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Abstract

Background: As long-term use of medicinal and recreational cannabis becomes more common 

and concentrations of delta-9-tetrahydrocannabinol (THC) in cannabis increase, it is timely to 

identify strategies to counteract the cognitive effects of cannabinoids.

Objective: Galantamine is an acetylcholinesterase inhibitor approved for the treatment of 

Alzheimer’s disease and other dementias. This study aimed to investigate the feasibility of 

galantamine administration to individuals with cannabis use disorder (CUD), and the effects of 

galantamine on cognition. We hypothesized galantamine would be well tolerated and would not 

have procognitive effects in the absence of acute cannabis intoxication.

Methods: Thirty individuals with CUD (73.5% male, 26.5% female) participated in a 

randomized, double-blind, parallel-group trial. Participants completed a baseline session followed 

by a 10-day outpatient treatment period, during which they received either 8 mg/day of 

galantamine orally or placebo. Cognitive assessments were conducted at three time points and 

self-reported measures that may impact cognitive performance (cannabis withdrawal, craving, and 

mood) were completed at six time points.

Results: There were no significant differences in demographic and baseline variables between 

groups (galantamine vs. placebo). There were no significant adverse effects from galantamine. 

Cannabis withdrawal and craving continuously decreased over the study. We saw evidence of a 

modest improvement in cognitive outcomes during the 10-day period, exemplified by a 
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statistically significant increase in measures of response inhibition (increased median reaction time 

on the Stop Signal Task), and a trend for improvement in measures of attention (increased RVP 

A’), for both groups. Analyses did not show, however, a significant main effect for treatment or 

treatment-by-time interactions.

Conclusions: The findings of this pilot study support the feasibility of the administration of 

galantamine for individuals with CUD. Adequately powered, randomized, placebo-controlled 

trials are required to investigate the potential of galantamine to improve cognitive deficits 

associated with CUD.
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1. Introduction

Cannabis is one of the most widely used substances in the United States. According to the 

2017 National Survey on Drug Use and Health (NSDUH), 26 million individuals – 9.6% of 

Americans aged 12 years or older – used cannabis in the past month (1). Approximately 41 

million individuals used in the past year, and 3 million used for the first time, which amounts 

to approximately 8,300 new users each day (1). From 1992 until 2017, the proportion of 

Americans regularly using cannabis increased by approximately 60% (1). Several factors 

may account for this increase, such as the significant momentum gained by changes in 

medicinal and recreational cannabis legislations, with several states moving toward 

legalization, and the increased perception of cannabis use as “benign” and socially 

acceptable (2).

As long-term use of medicinal and recreational cannabis becomes more common and 

concentrations of delta-9-tetrahydrocannabinol (THC) in cannabis increase (3), it is timely 

to identify strategies to reduce the cognitive effects of cannabinoids. Cognitive effects of 

cannabinoids may be a particular challenge for treatment-seeking individuals with cannabis 

use disorder (CUD), as cognitive impairments may be a predictor of higher treatment 

dropout (4). These findings are consistent with studies of individuals with other substance 

use disorders (e.g., alcohol and cocaine use disorders), which also found negative effects of 

cognitive impairments on treatment retention (5–7). Among the cognitive domains impaired 

by cannabis are sustained attention, response inhibition, verbal learning, and memory (8, 9). 

THC, the main psychoactive constituent of cannabis, is partial agonist at the cannabinoid 

receptors 1 (CB1-R), which is densely expressed in the hippocampus and the prefrontal 

cortex, neuroanatomical structures markedly implicated in cognitive processes such as 

sustained attention, response inhibition and verbal learning and memory (8, 9). Preclinical 

studies indicate that CB1-R are particularly concentrated on presynaptic cholinergic 

terminals (10, 11), which are involved in long-term potentiation (LTP), widely regarded as a 

neurophysiological substrate of learning and memory (12, 13). By binding at the presynaptic 

