ of assays, and guidance of 

therapy.

Furthermore, there exists little ability to characterize and dynamically track the multiple 

competing and overlapping phenotypes which comprise TIC. Emerging evidence has 

highlighted that there are both clinical and biologic phenotypes of TIC and single assays are 

therefore ineffective for the purpose of identification and treatment of TIC(96). In addition, 

the optimal combination of assays that completely and effectively measure the complex and 

integrated pathways of all aspects of TIC related failure in coagulation, inflammation, and 

vascular homeostasis are unknown and perhaps undeveloped. Current best evidence supports 

that TIC can be identified by abnormalities in either conventional coagulation or viscoelastic 

assays, but not always both(96). Given this, combining multiple assays for diagnosis and 

therapy in TIC is likely the optimal strategy at this time. Future development of improved 

methods including in vivo biosensors of the biochemical milieu targeting assessments of 

circulating cells in flow and shear environments with the contribution of hematocrit and 

endothelium(97) should be a focus in the evolution of TIC science.

In-Silico Modeling

Ultimately however, we envision that biologic assays will be rapidly replaced by 

multivariate modeling of the complex coagulation milieu after trauma. This will be 

augmented by computational models which can target reductionist precision medicine 

approaches to resuscitation(98), while also predict and characterize dynamic phenotypes. 

This may allow for targeted predication and optimal personalized treatment rules for 

clinicians to use on their individual patients(99, 100). It is clear that we still have much to 

accomplish in the open science of TIC toward reducing morbidity and mortality for trauma 

patients.
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Table 1.

Estimated Average Coagulation Parameters in Trauma Patients With Trauma-Induced Coagulopathy Early (0h) 

and Later (beyond 0h) After Injury vs. Without Trauma-Induced Coagulopathy

TIC No TIC

Procoagulants (16, 17) Early Late Early

Fibrinogen 160ng/mL 499ng/mL 234ng/mL

Thrombin 67% 70% 81%

Factor V activity 42% 74% 70%

Factor VII activity 75% 76% 95%

Factor VIII activity 200% 180% 275%

Factor IX 104% 185% 129%

Factor X 67% 71% 86%

Plasminogen Activator Inhibitor-1 25ng/mL 19ng/mL 38ng/mL

Native Thrombin Generation (22)

Lag 16min und 15min

Peak 163nmol/L und 202nmol/L

Area Under the Curve 3145nmol/l*min und 3129nmol/l*min

Anticoagulants (16, 17, 23)

Protein C Activity 81% 74% 95%

Activated Protein C 12ng/mL 1.2ng/mL 2ng/mL

Tissue Plasminogen Activator 28ng/mL 4.5ng/mL 15ng/mL

Thrombin-Antithrombin III Complex 190 ug/L 75ug/L 37ug/L

Prothrombin Fragment 1 + 2 25nM/L 15nM/L 5nM/L

Antithrombin III 78% 74% 89%

D-dimer 6.8ug/mL 3.6ug/mL 4.0ug/mL

Platelet Biology (24–26)

Platelet count 224× 109/L 95× 109/L 227× 109/L

Soluble P-selectin (CD62P+) 13% 7% 2%

GPIIb-IIIa (PAC-1) 16% 8% 1%

Platelet ADP response 59AU 49AU 60AU

Platelet TRAP response 97AU 88AU 97AU

Platelet Collagen response 47AU 50AU 49AU

TEG-Platelet Mapping ADP inhibition 96% 44% 79%

TEG-Platelet Mapping AA inhibition 37% 8% 39%

HMGB1 on Platelet Surface (CD42b+HMGB1+) 13% 17% 7%

Endothelial Markers (27, 28)

Soluble Thrombomodulin 6.7ng/mL und 4.7ng/mL

Von Willebrand Factor Activity 200% und 175%

Syndecan-1 108ng/mL und 17ng/mL

Angiopoietin-2 3000pg/mL und 2000pg/mL

Complement Activation (29, 30)

C3a 55ng/mg 15ng/mg 20ng/mg
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TIC No TIC

C5a 0.5ng/mg 0.25ng/mL 0.20ng/mg

sC5b-9 0.18ng/mg 0.025ug/mg 0.01ug/mg

sRAGE 300pg/mL und 275pg/mL

Global Hemostatic Measures (16, 21, 31)

