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Abstract

Several approaches were compared for the entrapment of proteins within hydrazide-activated silica 

for use in affinity microcolumns and high performance affinity chromatography. Human serum 

albumin (HSA) and concanavalin A (Con A) were used as model proteins for this work. Items 

considered in this study included the role played by the solution volume, amount of added protein, 

and use of slurry vs. on-column entrapment on the levels of solute retention and extent of protein 

immobilization that could be obtained by means of entrapment. The levels of retention and protein 

immobilization were evaluated by injecting warfarin or 4-methylumbellipheryl α-D-

mannopyranoside as solutes with known binding properties for HSA or Con A. Altering both the 

solution volume and amount of added protein led to an increase of up to 17-fold in the extent of 

protein immobilization for HSA in slurry-based entrapment; on-column entrapment provided an 

additional 3.6-fold increase in protein content vs. the optimized slurry method. Similar general 

trends were seen for Con A. The protein contents obtained by entrapment for HSA or Con A (i.e., 

up to ~87 and 46 mg/g silica, respectively) were comparable to or higher than levels reported for 

the covalent immobilization of these proteins onto silica. The retention of warfarin on the 

entrapped HSA was at least 1.7-fold higher than has been obtained under comparable support and 

mobile phase conditions when using covalent immobilization. These results indicated that 

entrapment can be an attractive alternative to covalent immobilization for proteins such as HSA 

and Con A, with this approach serving as a potential means for obtaining good solute binding and 

retention in work with affinity microcolumns or related microscale devices.
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1 Introduction

High performance affinity chromatography (HPAC) is a method in which an immobilized 

biological agent, or affinity ligand, is placed onto an HPLC support (e.g., porous silica) and 

used as a selective binding agent for sample components [1,2]. The combination of such a 

support with the specificity and strong binding of many affinity ligands makes it possible 

with HPAC to quickly isolate, measure, or study specific targets even when they are present 

in complex biological samples. Other advantages of HPAC are its ability to be automated, to 

study biological interactions, and to reuse the same biological agent for many samples or 

binding studies [1–10].

The affinity ligand in HPAC is often covalently attached to the support through functional 

sites such as amines, carboxylates or sulfhydryl groups [2,11,12]. However, covalent 

coupling methods often have some multisite attachment, improper orientation or 

immobilization near a binding site, which can decrease the actual or apparent activity of the 

affinity ligand [2,12]. An alternative approach for immobilization is to use entrapment or 

encapsulation of the affinity ligand [12–16]. The encapsulation of various binding agents 

within sol-gels has been used for some time [12–15]. However, the sol-gels that result from 

traditional entrapment methods are generally not suitable for HPAC because of their band-

broadening and inability to be used at the pressures or flow rates that are often encountered 

in HPLC systems [12,16].

These limitations have been overcome in recent work with HPLC-based silica and the 

entrapment method shown in Figure 1. In this technique, an affinity ligand such as a protein 

is mixed with hydrazide-activated silica and a mildly oxidized form of glycogen (molar 

mass, ~2.5 × 105 kDa), which is used as a large capping agent [16]. The hydrazide groups on 

the support will not react with the binding agent but will form a stable covalent bond with 

aldehyde groups on the oxidized glycogen. This process results in some of the affinity ligand 

being entrapped within the stagnant mobile phase of the support as the glycogen binds to the 

activated silica and blocks the affinity ligand from leaving the pores or the region near the 

support’s surface. The result is an immobilization process in which the affinity ligand is kept 

within the support and in a form that is fully soluble and highly activity [16]. Although 

previous work has examined the effects of factors such as pore size and glycogen or protein 

levels on entrapment [16–19], there is still a need to further characterize items that influence 

the amount of protein that can be immobilized by this approach. This issue is of particular 

interest in work with affinity microcolumns (i.e., columns containing biological binding 

agents and with volumes in the low-to-mid μL range) [20], where a high protein content is 

frequently desirable for strong analyte binding and good retention [20–23].

This report will examine the effects of factors such as solution volume, relative protein 

amounts, and slurry versus on-column entrapment on the amount of protein and levels of 

solute retention that can be obtained with entrapment. Two model proteins will be used for 

this work: human serum albumin (HSA) and concanavalin A (Con A) [10,11]. These 

proteins are of general interest as binding agents in affinity columns for many drugs (i.e., the 

use of HSA in drug binding studies or chiral separations) or carbohydrate-containing agents 

(e.g., the use of Con A to bind glycopeptides) [6,7,9–11,21–26]. The retention properties 
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and level of entrapment of these proteins will be evaluated by using zonal elution studies and 

injected probe compounds with well-characterized binding to these agents. The results that 

are obtained under various conditions of entrapment will be used to identify conditions that 

maximize the protein content and solute retention of such supports. The protein content and 

retention behavior will be compared to prior covalent methods that have been employed with 

HSA and Con A. The results should provide valuable guidelines for future applications of 

entrapment with these and other proteins when using affinity microcolumns and related 

microscale systems [20–23,26].

2 Material and methods

2.1 Reagents

The HSA (essentially fatty acid free, ≥ 96% pure), Con A (type V, lyophilized powder, 

highly purified), glycogen (bovine liver type IX, total glucose ≥ 85 %, dry basis), racemic 

warfarin (purity ≥ 98%), 4-methylumbellipheryl α-D-mannopyranoside (MUM, purity ≥ 

96%) and 4-methylumbellipheryl α-D-galactopyranoside (MUGA, purity ≥ 98%) were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Nucleosil Si-300 silica (7 μm particle 

diameter, 300 Å pore size) was obtained from Macherey Nagel (Duren, Germany). All other 

chemicals were of the purest grades available. Vivaspin 6 ultrafiltration tubes (30 kDa cutoff; 

Sartorius, Gottingen, Germany) were used for purification of the oxidized glycogen. All 

buffers and aqueous solutions were prepared using water from a Nanopure system 

(Barnstead, Dubuque, IA, USA). Buffers were filtered using 0.20 μm GNWP nylon 

membranes from Fisher Scientific (Pittsburgh, PA, USA) and were degassed by sonication 

under vacuum for at least 30 min prior to use.