CB1-R located at the cholinergic nerve terminals, cannabinoids may cause inhibition of 

acetylcholine release, contributing to acute cognitive deficits (14–16). This is also 

exemplified by reports of cognitive effects of cannabinoids as manifesting clinically akin to 

the cognitive impairment produced by cholinergic antagonists (17, 18). Collectively, these 
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data suggest cannabinoids act on the cholinergic system and raise the question whether 

increasing acetylcholine levels pharmacologically can counteract the cognitive effects of 

cannabinoids, via the administration of an acetylcholinesterase inhibitor (AChEI) (19–21).

Galantamine is an AChEI used to treat major neurocognitive disorder associated with 

Alzheimer’s disease and other disorders characterized by cognitive impairment (22). 

AChEIs have also been shown to enhance cognitive functioning in healthy volunteers and 

individuals with mild neurocognitive disorder (22–29). Further, evidence exists that 

populations with substance use disorders can derive procognitive effects from galantamine, 

as exemplified by findings of galantamine-induced increases in sustained attention among 

individuals with cocaine use disorder (30). On the other hand, other clinical studies suggest 

that galantamine’s effects in reducing cocaine (31) or tobacco use (32) is not mediated by its 

procognitive effects. Preclinical studies suggest that by increasing ACh levels in basal 

ganglia, especially in the nucleus accumbens, galantamine may reduce the reinforcing 

effects of drugs of abuse (33).

This study had two goals: (1) to examine the feasibility of galantamine administration for 

individuals with CUD; and (2) to examine the effect of galantamine on cognition among 

individuals with CUD. We hypothesized that galantamine would be well-tolerated. Further, 

as previous studies with another AChEI, rivastigmine, have only shown procognitive effects 

in humans acutely intoxicated with cannabis (34, 35), we hypothesized the effect of 

galantamine for counteracting the cognitive effects of cannabinoids would not be observed 

in the absence of acute cannabis intoxication.

2. Materials and Methods

2.1. Participants

Participants were aged between 18 and 55. The inclusion criteria were: (a) a DSM-IV 

diagnosis of cannabis abuse or dependence (i.e., DSM-5 cannabis use disorder); (b) a history 

of cannabis use on the average of at least twice a week over a one-month period; (c) recent 

exposure to cannabis confirmed by positive urine toxicology for cannabinoids; (d) absence 

of current medical problems and a normal ECG. Exclusion criteria were: (a) current major 

psychiatric disorders (i.e., mood, psychotic, or anxiety disorders); (b) current alcohol or 

other substance use disorders (except cannabis and tobacco); (c) history of major medical 

illnesses; (d) use of other medications; (e) known allergy to galantamine, and (e) current 

pregnancy or breastfeeding. Participants were asked to refrain from using alcohol and drugs 

during study participation. Those who were non-compliant were discharged from the study. 

Although participants were asked to refrain from using cannabis, the extreme lipid solubility 

and long half-life of cannabinoid metabolites precludes accurate estimation of recent 

exposure. Urine toxicology tests for cannabinoids may be positive for as long as two months 

in chronic users. To minimize nicotine withdrawal effects on cognitive performance, 

participants who used nicotine were advised to continue smoking as usual.

Seventy-three individuals were screened to participate in the study. Thirty-four participants 

were randomized, and 30 completed all study visits (Figure 1). Of the four participants that 

did not complete the study, two were discharged for drug use and two for non-compliance 
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with study procedures (1 participant attended the day 1 visit and did not return, and 1 

participant missed a dose of medication and was discharged). There were no differences 

between study completers and non-completers on any demographic variables, or by group 

assignment. All participants provided informed consent prior to study entry and were paid 

for participation. This study was approved by the VA Connecticut Healthcare System 

Human Subjects Subcommittee.