Rapid TEG ACT 113sec 113sec 113sec

Rapid TEG LY30 (physiologic phenotype) 1.6% 1.6% 1.6%

Rapid TEG LY30 (hyperfibrinolytic phenotype) 4.3% 1.6% n/a

Rapid TEG LY30 (fibrinolytic shutdown phenotype) 0.1% 0.1% n/a

Rapid TEG K Time 1.4min 1.5min 1.2min

Rapid TEG Angle 73degrees 72degrees 75degrees

Rapid TEG MA 61mm 62mm 65mm

Prothrombin Time 17sec 15sec 14sec

Partial Thromboplastin Time 38sec 39sec 28sec

*
Estimated average quantitative values (mean or median) for each listed coagulation parameter in trauma patients with trauma-induced 

coagulopathy (TIC) at early and later timepoints after injury vs. without TIC. Quantitative values are supported by existing literature, as cited. 
Abbreviations: trauma induced coagulopathy (TIC), adenosine diphosphate (ADP), thrombin receptor activating peptide-6 (TRAP), 
thromboelastography (TEG), activated coagulation time (ACT), percent lysis at 30 minutes (LY30), maximum amplitude (MA), high mobility 
group box 1 protein (HMGB-1), soluble (s), receptor for advanced glycation endproducts (RAGE), under-defined in previous studies (und).
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Table 2.

Qualitative Changes in Coagulation Parameters in Trauma-Induced Coagulopathy Compared to Major and 

Specific Criteria for Disseminated Intravascular Coagulation from the Scientific Subcommittee on 

Disseminated Intravascular Coagulation of the International Society on Thrombosis and Haemostasis (21)

Procoagulants (16, 17) TIC DIC

Fibrinogen ↓ ↓

Thrombin ↓ n/i

Factor V activity ↓ n/i

Factor VII activity ↓ n/i

Factor VIII activity ↓ n/i

Factor IX ↓ n/i

Factor X ↓ n/i

Plasminogen Activator Inhibitor-1 ↓ n/i

Native Thrombin Generation (22)

Lag ↓ n/i

Peak ↑ n/i

Area Under the Curve ↑ n/i

Anticoagulants (16, 17, 23)

Protein C Activity ↓ ↓

Activated Protein C ↑ n/i

Tissue Plasminogen Activator ↑ n/i

Thrombin-Antithrombin III Complex ↑ ↑

Prothrombin Fragment 1 + 2 ↑ n/i

Antithrombin III ↓ ↓

D-dimer ↑ ↑

Platelet Biology (24–26)

Platelet count → ↓

Soluble P-selectin (CD62P+) ↑ n/i

GPIIb-IIIa (PAC-1) ↑ n/i

Platelet ADP response ↓ n/i

Platelet TRAP response ↓ n/i

Platelet Collagen response ↓ n/i

TEG-Platelet Mapping ADP inhibition ↑ n/i

TEG-Platelet Mapping AA inhibition → n/i

HMGB1 on Platelet Surface (CD42b+HMGB1+) ↑ n/i

Endothelial Markers (27, 28)

Soluble Thrombomodulin ↑ n/i

Von Willebrand Factor Activity ↑ n/i

Syndecan-1 ↑ n/i

Angiopoietin-2 ↑ n/i

Complement Activation (29, 30)

C3a ↑ n/i
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Procoagulants (16, 17) TIC DIC

C5a ↑ n/i

sC5b-9 ↑ n/i

sRAGE ↑ n/i

Global Hemostatic Measures (16, 21, 31)

Rapid TEG ACT ↑ n/i

Rapid TEG LY30 (physiologic phenotype) → n/i

Rapid TEG LY30 (hyperfibrinolytic phenotype) ↑ n/i

Rapid TEG LY30 (fibrinolytic shutdown phenotype) ↓ n/i

Rapid TEG K Time ↑ n/i

Rapid TEG Angle ↓ n/i

Rapid TEG MA ↓ n/i

Prothrombin Time ↑ ↑

Partial Thromboplastin Time ↑ n/i

*
Qualitative changes for each listed coagulation parameter in trauma patients with TIC vs. major (bolded) and specific (grey) criteria for 

Disseminated Intravascular Coagulation (DIC) by the Scientific Subcommittee on DIC of the International Society on Thrombosis and 
Haemostasis. Abbreviations: trauma-induced coagulopathy (TIC), disseminated intravascular coagulation (DIC), adenosine diphosphate (ADP), 
thrombin receptor activating peptide-6 (TRAP), thromboelastography (TEG), activated coagulation time (ACT), percent lysis at 30 minutes (LY30), 
maximum amplitude (MA), high mobility group box 1 protein (HMGB-1), soluble (s), receptor for advanced glycation endproducts (RAGE), not 
included (n/i).
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