2.2 Apparatus

The chromatographic system consisted of a 1200 isocratic pump from Agilent (Santa Clara, 

CA, USA), a Series 200 UV-Vis detector, and a vacuum degasser from Perkin-Elmer 

(Waltham, MA, USA). Samples were injected using a Rheodyne LabPro valve (Cotati, CA, 

USA) equipped with a 5 or 20 μL sample loop. An Isotemp 9100 circulating water bath 

(Fisher Scientific, Pittsburgh, PA, USA) and a water jacket from Alltech (Deerfield, IL, 

USA) were used for temperature control of the columns and mobile phases. The 

chromatographic data were collected and processed using LabView 8 software (National 

Instruments, Austin, TX, USA), and analyzed using PeakFit 4.12 (Systat Software, San Jose, 

CA, USA). Two PHD Ultra syringe pumps (Harvard Apparatus, Holliston, MA, USA) were 

used for the on-column entrapment method. An HPLC slurry packing system from 

ChromTech (Apple Valley, MN) was used for packing supports into the microcolumns.

2.3 Protein entrapment by the slurry method

The supports containing entrapped proteins were prepared from Nucleosil Si-300 silica that 

had first been converted into a diol-bonded form, as described previously [27]. This support 

has been found in prior work to be suitable for the entrapment of HSA and proteins with 

similar sizes to HSA [16–19]. The diol-bonded silica was later used in preparing hydrazide-

activated silica, with oxalic dihydrazide being employed as the activating agent [16,27].
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The initial conditions used for slurry-based entrapment were based on prior work with HSA 

and this method [16] (Note: modifications of this approach that were made and used later in 

this study are described in Section 3.1). These conditions involved making a slurry that 

contained 0.08 g of hydrazide-activated silica and 0.80 mL of a 10 mg/mL protein sample 

that were placed or prepared in a pH 5.0, 0.10 M potassium phosphate solution. This slurry 

was degassed for 10 min to remove any trapped air within the support. Next, 0.28 mL of a 

4.25 mg/ml solution of mildly oxidized glycogen in a pH 5.0, 0.10 M potassium phosphate 

solution was added to the mixture, giving a slurry that contained 15 mg glycogen/g silica. 

The glycogen had previously been oxidized in pH 5.0, 20 mM sodium acetate buffer that 

contained 15 mM sodium chloride, with 17 mg glycogen and 135 mg periodic acid being 

added to 4 mL of this buffer and allowed to react for 16 h in the dark; these conditions have 

been shown to oxidize about 0.5% of the glucose units in glycogen [16]. The oxidized 

glycogen was purified by ultrafiltration [19] and then used for entrapment.

The volume of the entrapment solution containing the hydrazide-activated support, protein 

and oxidized glycogen was adjusted to 2.0 mL by adding a pH 5.0, 0.10 M potassium 

phosphate solution. This slurry was mixed slowly for 16 h at 4°C. Finally, 50 μL of oxalic 

dihydrazide, which was present at a concentration of 1 mg/mL in a pH 5.0, 0.10 M 

potassium phosphate solution, was added and allowed to mix with the slurry for 1 h. This 

step was performed to cap any remaining aldehyde groups on the glycogen and to decrease 

possible non-specific binding that might occur later with such groups in the microcolumn. 

Control supports were prepared in the same manner, but with a pH 5.0, 0.10 M potassium 

phosphate solution being used in place of the protein solution during the entrapment step.

Several conditions were varied for the slurry-based entrapment method, with the goal of 

increasing the amount of entrapped protein and its retention of applied solutes. These 

conditions, as discussed in Section 3, included the solution volume and the total amount of 

protein that was used for entrapment. The supports prepared by slurry-based entrapment, or 

the activated supports used for on-column entrapment, and the corresponding control 

supports were suspended in pH 7.4, 0.067 M potassium phosphate buffer and downward 

slurry packed into 1.0 cm × 2.1 mm i.d. stainless steel microcolumns for evaluation and use 

in chromatographic studies. The packing solution for all supports was pH 7.4, 0.067 M 

potassium phosphate buffer and the packing pressure was 4000 psi (27.6 MPa). After 

packing, the microcolumns were placed in an HPLC system, where a pH 7.4, 0.067 M 

potassium phosphate buffer (for the HSA supports) [16,21–23] or a pH 5.0, 0.50 M sodium 

acetate that contained 1.0 mM calcium chloride and 1.0 mM manganese chloride (for the 

Con A supports) [16,28,29] was passed through each microcolumn at 0.5 mL/min for at least 

1 h or until a stable baseline was achieved. The microcolumns were stored in the same pH 

7.4 or 5.0 buffers and at 4°C when not in use.

2.4 Protein entrapment by an on-column method

An alternative approach to slurry entrapment that was considered for immobilization was 

on-column entrapment [17]. The hydrazide-activated support was prepared from the same 

type of silica and using the same general reaction conditions as described in the previous 

section for slurry-based entrapment [16,27]. This support was packed into 1.0 cm × 2.1 mm 
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i.d. stainless steel microcolumns at 4000 psi using pH 7.4, 0.067 M potassium phosphate 

buffer, as described in Section 2.3.

The microcolumns containing hydrazide-activated silica were next used with a dual syringe 

on-column entrapment procedure, as illustrated in Figure 2. In this method, each 

microcolumn containing a hydrazide-activated support was connected to two pumps that 

were each equipped with 250 or 500 μL syringes. These pumps were synchronized to pass a 

given solution through a microcolumn, with one syringe infusing the solution while the other 

was used to withdraw the solution at the same flow rate. The total solution volume in the 

syringes was 350–400 μL, and syringes were used to infuse or withdraw 75 μL of this 

solution (in the majority of studies) or 200 μL (in later work with 100 mg/mL HSA) during 

each cycle at a flow rate of 20 μL/min. A stop time of 1 min was included in this program 

between each change in direction for syringe movement to allow the solution to completely 

go through the microcolumn and to relieve any pressure buildup that had occurred before a 

change was made in the direction of solution application.