2.2. Design and Procedures

This was a randomized, double-blind, parallel-group study. Participants were randomized to 

receive oral galantamine extended release (8 mg/day) or placebo treatment for 10 days. All 

participants had a baseline session (day 0), where they were familiarized with study 

procedures and baseline measures (e.g., cognitive performance and mood assessments) were 

collected. On day 1, participants received the first dose of the study medication in the clinic. 

Participants returned to the clinic for outpatient visits on days 2, 4, 7, and 9 or 10 to receive 

medication. Participants received take-home bottles to self-administer study medication for 

days 3, 5, 6, and 8. If participants completed their outpatient visit on day 10, they also 

received take-home medication for day 9. Pill counts were conducted to ensure adherence to 

study medication. Cognitive test sessions took place at baseline and days 4, 9 or 10.

2.3. Measures

2.3.1. Physiological measures—Blood pressure and heart rate were measured at each 

visit. Urine toxicology screening tests were performed before each visit to rule out exposure 

to drugs other than cannabis. Breath alcohol was measured prior to each visit to rule out 

acute alcohol intoxication.

2.3.2. Adverse effects—Adverse events were monitored using a locally developed 

comprehensive symptom checklist that included side effects of galantamine.

2.3.3. Cannabis use, withdrawal, craving, and mood—Cannabis use was collected 

from the medical interview screening notes. The Marijuana Withdrawal Checklist (MWC; 

36, 37) was used to assess withdrawal symptoms in the last 24 hours and the 12-item 

Marijuana Craving Questionnaire (MCQ; 38); was used to assess cannabis craving. The 65-

item Profile of Mood States (POMS), composed of six subscales – tension, depression, 

anger, vigor, fatigue, and confusion – was used to measure mood (39). Withdrawal, craving, 

and mood measures were collected as they can influence cognitive outcomes (30).

2.3.4. Cognitive battery—The cognitive battery used in this study included the 

Hopkins Verbal Learning Test Revised (HVLT-R; 40) and two modules from the Cambridge 

Neuropsychological Test Automated Battery (CANTAB; 41, 42) the Rapid Visual 

Information Processing (RVIP) and the Stop Signal Task (SST). Practice effects were 

minimized by the use of alternate versions of the HVLT-R and parallel versions of the 

CANTAB modules across all testing sessions.

The HVLT-R is a brief verbal learning and memory test with six alternate forms. Aside from 

verbal memory and learning being one of the cognitive domains most affected by 
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cannabinoids (15), previous studies indicate that HVLT-R performance is sensitive to the 

effects of cannabinoids on verbal memory (43). In this study, the HVLT-R outcomes were 

total recall, delayed recall, percent retention, and recognition discrimination index scores.

The RVIP is a measure of sustained attention with a working memory component and is also 

sensitive to the cognitive effects of cannabinoids (43, 44). The RVIP has three key outcome 

measures: 1) A’ (target sensitivity, a measure of the ability to detect sequences); 2) B” 

(response bias, a measure of the tendency to respond regardless of whether a target is 

present) and; 3) mean latency.

The SST is a test of response inhibition. Cannabis-using individuals have previously shown 

impairment in the SST (43, 44). The SST has four main outcome measures: 1) direction 

errors; 2) proportion of successful stops; 3) median correct response time on ‘Go’ trials and; 

4) the stop signal delay, at which the subject is able to stop 50% of the time (SSD 50%).

2.4. Data Analysis

Pearson chi-square and t tests were used to compare groups on baseline characteristics. The 

primary outcomes were analyzed with repeated measures of variance. For these analyses, 

effects of treatment (galantamine or placebo) and time (baseline, test session 1, test session 

2) and the interaction between treatment and time were included.

3. Results

3.1. Demographics and baseline assessments

Demographic information for all randomized participants is presented in Table 1. There 

were no statistically significant differences between groups on frequency of cannabis use or 

any of the demographic variables (p-values > .05). Moreover, there were also no significant 

group differences on any of the baseline physiological, self-report or cognitive measures (p-

values > .05), presented in Table 2. At baseline, compared to normative cognitive 

performance, participants in this study showed evidence of cognitive deficits on measures of 

sustained attention (RVP A’, Z-score = −0.6, and RVP B’ Z-score = −0.51, or 73nd, and 70th 

percentiles, respectively). Further, participants demonstrated evidence of verbal memory 

deficits indexed by HVLT measures (total recall delayed recall, percent retention and 

recognition discrimination index), both compared to normative data (45) and also compared 

to previously conducted studies of healthy individuals and individuals with CUD (46).

3.2. Adverse effects

There were no significant main effects and no significant group by time interactions for 

blood pressure and heart rate (p-values > .05). None of the participants reported adverse 

events during the study.

3.3. Cannabis withdrawal, craving, and mood

Though cannabis withdrawal total score decreased over time, we found no significant main 

effects and no significant group by time interactions for cannabis withdrawal scores (p-

values > .05).
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The total MCQ score [F (5, 140) = 11.72; p<0.001]) and total MWC score [F (5, 135) = 

6.31; p<0.001] decreased over time, though there were no significant interactions by group. 

Three of the POMS subscale scores also decreased over time (Tension-Anxiety: [F (5, 135) 

= 6.61; p<0.001], Vigor-Activity: [F (5, 135) = 4.78; p<0.001], and Confusion-

Bewilderment: [F (5, 135) = 3.64; p<0.01]), however there were no significant interactions 

by group.

3.4. Cognitive battery

Table 3 shows the cognitive performance test score means by group, across the three testing 

sessions. There were no significant main effects and no significant group by time 

interactions for any of the RVIP measures (p-values > .05), though we found a trend for 

improvement in measures of attention (increased RVP A’) for both groups (Figure 2). For 

the SST, median correct reaction time on Go trials increased over time [F (2, 56) = 3.59; p 
<0.05], yet there was no significant interaction by group (Figure 3). For the HVLT-R, only 

delayed recall decreased over time [F (2, 56) = 4.48; p<0.05], but did not differ by group.

4. Discussion

The current study investigated the feasibility and the potential efficacy of the centrally acting 

AChEI galantamine to improve cognitive function among individuals with cannabis use 

disorder. As hypothesized, galantamine was well tolerated by participants, such that there 

were no differences in physiological measures or adverse effects for participants who 

received galantamine, compared to those who received placebo.

The results of this study show that individuals with CUD demonstrated evidence of mild 

cognitive deficits at baseline, in accordance with previous studies demonstrating cognitive 

deficits among individuals with CUD (47, 48). As expected, the cognitive performance of 

participants who received galantamine in the absence of cannabis intoxication did not differ 

from those who received placebo, on any of the measures of sustained attention, response 

inhibition and verbal memory and learning. AChEI have been previously found to enhance 

cognition in acutely cognitively impaired individuals intoxicated with cannabis (34). In this 

study, the procognitive effects of galantamine were not demonstrated, likely due to the fact 

that our sample was composed of young, healthy individuals who did not demonstrate 

substantial cognitive deficits and were not acutely intoxicated with cannabis, unlike in a 

previous human laboratory study that found procognitive effects of rivastigmine in acutely 

intoxicated cannabis users (34). Some participants experienced mood changes during the 

course of the study, possibly in the context of early, mild cannabis withdrawal. However, on 

the Marijuana Withdrawal Checklist we did not see a pattern of scores initially increasing 

and then decreasing over time, which might be expected if participants were abstaining from 

cannabis. Moreover, because all participants were able to continue with full, uninterrupted 

sessions of the cognitive tests, we estimate the impact of any withdrawal symptoms on the 

study results was limited.