The on-column entrapment method was used with several microcolumns and with HSA 

concentrations that ranged from 12.5 to 100 mg/mL and Con A concentrations that ranged 

from 1.0 to 10 mg/mL. These solutions were each entrapped at room temperature. The on-

line entrapment procedure first involved applying for 4 h to the microcolumn a 350–400 μL 

solution that contained only the desired protein (e.g., HSA) in a pH 5.0, 0.10 M potassium 

phosphate solution. This step was followed by applying 400 μL of a mixture of the same 

protein plus 4.25 mg/mL of oxidized glycogen for 16 h. Finally, 350–400 μL of a 1 mg/mL 

oxalic dihydrazide solution that was prepared in a pH 5.0, 0.10 M potassium phosphate 

solution was passed through the microcolumn for 2 h. A control microcolumn was prepared 

under the same conditions, with the exception of using only a pH 5.0, 0.10 M potassium 

phosphate solution in place of the protein solution. Immediately after the entrapment 

procedure was completed, the microcolumn was connected to an HPLC pump and washed at 

0.50 mL/min for 1 h with either pH 7.4, 0.067 M potassium phosphate buffer (for the HSA 

microcolumns) or pH 5.0, 0.50 M sodium acetate that contained 1.0 mM calcium chloride 

and 1.0 mM manganese chloride (for the Con A microcolumns) to wash away any excess 

reactants (e.g., unreacted oxidized glycogen or oxalic dihydrazide, and any remaining, non-

entrapped protein). The microcolumns were stored in the same pH 7.4 or 5.0 buffers at 4°C 

when not in use.

2.5 Chromatographic studies

The mobile phase that was used in the chromatographic studies with the entrapped HSA 

microcolumns was pH 7.4, 0.067 M potassium phosphate buffer [16,21–23]. The mobile 

phase for the entrapped Con A microcolumns was pH 5.0, 0.50 M sodium acetate that 

contained 1.0 mM calcium chloride and 1.0 mM manganese chloride [28,29]. All 

microcolumns were equilibrated with their corresponding buffer at 0.50 mL/min for at least 

1 h before any sample injections were made onto the column. During these experiments, the 

temperature was maintained at 37 °C for the HSA microcolumns and at 20 °C for the Con A 

microcolumns, as well as for their respective control microcolumns.

Vargas-Badilla et al. Page 5

J Chromatogr B Analyt Technol Biomed Life Sci. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The probes that were injected onto these microcolumns to measure their retention and to 

estimate their protein content were racemic warfarin for HSA and MUM for Con A. The 

wavelengths used for detection were 308 nm for warfarin, 316 nm for MUM or MUGA, and 

205 or 220 nm for sodium nitrate, with sodium nitrate and MUGA being used as non-

retained solutes and markers for the void time of the system in work with HSA and Con A, 

respectively [16–19,28,29]. Sample solutions containing these probes were prepared in the 

same mobile phase that was used for each corresponding microcolumn. The injection 

volume was 5 μL or 20 μL.The samples were injected at 0.50 mL/min and contained 10–20 

μM warfarin, 5–10 μM MUM or MUGA, and 2.5–5.0 μM sodium nitrate. No significant 

variations in the retention factors for the injected probes or non-retained solutes were seen 

over this range of sample concentrations, indicating that linear elution conditions were 

present. The retention factors also showed no variation with small changes in the flow rate, 

in agreement with previous observations made for warfarin and related solutes in prior 

studies with columns containing covalently immobilized HSA [9,21,30].

The retention time for each injected solute was estimated by analyzing the chromatograms 

with PeakFit 4.12. These peaks were processed by using the exponentially-modified 

Gaussian and half-Gaussian modified Gaussian function of PeakFit, followed by 

determination of each peak’s first statistical moment. All of the retention factors were 

determined for data acquired over at least three injections of the probe compounds or non-

retained solutes on the protein microcolumns and control microcolumns. The extra-column 

void time of the system was found by measuring the elution time of sodium nitrate or 

MUGA when a zero-volume union was placed instead of a microcolumn into the 

chromatographic system [21].

3 Results and discussion

3.1 Optimization of slurry-based entrapment for HSA

The slurry-based method of entrapment is the original form of this immobilization approach 

[16] and is the format that has been used in most prior work with this technique [18,19]. 

This procedure uses a slurry that contains a mixture of hydrazide-activated silica, oxidized 

glycogen and the protein of interest for the entrapment process [16]. Previous studies have 

examined the effects of using different types of supports and pore sizes on the amount of 

protein that can be entrapped by this method [16,19]. The effects of varying the amount of 

oxidized glycogen vs. silica and the means for preparing the hydrazide-activated silica or 

oxidized glycogen have also been considered [16,19]. In addition, some preliminary work 

has examined the effect of varying the total amount of protein that is added to the 

entrapment mixture [16]. One factor that has not been examined in these prior studies is the 

way in which the final protein content of the support is altered when varying the total 

volume of solution that is used for slurry-based entrapment.

HSA was used as the test protein for this work because it has been employed as a model 

binding agent in numerous previous studies aimed at the creation or optimization of covalent 

immobilization methods [5,31–34]. In addition, HSA has been of ongoing interest in binding 

studies based on HPAC because this protein is a serum transport agent for many drugs and 

can act as a chiral stationary phase for a number of these solutes [5–10]. This protein, which 
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consists of a single polypeptide chain with a molar mass of 66.5 kDa [24], also has well-

characterized binding to the drug warfarin [5,16]. This last fact was used in this report by 

employing warfarin as a probe to estimate and compare, through retention factor 

measurements, the amounts of active HSA that were present in supports and microcolumns 

prepared by entrapment (Note: this approach, and related methods using warfarin as a probe, 

have been found in previous studies to give good agreement with direct measurements of 

entrapped HSA content based on protein assays) [16,18].

Table 1 shows the results that were obtained in this study when the total volume of the HSA/

glycogen solution and/or the total added amount of HSA were varied in this entrapment 

method. Some adjustments in the amounts of silica and oxidized glycogen that were added 

to this mixture were also made during this process to provide consistent relative amounts for 

these agents. In going from Procedure 1 to 2 in Table 1, the solution volume was decreased 

by 70% from 1.0 to 0.30 mL. The masses of glycogen and silica were decreased to keep 

their ratio in the range of 15–18 mg glycogen/g silica. The added amount of HSA was also 

decreased slightly from that used in Procedure 1 (i.e., from 8.0 to 6.0 mg); this gave a 

mixture that contained a 20% increase in the relative amount of HSA vs. silica (i.e., 120 vs. 

100 mg HSA/g silica). Under these conditions, the final protein content, as calculated from 

the measured retention of warfarin [16,18,31], gave a 1.4-fold apparent increase from 1.9 to 

2.6 mg HSA/g silica; however, this change was not significant at the 95% confidence level. 