The absence of main effects of galantamine on cognition among individuals with CUD in 

this study is aligned with the conflicting preclinical data regarding the involvement of the 

brain acetylcholine (ACh) system in the neurobiology of the cognitive effects of 
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cannabinoids. Some studies in rats have shown reduced choline uptake in the hypothalamus, 

reduced synthesis of ACh after THC administration (49), and a reduction of cannabis-

induced working memory deficits by AChEI (50). In contrast, other studies have not 

confirmed the hypothesis that the cognitive effects of cannabinoids are explained by a 

reduction in ACh release. Nava et al. (2001) showed that the decrease in extracellular 

hippocampal ACh concentrations in rats was delayed in relation to the timing of the THC-

induced cognitive deficits (51), thus not supporting a causal relationship between low ACh 

levels and cognitive deficits. Moreover, the AChEI physostigmine did not counteract THC-

induced cognitive deficits in rats (52). Collectively, the preclinical human laboratory study 

and clinical trial data indicate the effects of AChEI on cognition may be time (i.e., may only 

be present during acute cannabis intoxication) and dose-dependent (i.e., be contingent on the 

cannabinoid and AChEI dose exposure). In this study, marijuana craving decreased over 

time for both groups, with no significant interactions by group. Thus, we did not find 

evidence that galantamine reduced the reinforcing effect of the drug.

The current study has several limitations that need to be addressed in further studies. First, 

although all participants met criteria for CUD and there were no significant differences in 

cannabis use histories, the effects of cannabis on cognition may depend on other factors such 

as the THC/CBD ratio of cannabis, with higher concentrations of CBD inducing less 

cognitive deficits (53). Further, the chronic cognitive effects of cannabinoids are more 

complex and challenging to interpret their acute effects, appearing to be related not only to 

the dose of exposure (frequency, duration, amount) but also to the age of onset of use (7, 54). 

Some individuals with CUD may have blunted responses to the cognitive deficits induced by 

cannabis, and in these populations abstinence from cannabis may, in fact, be associated with 

cognitive impairment (55). In addition, we were also unable to determine if individuals 

abstained from cannabis use during the study, due to the extended length of time that 

cannabis remains in the system. Future studies with a within-subject design may account for 

the potential confounding effects of individual differences in cannabis use histories.

Second, we only used one dose (8 mg/day) of galantamine in this study. Since this is the first 

study to assess galantamine on cognitive function in individuals with CUD, we established 

our dosage based on other studies of populations with substance use disorders – in 

particular, our previous study of the effects of galantamine on individuals with cocaine use 

disorder (30). As the recommended therapeutic target dose for galantamine for Alzheimer’s 

disease ranges from 8 to 24 mg, it is possible that higher doses of galantamine may have 

produced cognitive effects in our sample. This is supported by the fact that eptastigmine, a 

more potent AChEI than physostigmine, was effective for reducing the cognitive effects of 

cannabinoids in preclinical studies (50). Third, the short treatment duration and small 

sample size may not have been enough to capture procognitive effects of galantamine in 

individuals with CUD. A meta-analysis of neuropsychological studies found that only small 

magnitude effects are apparent in the first few weeks of abstinence from cannabis (of the 

order of d = 0.25 to 0.35), and these become smaller and non-significant with extended 

abstinence (to around d = 0.15) (43, 56). Future studies should test higher doses of 

galantamine for a longer period of time and with an adequately powered sample. Lastly, the 

small sample size prohibits us from examining differences in improvement between those 

with and without mild cognitive deficits. Larger studies with individuals of various levels of 
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cognitive deficits are needed to help determine whether modulation of cholinergic 

neurotransmission with galantamine is a viable therapeutic strategy, especially for 

individuals with early onset CUD and severe CUD, who may have more substantial 

cognitive deficits.

In conclusion, this pilot study shows feasibility and tolerability of galantamine, for 

individuals with cannabis use disorder. This study has broad methodological implications for 

the emerging field of development of cognitive enhancers for addiction treatment (57). More 

specifically, it has significance for the design of future studies investigating the potential of 

galantamine for counteracting the cognitive effects of cannabinoids, a potential target for the 

treatment of CUD.
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Highlights

• Galantamine was well-tolerated by individuals with cannabis use disorder

• There were no group differences (galantamine v. placebo) in cognitive 

performance

• Response inhibition increased over time for both galantamine and placebo 

groups

• Cannabis withdrawal and craving decreased over time for both groups
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Figure 1. 
CONSORT diagram
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Figure 2. 
Effects of galantamine and placebo on sustained attention, indexed by Rapid Visual 

Processing (RVP) A’ and B’ scores, over time.
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Figure 3. 
Effects of galantamine and placebo on response inhibition performance over time. Response 

inhibition performance is indexed by stop signal delay, at which the subject is able to stop 

50% of the time (SSD 50%), and reaction time (RT) scores.
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Table 1.

Demographic information for randomized sample.

Galantamine
(n = 18)

Placebo
(n = 16)

Total Sample
(N = 34)

N (%)

Sex

 Male 15 (83.3) 10 (62.5) 25 (73.5)

 Female 3 (16.7) 6 (37.5) 9 (26.5)

Ethnicity

 White 3 (16.7) 3 (18.8) 6 (17.6)

 Black 14 (77.8) 12 (75.0) 26 (76.5)

 Hispanic 1 (5.6) 1 (6.3) 2 (5.9)

Current Smoker 11 (61.1) 11 (68.8) 22 (64.7)

Mean (SD)

Age 30.2 (8.0) 29.8 (9.7) 30 (8.8)

Cannabis use (joints per day* 2.2 (1.3) 1.7 (1.0) 2.0 (1.2)

Years of cigarette smoking 9.3 (9.8) 7.4 (9.0) 8.4 (9.3)

Years of education completed 12.4 (1.0) 12.6 (1.1) 12.5 (1.0)

There were no significant differences between conditions on any of the baseline assessment variables (p-values > 0.05).

*
Cannabis use data were missing for 2 participants in the placebo group.
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Table 2.

Baseline assessment data for randomized sample.

Galantamine
(n = 18)

Placebo
(n = 16)

Total Sample
(N = 34)

Mean (SD)

Physiological

 Systolic BP 132.3 (16.5) 133.0 (11.7) 132.6 (14.3)

 Diastolic BP 73.4 (12.7) 76.1 (10.4) 74.7 (11.6)

 Heart rate 70.3 (11.6) 73.3 (10.3) 71.7 (10.9)

Marijuana Craving Questionnaire

 Total score 45.2(15.9) 44.3 (19.7) 44.8 (17.5)

 Compulsivity subscale 8.7 (4.5) 8.8 (4.6) 8.8 (4.5)

 Emotionality subscale 10.3 (4.9) 11.6 (5.8) 10.9 (5.3)

 Expectancy subscale 13.5 (5.0) 11.9 (5.7) 12.7 (5.4)

 Purposefulness subscale 12.7 (3.6) 11.9 (5.5) 12.3 (4.5)

Marijuana Withdrawal Checklist

 Total Score 6.7 (5.5) 6.4 (5.6) 6.5 (5.5)

Profile of Mood States

 Tension subscale 14.7 (3.6) 16.2 (3.7) 15.4 (3.7)

 Depression subscale 20.1 (4.5) 21.1 (6.8) 20.6 (5.6)

 Anger subscale 15.9 (4.5) 16.1 (5.0) 16.0 (4.7)

 Vigor subscale 21.7 (5.8) 24.9 (3.7) 23.2 (5.1)

 Fatigue subscale 9.7 (3.3) 10.5 (4.1) 10.0 (3.7)

 Confusion subscale 11.7 (3.4) 11.8 (2.5) 11.7 (2.9)

Cognition

Rapid Visual Information Processing (RVIP)

 RVPA’ 0.89 (0.06) 0.89 (0.06) 0.89 (0.06)

 RVPB” 0.81 (0.31) 0.88 (0.19) 0.84 (0.26)