A further reduction in the solution volume to 0.20 mL, as made in Procedure 3 and with no 

change in the amount of added HSA from Procedure 1 (8.0 mg), provided an increase in the 

entrapped protein content of 3.2-fold from the initial conditions. This difference was 

significant at the 95% confidence level and indicated that a decrease in solution volume 

could alter and be used to increase the final protein content of a support that was made by 

slurry-based entrapment.

The effect of altering the total amount of protein, with a small change in the solution 

volume, in the entrapment procedure was next considered. This is demonstrated in going 

from the conditions in Procedure 1 to those Procedure 4, in which the amount of added HSA 

was increased from 8.0 to 25.2 mg and the solution volume was decreased slightly (28%) 

from 1.00 to 0.72 mL. To compensate for the decrease in solution volume, the masses of 

silica and glycogen were decreased to provide the same mass ratio between these agents as 

was present in Procedure 1. However, the relative amount of added HSA vs. silica was now 

increased by 4-fold. The combined effect of this increase in the relative amount of HSA and 

the modest decrease in solution volume was a 5.4-fold increase in the amount of entrapped 

HSA. This increase was significant at the 95% confidence level and indicated that an 

increase in the amount of added protein along with a decrease in solution volume could be 

used to provide a large increase in the level of protein immobilization during entrapment.

The results obtained with Procedure 2–4 were next used to identify a new set of conditions 

(i.e., Procedure 5) for examining the effect of significantly altering both the amount of added 

protein and the solution volume in the slurry entrapment method. This set of conditions used 

the same mass ratios of HSA vs. silica and glycogen vs. silica as were used in Procedure 4 

but now used a solution volume that was decreased 3.6-fold from 0.72 to 0.20 mL. This 

modification in the entrapment method also resulted in a large increase in the amount of 
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entrapped protein, now giving a final protein content of over 32 mg HSA/g silica. This 

amount was 3.2-fold higher than was seen in Procedure 4 and 17-fold higher than the protein 

content that was obtained with the initial conditions used in Procedure 1. Based on the 

increase that was noted in this last group of studies, the conditions employed in Procedure 5 

(i.e., in which the solution volume was minimized and the amount of added protein in this 

solution was maximized) were selected for further use in the slurry-based entrapment, with a 

modified version of this method being employed with HSA in Section 3.2 and with Con A in 

Section 3.3.

3.2 Optimization of on-column entrapment for HSA

An on-column format is another possible approach for protein entrapment [17]. In this 

method, proteins and other reagents are circulated through hydrazide-activated silica that has 

been packed into a column. The advantage of this approach is that the reaction mixture 

contains the support within a region that can now make use of the smallest possible volume 

for the entrapment process. This reduced volume promotes better contact of the applied 

protein with the pores or region near the surface of the support, which in turn should result 

in a larger amount of entrapped protein than the slurry-based method [17].

In this report the on-column entrapment system was initially compared to the slurry-based 

method for the entrapment of HSA. This work was carried out by using a slurry-based 

method that employed 100 mg/mL HSA as a reference, as based on conditions obtained 

from Table 1. The concentration of HSA was varied in the on-column method from 12.5 to 

100 mg/mL. The same concentration of oxidized glycogen that was present in the slurry-

based method was used in the on-column method (i.e., 4.25 mg/mL). In addition, the total 

volume for the HSA/glycogen solution was kept at 0.35–0.40 mL in both the slurry and on-

column methods. Although these solution volumes were slightly higher than the final value 

of 0.20 mL that was used for the slurry method in Procedure 5 of Table 1, this volume did 

make it possible to now make a direct comparison between the slurry-based and on-column 

entrapment methods under equivalent solution reaction conditions.

Table 2 summarizes the final protein contents of the supports that were prepared by the 

slurry and on-column methods. For the on-column method, a 1.8-fold increase in protein 

content was seen as the concentration of the applied HSA increased from 12.5 to 50 mg/mL, 

and a 3.2-fold increase was seen when going from 12.5 to 100 mg/mL HSA, with both of 

these increases being significant at the 95% confidence level. The results obtained when 

going from 25 to 100 mg/mL HSA in the on-column entrapment method gave protein 

contents that were 1.8-to 3.6-fold higher than was obtained when using slurry-based 

entrapment with 100 mg/mL HSA, with all of these differences being significant at the 95% 

confidence level. In addition, the protein content obtained when using only 12.5 mg/mL 

HSA for on-column entrapment was comparable and statistically equivalent to that obtained 

when using 100 mg/mL HSA in the slurry-based method. Finally, the highest protein content 

that was obtained here with on-column entrapment was over 46-fold larger than the protein 

content that was obtained with the initial conditions used in Procedure 1 of Table 1 for the 

slurry-based entrapment of HSA.
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The results in Table 2 clearly indicated that the on-column method allowed for more 

effective entrapment than the slurry method. This feature made it possible with the on-

column method to provide much higher levels of entrapment than the slurry method when 

using the same total amount of protein, as seen in Table 2 for these two approaches when 

both used 100 mg/mL HSA. This feature also made it possible to obtain comparable levels 

of entrapment at much lower levels of applied protein in on-column entrapment, as indicated 

in Table 2 by the on-column result at 12.5 mg/mL HSA vs. the slurry method result at 100 

mg/mL HSA. In the later situation, the slurry method used 40 mg HSA (i.e., a 0.40 mL 

portion of 100 mg/mL HSA) to prepare the HSA microcolumn, while the on-column method 

only needed 5 mg HSA (0.4 mL of 12.5 mg/mL HSA). This made the on-column method a 

more efficient and cost-effective approach for entrapment than the slurry method for the 

immobilization of HSA in affinity microcolumns.

Figure 3 shows some typical chromatograms that were obtained for HSA microcolumns that 

were prepared by the slurry-based and on-column procedures. This figure indicates that 

warfarin could easily access and be retained by the entrapped protein in these microcolumns. 

This observation agrees with prior work that has examined the retention of warfarin and 

other drugs with columns containing entrapped HSA or alpha1-acid glycoprotein (i.e., 

another serum transport protein) [16–19]. The chromatograms in Figure 3 also illustrate the 

ability of on-column entrapment to give higher retention than slurry-based entrapment when 

both methods use the same total amount of protein (i.e., see top and bottom chromatograms, 

in which both are based on the use of 100 mg/mL HSA for entrapment). In addition, Figure 

3 demonstrates how comparable or even higher amounts of retention can be obtained by on-

column entrapment when using less added amounts of protein than slurry-based entrapment. 

This last situation can be seen by comparing by the top chromatogram, which is for the 

slurry method at 100 mg/mL HSA, and the middle two chromatograms, which are for the 

on-column method when using 12.5 or 50 mg/mL HSA and which give equivalent or higher 

retention for warfarin than the slurry method.

Many previous studies have used HSA as a model protein to optimize and develop new 

immobilization methods for silica supports in HPAC. Examples of these other 

immobilization techniques have included the Schiff base method, the N-hydroxysuccinimide 

method, and various sulfhydryl-reactive techniques [31–34]. Use of these methods with the 

same type of silica as employed in this study have resulted in final protein contents that have 

ranged from 8–54 mg HSA/g silica [31–34]. These amounts are comparable to those 

obtained in this study when using on-column entrapment, with entrapment even reaching a 

level of almost 87 mg HSA/g silica (or 1.30 μmol/g silica) with the largest amount of HSA 

that was employed. The potential of entrapment to immobilize more protein than these 

covalent methods is linked to the use of a three-dimensional region (e.g., the pore volume) to 

contain the protein instead of using only the surface area of the support. This difference 

would be expected to provide entrapment with a larger level of immobilization particularly 

in cases where a protein is quite soluble and can be added to the entrapment solution at high 

concentrations, as is the case with HSA [24].

Another difference between the covalent and entrapment methods is that the entrapment 

process results in immobilized HSA that is present in an essentially fully active form 
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[16,18], while covalent immobilization methods have typically given activities of 7–87% for 

this same protein [31,32,34]. This difference means entrapment can not only be used to 

potentially produce a larger amount of immobilized protein but to also provide higher 

retention than a covalent method by providing a higher level of protein activity. For example, 

the specific retention factors reported for warfarin on HSA columns that have been prepared 

by various covalent methods have ranged from 7.6–80 [31,32,34]. In this study, specific 

retention factors for warfarin as high as almost 135 were obtained when using the same type 

of support and mobile phase/temperature conditions as used in the prior cited work with 

covalent immobilization schemes.

3.3 Optimization of entrapment for Con A

Con A was another protein that was used as a model to test and optimize the entrapment 

scheme that was employed in this report. This work was done to see if the trends observed 

for entrapment with HSA also applied to other binding agents. Con A was entrapped and 

used at pH 5.0, a condition at which this protein mainly exists as a dimer (molar mass of 53 

kDa, with each monomer having a mass of 26.5 kDa) [10,28,29]. Although the dimer of Con 

A has a slightly lower mass than HSA, the hydrodynamic radius of the Con A dimer is 

comparable to and slightly larger than that of HSA (i.e., 4.1 nm vs. 3.5 nm) [35,36]. 

Furthermore, Con A is similar to HSA in that it has well-described binding for some solutes, 

one of which is the fluorescent sugar MUM [28,29]. This last feature made it again possible 

to use retention measurements with MUM as a probe compound to estimate the content of 

active Con A in affinity microcolumns and within supports that were prepared under various 

entrapment conditions.

The results that were obtained for the entrapment of Con A are summarized in Table 3. The 

lower solubility of Con A compared to HSA [24,37,38] did limit the range of concentrations 

for Con A that could be used for the entrapment process (i.e., values up to 10 mg/mL). 

However, the general trends seen in Table 2 for HSA also appeared in the data for Con A in 

Table 3. For instance, an increase in the total amount of Con A that was used for on-column 

entrapment again resulted in an increase in the final level of entrapped protein; the amount 

of entrapped protein increased by 2.2-fold (i.e., a result significant at the 95% confidence 

level) when going from an applied concentration of 1.0 to 10 mg/mL Con A. This increase, 

which occurred over a 10-fold range in the applied concentration of Con A, was smaller than 

the 3.2-fold increase seen in Table 2 over an 8-fold change in the concentration of HSA that 

was used for entrapment. This difference may be due to the loss of some Con A before 

immobilization, as some cloudiness was noted to occur during the preparation of a 10 

mg/mL Con A solution, which was then filtered prior to its use in entrapment.

Another similarity in the results for Con A and HSA was in the ability of the on-column 

approach to give more effective entrapment than the slurry method. For Con A, the use of 

on-column entrapment and a 1.0 mg/mL Con A solution gave a statistically-equivalent level 

of entrapment (at the 95% confidence level) to the use of slurry-based entrapment with 10 

mg/mL Con A. In addition, use of 10 mg/mL Con A for both slurry entrapment and on-

column entrapment resulted in a 2.6-fold higher amount of immobilized Con A for the on-

column method. The effect of these different levels of entrapment on the retention of MUM 
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is illustrated by the chromatograms in Figure 4. These chromatograms show how the use of 

only 1.0 mg/mL Con A in the on-column entrapment gave a support that was similar in 

retention behavior for MUM to that obtained with the slurry method when using 10 mg/mL 

Con A. This figure also shows how the use of 10 mg/mL Con A for on-column entrapment 

created a microcolumn that had higher retention for MUM than when using the same 

concentration of Con A in the slurry method.

These results were compared to those obtained in prior studies that have used a covalent 

immobilization method to couple Con A to silica. The highest Con A content that was 

obtained in this study (i.e., ~46 mg/g silica, or 0.86 μmol Con A dimer/g silica) was 

comparable to values of 40–50 mg Con A/g silica that have been reported for the Schiff base 

method of covalent immobilization [25,26]. This was the case even though the silica used in 

these earlier reports either had a lower [26] or larger surface area [25] than the support that 

was used for entrapment in this current work. These results indicated that entrapment could 

be used as a viable alternative to covalent immobilization methods for the preparation of 

Con A supports and columns. It was further noted that the levels of entrapment seen in Table 

3 for the slurry-based and on-column entrapment of Con A (i.e., 0.33 and 0.40–0.86 μmol 

dimer/g silica, respectively) were in the same general range as obtained in Table 2 when 

these entrapment methods were used with HSA (i.e., 0.36 and 0.41–1.30 μmol/g silica).