 Mean Latency 412.40 (112.3) 446.97 (132.40) 428.67 (121.53)

Stop Signal Task (SST)

 Direction errors 1.72 (1.78) 1.81 (2.37) 1.76 (2.05)

 Proportion of successful stops 0.56 (0.14) 0.57 (0.12) 0.56 (0.13)

 Median correct RT on Go trials 520.14 (161.75) 520.91 (178.78) 520.50 (167.35)

 SSD (50%) 345.98 (173.93) 355.72 (152.76) 350.56 (161.91)

Hopkins Verbal Learning Test-Revised (HVLT-R)

 Total recall 19.0 (5.7) 20.8 (6.2) 19.9 (5.9)

 Delayed recall 6.7 (2.4) 7.2 (2.7) 6.9 (2.5)

 Percent retention 86.3 (25.4) 82.5 (27.5) 84.5 (26.1)

 Recognition discrimination index 9.8 (1.6) 9.8 (1.7) 9.8 (1.6)

There were no significant differences between conditions on any of the baseline assessment variables (p-values > 0.05). SSD 50%: Stop signal 
delay, at which the subject is able to stop 50% of the time. RT: Reaction time.
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Table 3.

Cognitive testing scores for placebo vs. galantamine treatment.

Baseline Test Session 1 Test Session 2

Mean (SD)

Rapid Visual Information Processing (RVIP)

RVIPA’

 PLA 0.89 (0.02) 0.92 (0.02) 0.92 (0.02)

 GAL 0.90 (0.02) 0.92 (0.02) 0.92 (0.01)

RVIP B”

 PLA 0.85 (0.06) 0.87 (0.04) 0.72 (0.15)

 GAL 0.88 (0.03) 0.89 (0.03) 0.94 (0.03)

RVIP Mean Latency

 PLA 449.15 (35.31) 428.25 (39.34) 436.26 (33.81)

 GAL 405.63 (31.21) 398.37 (22.39) 383.86 (18.65)

Stop Signal Task (SST)

Direction errors

 PLA 1.93 (0.62) 1.13 (0.63) 2.33 (1.09)

 GAL 1.73 (0.49) 1.27 (0.49) 1.73 (0.61)

Proportion of successful stops

 PLA 0.58 (0.03) 0.57 (0.03) 0.53 (0.04)

 GAL 0.56 (0.03) 0.54 (0.03) 0.57 (0.03)

Median correct RT on Go trials

 PLA 515.00 (47.36) 559.03 (60.99) 557.10 (69.41)

 GAL 536.00 (44.58) 585.90 (50.55) 605.63 (61.38)

SSD (50%)

 PLA 353.69 (40.77) 369.40 (54.02) 392.98 (64.42)

 GAL 359.18 (46.83) 411.81 (54.02) 441.02 (57.51)

Hopkins Verbal Learning Test-Revised (HVLT-R)

Total recall

 PLA 21.33 (1.57) 21.67 (1.61) 21.13 (1.14)

 GAL 19.80 (1.52) 23.27 (1.14) 21.07 (1.15)

Delayed recall

 PLA 7.27 (0.72) 6.80 (0.63) 6.07 (0.71)

 GAL 6.73 (0.64) 7.73 (0.40) 6.13 (0.64)

Percent retention

 PLA 82.27 (7.36) 76.93 (4.99) 72.40 (7.13)

 GAL 84.07 (5.51) 82.73 (3.43) 74.93 (6.60)

Recognition Discrimination Index

 PLA 9.73 (0.45) 9.27 (0.49) 9.87 (0.49)

 GAL 9.67 (0.43) 9.67 (0.37) 10.47 (0.35)

Note: PLA = placebo; GAL = galantamine; n = 30 (15 PLA, 15 GAL). SSD 50%: Stop signal delay, at which the subject is able to stop 50% of the 
time. RT: Reaction time.
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