4 Conclusion

This report examined several factors that may influence the extent of entrapment for proteins 

such as HSA and Con A within HPLC-grade porous silica. Of particular interest was the use 

of entrapment to create affinity microcolumns [20]. The retention properties and levels of 

entrapment of the resulting microcolumns were evaluated by using injections of warfarin or 

MUM as probes for HSA and Con A, respectively [5,16,28,29]. It was found with HSA that 

altering both the solution volume and amount of added protein could lead to a significant 

increase in the extent of protein immobilization that was obtained in slurry-based 

entrapment. The amount of added protein was also found to be important when using on-

column entrapment with HSA, where a large increase in the final protein content of the 

supports was noted when comparing on-column and slurry-based entrapment. Similar results 

were obtained with Con A when comparing slurry-based vs. on-column entrapment.

The final, optimized conditions identified for the slurry entrapment of HSA gave a 17-fold 

higher protein content than conditions based on a previous approach for the entrapment of 

this protein (i.e., Procedure 1 in Table 1) [16]. The conditions that were optimized for the 

on-column entrapment of HSA gave over a 45-fold higher protein content than was obtained 

with the original procedure for slurry-based entrapment [16] and a 3.6-fold higher protein 

content than the optimized slurry method, when the latter approach used a comparable 

protein concentration and solution volume for the immobilization process. The largest 

protein content that was obtained for either the slurry-based or on-column entrapment of 

HSA (i.e., ~32 and 86 mg/g silica, respectively) was comparable to or larger than values of 

8–54 mg/g silica that have been reported for a number of covalent methods with the same 

type of silica as employed in this report [31–34]. In addition, the highest specific retention 

factor observed here for warfarin on an entrapped HSA microcolumn was 18-to 1.7-fold 
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higher than values that have been obtained when using covalent immobilization [31,32,34]. 

For Con A, the highest protein content that was measured in this study (i.e., ~46 mg/g silica) 

was in the same range as values that have been reported for covalent immobilization using 

other types of silica [25,26].

These results indicate that entrapment can be a valuable alternative to covalent 

immobilization for proteins such as HSA and Con A. These data also demonstrate how 

entrapment can provide higher levels of protein immobilization than covalent coupling 

techniques and result in supports and columns with increased levels of solute retention. 

These differences are believed to be due to two factors: the use of a three-dimensional region 

in entrapment instead of a surface for immobilization, and the loss of actual or apparent 

activity of the binding agent during covalent immobilization [16,18,31,32,34]. The trends 

noted in this study should provide valuable guidelines for future applications of HSA, Con A 

and other binding agents in HPAC. As illustrated in this report, the ability to prepare 

supports by entrapment should be especially attractive as a means to provide strong binding 

and good retention in future work with affinity microcolumns or related microscale devices 

that employ affinity ligands as immobilized agents [20–23,26,39].

Acknowledgements

This work was funded by the National Institutes of Health under grant R01 DK069629.

References

[1]. Hage DS (Ed.), Handbook of Affinity Chromatography, CRC Press, Boca Raton, FL, 2005, pp. 3–
14.

[2]. Walters RR, Affinity chromatography, Anal. Chem 57 (1985) 1099A–1114A.

[3]. Larsson PO, High-performance liquid affinity chromatography, Methods Enzymol. 104 (1984) 
212–223. [PubMed: 6371445] 

[4]. Singh P, Madhaiyan K, Duong-Thi M-D, Dymock BW, Ohlson S, Analysis of protein target 
interactions of synthetic mixtures by affinity-LC/MS, SLAS Discovery 22 (2017) 440–446. 
[PubMed: 28328315] 

[5]. Zhang C, Rodriguez E, Bi C, Zheng X, Suresh D, Suh K, Li Z, Elsebaei F, Hage DS, High 
performance affinity chromatography and related methods for the analysis of biological and 
pharmaceutical agents: a review, Analyst 143 (2018) 374–391. [PubMed: 29200216] 

[6]. Hage DS, Anguizola JA, Bi C, Li R, Matsuda R, Papastavros E, Pfaunmiller E, Vargas J, Zheng X, 
Pharmaceutical and biomedical applications of affinity chromatography: recent trends and 
developments, J. Pharm. Biomed. Anal 69 (2012) 93–105. [PubMed: 22305083] 

[7]. Kratochwil NA, Huber W, Muller F, Kansy M, Gerber PR, Predicting plasma protein binding to 
drugs: a new approach, Biochem. Pharmacol 64 (2002) 1355–1374. [PubMed: 12392818] 

[8]. Li Z, Beeram SR, Bi C, Suresh D, Zheng X, Hage DS, High-performance affinity chromatography: 
applications in drug-protein binding studies and personalized medicine, in: Donev R (Ed.), 
Advances in Protein Chemistry and Structural Biology, Vol. 102, Elsevier, Amsterdam, 2016, pp. 
1–39. [PubMed: 26827600] 

[9]. Kim HS, Wainer I, Rapid analysis of the interactions between drugs and human serum albumin 
(HSA) using high performance affinity chromatography (HPAC), J. Chromatogr. B 870 (2008) 
22–26.

[10]. Hage DS, Bian M, Burks R, Karle E, Ohnmacht C, Wa C, Bioaffinity chromatography, in: Hage 
DS (Ed.), Handbook of Affinity Chromatography, CRC Press, Boca Raton, FL, 2005, pp. 101–
126.

Vargas-Badilla et al. Page 12

J Chromatogr B Analyt Technol Biomed Life Sci. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[11]. Hermanson GT, Mallia AK, Smith PK, Immobilized Affinity Ligand Techniques, Academic 
Press, New York, 1992.

[12]. Kim HS, Hage DS, Immobilization methods for affinity chromatography, in: Hage DS (Ed.), 
Handbook of Affinity Chromatography, CRC Press, Boca Raton, FL, 2006, pp. 35–78.

[13]. Avnir D, Coradin T, Lev O, Livage J, Recent bio-applications of sol-gel materials, J. Mater. Chem 
16 (2006) 1013–1030.

[14]. Livage J, Coradin T, Roux C, Encapsulation of biomolecules in silica gels, J. Phys.: Condens. 
Matter 13 (2001) R673–R691.

[15]. Betancor L, Luckarift HR, Bioinspired enzyme encapsulation for biocatalysis, Trends Biotechnol. 
25 (2008) 566–572.

[16]. Jackson AJ, Xuan H, Hage DS, Entrapment of proteins in glycogen-capped and hydrazide-
activated supports, Anal. Biochem 404 (2010) 106–108. [PubMed: 20470745] 

[17]. Anguizola J, Bi C, Koke M, Jackson A, Hage DS, On-column entrapment of alpha1-acid 
glycoprotein for studies of drug-protein binding by high-performance affinity chromatography, 
Anal. Bioanal. Chem 408 (2016) 5745–5756. [PubMed: 27289464] 

[18]. Jackson AJ, Anguizola J, Pfaunmiller EL, Hage DS, Use of entrapment and high-performance 
affinity chromatography to compare the binding of drugs and site-specific probes with normal 
and glycated human serum albumin, Anal. Bioanal. Chem 405 (2013) 5833–5841. [PubMed: 
23657448] 

[19]. Bi C, Jackson A, Vargas-Badilla J, Li R, Rada G, Anguizola J, Pfaunmiller E, Hage DS, 
Entrapment of alpha1-acid glycoprotein in high-performance affinity columns for drug-protein 
binding studies, J. Chromatogr. B 1021 (2016) 188–196.

[20]. Zheng X, Li Z, Beeram S, Matsuda R, Pfaunmiller EL, Podariu M, White CJ II, Carter N, Hage 
DS, Analysis of biomolecular interactions using affinity microcolumns: a review, J. Chromatogr. 
B 968 (2014) 49–63.

[21]. Yoo M, Schiel JE, Hage DS, Evaluation of affinity microcolumns containing human serum 
albumin for rapid analysis of drug-protein binding, J. Chromatogr. B 878 (2010) 1707–1713.

[22]. Anguizola J, Joseph KS, Barnaby OS, Matsuda R, Alvarado G, Clarke W, Cerny RL, Hage DS, 
Development of affinity microcolumns for drug-protein binding studies in personalized medicine: 
interactions of sulfonylurea drugs with in vivo glycated human serum albumin, Anal. Chem 85 
(2013) 4453–4460. [PubMed: 23544441] 

[23]. Pfaunmiller EL, Hartmann M, Dupper CM, Soman S, Hage DS, Optimization of human serum 
albumin monoliths for chiral separations and high-performance affinity chromatography, J. 
Chromatogr. A 1269 (2012) 198–207. [PubMed: 23010249] 

[24]. Peters T Jr., All About Albumin: Biochemistry, Genetics and Medical Applications, Academic 
Press, San Diego, 1996.

[25]. Mann BF, Mann AKP, Skrabalak SE, V Novotny M, Sub 2-μm macroporous silica particles 
derivatized for enhanced lectin affinity enrichment of glycoproteins, Anal. Chem 85 (2013) 
1905–1912. [PubMed: 23278114] 

[26]. Madera M, Mechref Y, Novotny MV, Combining lectin microcolumns with high-resolution 
separation techniques for enrichment of glycoproteins and glycopeptides, Anal. Chem 77 (2005) 
4081–4090. [PubMed: 15987113] 

[27]. Ruhn PF, Garver S, Hage DS, Development of dihydrazide-activated silica supports for high-
performance affinity chromatography, J. Chromatogr. A 669 (1994) 9–19. [PubMed: 8055106] 

[28]. Anderson DJ, Walters RR, Equilibrium and rate constants of immobilized concanavalin A 
determined by high-performance affinity chromatography, J. Chromatogr 376 (1986) 69–85.

[29]. Anderson DJ, Walters RR, Affinity chromatographic examination of a retention model for 
macromolecules, J. Chromatogr 331 (1985), 1–10. [PubMed: 4044732] 

[30]. Loun B, Hage DS, Characterization of thyroxine-albumin binding using high-performance 
affinity chromatography, II. Comparison of the binding of thyroxine, triiodothyronines and 
related compounds at the warfarin and indole sites of human serum albumin, J. Chromatog. B 
665 (1995) 303–314.

Vargas-Badilla et al. Page 13

J Chromatogr B Analyt Technol Biomed Life Sci. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[31]. Loun B, Hage DS, Chiral separation mechanism in protein-based HPLC columns. I. 
Thermodynamic studies of (R)- and (S)-warfarin binding to immobilized human serum albumin, 
Anal. Chem 66 (1994) 3814–3822. [PubMed: 7802261] 

[32]. Kim HS, Kye YS, Hage DS, Development and evaluation of N-hydroxysuccinimide- activated 
silica for immobilizing human serum albumin in liquid chromatography columns, J. Chromatogr. 
A 1049 (2004) 51–61. [PubMed: 15499917] 

[33]. Kim HS, Mallik R, Hage DS, Chromatographic analysis of carbamazepine binding to human 
serum albumin. II. Comparison of the Schiff base and N-hydroxysuccinimide immobilization 
methods, J. Chromatogr. B 837 (2006) 138–146.

[34]. Mallik R, Wa C, Hage DS, Development of sulfhydryl-reactive silica for protein immobilization 
in high-performance affinity chromatography, Anal. Chem 79 (2007) 1411–1424. [PubMed: 
17297940] 

[35]. Khan MV, Ishtikhar M, Siddiqui MK, Zaman M, Chandel TI, Majid N, Ajmal MR, Abdelhameed 
AS, Shahein YE, Khan RH, Biophysical insight reveals tannic acid as amyloid inducer and 
conformation transformer from amorphous to amyoid aggregates in Concanavalin A (ConA), J. 
Biomol. Struct. Dynam, 36 (2018) 1261–1273.

[36]. Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC, The hydrodynamic radii of 
macromolecules and their effect on red blood cell aggregation, Biophys. J 87 (2004) 4259–4270. 
[PubMed: 15361408] 

[37]. Olson MO, Liener IE, Some physical and chemical properties of concanavalin A, the 
phytohemagglutinin of the jack bean, Biochemistry 6 (1967) 105–111. [PubMed: 6030308] 

[38]. Mikol V, Giege R, Phase diagram of a crystalline protein: determination of the solubility of 
concanavalin A by a microquantitation assay, J. Crystal Growth 97 (1989) 324–332.

[39]. Phillips TM, Microanalytical methods based on affinity chromatography, in: Hage DS (Ed.), 
Handbook of Affinity Chromatography, CRC Press, Boca Raton, FL, 2006, pp. 763–788. 

Vargas-Badilla et al. Page 14

J Chromatogr B Analyt Technol Biomed Life Sci. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Several procedures were evaluated for protein entrapment in hydrazide-silica.

• The protein content of each support was evaluated for use in affinity 

microcolumns.

• Human serum albumin and concanavalin A were used as model proteins.

• On-column entrapment was found to be more effective than a slurry-based 

method.

• The protein contents seen with entrapment met or exceeded those of covalent 

methods.
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Figure 1. 
Entrapment of a soluble protein using a hydrazide-activated support and mildly oxidized 

glycogen.
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Figure 2. 
Scheme for dual syringe method for on-column protein entrapment.
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Figure 3. 
Chromatograms obtained for racemic warfarin on columns that contained entrapped HSA, as 

prepared by slurry-based or on-column entrapment using various concentrations of HSA. 

Conditions: sample, 40 μM racemic warfarin, 5 μL; column size, 1.0 cm × 2.1 mm i.d.; flow 

rate, 0.50 mL/min; temperature, 37 °C. The total solution volume was 400 μL in the 

entrapment methods represented by the top three chromatograms and 350 μL in the 

procedure represented by the bottom chromatogram. Other conditions are provided in the 

Materials and methods. The dashed vertical line shows the mean elution time of sodium 

nitrate, which was used as a non-retained solute.
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Figure 4. 
Chromatograms obtained for MUM on columns that contained entrapped Con A, as 

prepared by slurry-based or on-column entrapment. Conditions: sample, 10 μM MUM, 5 μL; 

column size, 1.0 cm × 2.1 mm I.D.; flow rate, 0.50 mL/min; temperature, 20 °C. Other 

conditions are provided in the Materials and methods. The dashed vertical line shows the 

mean elution time of MUGA, which was used as a non-retained solute.
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Table 1.

Effect on protein content when varying reaction conditions for slurry-based entrapment of HSAa

Procedure

Entrapment conditions 1 2 3 4 5

Solution and support in entrapment mixture

 Total added solution volume (mL) 1.00 0.30 0.20 0.72 0.20

 Total added silica (mg) 80 50 50 63 50

HSA in entrapment mixture

 Conc. HSAC (mg/mL) 8.0 20 40 35 100

 Total Added HSA (mg) 8.0 6.0 8.0 25.2 20.0

 Added HSA vs. silica (mg/g) 100 120 160 400 400

Oxidized glycogen in entrapment mixture

 Cone, oxidized glycogen (mg/mL) 1.2 3.0 4.2 1.3 3.8

 Total added glycogen (mg) 1.2 0.90 0.84 0.94 0.75

 Added glycogen vs. silica (mg/g) 15 18 17 15 15

Properties of entrapped HSA supportb

 Specific retention factor, warfarin 3.0 (±0.6) 4.0 (±0.9) 9.5 (±2.6) 15.8 (±1.4) 49.9 (±7.9)

 Protein content (mg/g silica) 1.9(± 0.5) 2.6(± 0.8) 6.1(± 2.1) 10.2(± 2.2) 32.2(± 8.1)

e
Average retention factor for triplicate injections of racemic warfarin, where the numbers in parentheses represent a range of ± 1 S.D. For 

Procedure 5, the average retention factor was calculated from the results for two different batches of entrapped HSA supports.

b
The specific retention factors were measured at pH 7.4 and 0.5 mL/min at 37 °C and have been corrected for any binding by warfarin to the 

support in the absence of entrapped HSA. The protein content of each support was calculated from the specific retention factor for warfarin by 

using a molar mass for HSA of 66.5 kDa, the measured void volume of the column, the known packing density for the support (0.45 g/cm3) and an 

association equilibrium constant of 2.3 (± 0.4) × 105 M−1 for racemic warfarin with HSA at pH 7.4 and 37 °C [31].
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Table 2.

Effects on protein concentration and use of slurry vs on-column entrapment for HSA
a

Entrapment
method and HAS

concentration

Specific retention
factor, warfarin

Protein content
(mg/g silica)

Protein content
(nmol/g silica)

Slurry method
b
 100 mg/mL HSA

37.6 (± 5.2) 24.2 (±5.9) 0.36 (±0.09)

On-column method 12.5 mg/mL HSA 42.4 (±± 1.0) 27.3 (±5.4) 0.41 (±0.08)

On-column method 25 mg/mL HSA 68.2 (±3.8) 44.0 (±9.0) 0.66 (±0.14)

On-column method 50 mg/mL HSA 75.6 (±3.5) 48.7 (±9.9) 0.73 (±0.15)

On-column method 100 mg/mL HSA 134.5 (±5.3) 86.7 (±17.5) 1.30 (±0.26)

a
The numbers in parentheses represent a range of ± 1 S.D. for three sample injections. The specific retention factors were measured at pH 7.4 and 

0.5 mL/min at 37 °C and have been corrected for any binding by warfarin to the support in the absence of entrapped HSA. The protein content of 
each support was calculated in the same manner as described in Table 1.

b
The total volume of the HSA/glycogen solution (or HSA/buffer mixture) that was used in the listed slurry method was 0.40 mL to make it 

equivalent to the HSA/glycogen solution volume that was used for on-column entrapment.
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Table 3.

Effects of protein concentration and use of slurry vs. on-column entrapment for Con A
a

Entrapment method
and Con A

concentration

Specific retention
factor, MUM

Protein content
(mg/g silica)

Protein content
(μmol dimer/g silica)

Slurry method lOmg/mLCon A 13.4 (±1.2) 17.6 (±2.3) 0.33 (±0.04)

On-column method 1.0 mg/mLCon A 16.0 (±1.2) 21.0 (±2.6) 0.40 (±0.05)

On-column method 10 mg/mLCon A 34.7 (±2.9) 45.6 (±5.7) 0.86 (±0.11)

a
The numbers in parentheses represent a range of ± 1 S.D., as obtained for a set of three injections. The specific retention factors were measured at 

0.5 mL/min and 20 °C and have been corrected for any binding by MUM with the support in the absence of MUM. The protein content of each 
support was calculated from the specific retention factor for MUM by using a molar mass for the monomer of Con A of 26.5 kDa, the measured 

void volume of the column, the known packing density for the support (0.45 g/cm3), and an association equilibrium constant of 4.5 × 105 M−1 for 
MUM with Con A at pH 5.0 and 25 °C [28].
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